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Abstract

Large Language Models (LLMs) have revolu-
tionized various domains with extensive knowl-
edge and creative capabilities. However, a crit-
ical issue with LLMs is their tendency to pro-
duce outputs that diverge from factual reality.
This phenomenon is particularly concerning
in sensitive applications such as medical con-
sultation and legal advice, where accuracy is
paramount. Inspired by human lie detectors
using physiological responses, we introduce
the LLM Factoscope, a flexible and extendable
pipeline that leverages the inner states of LLMs
for factual detection. Our investigation reveals
distinguishable patterns in LLMs’ inner states
when generating factual versus non-factual con-
tent. We demonstrate its effectiveness across
various architectures, achieving over 96% ac-
curacy on our custom-collected factual detec-
tion dataset. Our work opens a new avenue
for utilizing LLMs’ inner states for factual de-
tection and encourages further exploration into
LLMs’ inner workings for enhanced reliability
and transparency.

1 Introduction

Large Language Models (LLMs) have gained im-
mense popularity, revolutionizing various domains
with their remarkable creative capabilities and vast
knowledge repositories. These models reshape
fields like natural language processing (Khurana
et al., 2023), content generation (Acharya et al.,
2023), and more. However, despite their advanced
abilities, a growing concern surrounds their propen-
sity for “hallucination” — the generation of out-
puts that deviate from factual reality (Zhang et al.,
2023b). In critical applications like medical con-
sultation (Zhang et al., 2023a), legal advice (Cui
et al., 2023), and educational tutoring (Upadhyay
et al., 2023), factual LLM outputs are not just de-
sirable but essential, as non-factual outputs from
these models could potentially lead to negative
outcomes for users, affecting their health, legal

standing, or educational understanding. Recogniz-
ing this, LLM-generated content’s factual detec-
tion has emerged as an area of paramount impor-
tance (Mosca et al., 2023). Current research pre-
dominantly relies on cross-referencing LLM out-
puts with external databases (Zhang et al., 2023b).
While effective, this approach necessitates exten-
sive external knowledge bases and sophisticated
cross-referencing algorithms, introducing more
complexity and dependency. This raises a com-
pelling question: Could we possibly exclude exter-
nal resources but only leverage the inner states of
LLMs for factual detection?

Inspired by human lie detectors, we explore es-
tablishing a lie detector for LLMs. Humans show
specific physiological changes when making state-
ments that contradict their knowledge or beliefs, en-
abling lie detection through these changes. We as-
sume that exposure to a wide range of world knowl-
edge during LLMs’ training establishes their knowl-
edge or beliefs. Moreover, training datasets usually
have more factual than non-factual sources (Tou-
vron et al., 2023). This assumption makes estab-
lishing a lie detector for LLMs possible. To achieve
this, we need to address two essential questions:
(1) What might the “physiological” indicators for
LLMs be, similar to heart rate and eye movements
in humans? (2) How can we leverage these indica-
tors in LLMs to establish the lie detector? However,
the lack of interpretability in LLMs makes it impos-
sible for humans to understand model parameters
or hidden states, rendering the solutions to these
questions challenging.

We address the above two challenges through
heuristic and data-driven methods, respectively.
For the first challenge, we initially use activation
maps as static features to represent the “physiolog-
ical” states of the LLM. Based on our observations,
factual-related activations show higher intensity
when the LLM produces factual outputs, making
the activation maps representative to serve as fea-
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tures for the lie detector. Subsequently, we use
final output ranks, top-k output indices, and top-k
output probabilities across layers as dynamic fea-
tures to represent the LLM’s decision-making pro-
cesses. We note that factual outputs by LLMs show
more stable final output ranks, greater semantic
similarity in top-k output indices, and larger top-k
output probability differences in later layers (See
Section 3). For the second challenge, due to the
intricate relationship between the features and the
factuality of outputs, we employ a data-driven ap-
proach to extract underlying principles from these
features. Consequently, we design a systematic and
automated factual detection pipeline, LLM Facto-
scope, that includes the factual datasets collection,
the inner states collection, and the design of the
factual detection model (See Section 4).

In our experiments, we empirically demon-
strate the effectiveness of the LLM Factoscope
across various LLM architectures, including GPT2-
XL-1.5B, Llama2-7B, Vicuna-7B, Stablelm-7B,
Llama2-13B, and Vicuna-13B. The LLM Facto-
scope achieves an accuracy rate exceeding 96%
in factual detection. Additionally, we extensively
examine the model’s generalization capabilities
and conduct ablation studies to understand the im-
pact of different components and parameters on the
LLM Factoscope’s performance. Our work paves a
new path for utilizing inner states from LLMs for
factual detection, sparking further exploration and
analysis of LLMs’ inner states for enhanced model
understanding and reliability.

Our contributions are as follows: (1) We iden-
tify effective inner states closely associated with
the factual accuracy of the content generated by
LLMs, discovered through observation. (2) We
introduce the LLM Factoscope, a novel and extend-
able pipeline for automating the detection of factual
accuracy in LLM outputs, facilitating the incorpo-
ration of new datasets with ease. (3) Our model
has been empirically validated across various LLM
architectures, demonstrating over 96% accuracy
on our custom-collected factual detection dataset.
Datasets and code are released for further research:
https://github.com/JenniferHo97/llm_factoscope.

2 Related Work

2.1 The Logit Lens

The logit lens, which uses the model’s own unem-
bedding matrix to decode intermediate layers (Nos-
talgebraist, 2020), offers valuable insights into

the model’s decision-making process and enables
corrections of harmful behaviors. Geva et al.
(Geva et al., 2022) analyzed the decoding out-
put of intermediate layers and extracted human-
understandable concepts learned by the parame-
ter vectors of the transformer’s feed-forward lay-
ers, allowing for manipulation of model outputs
to reduce harmful content. Similarly, McGrath
et al. (McGrath et al., 2023) found that late layer
MLPs often act to reduce the probability of the
maximum-likelihood token, and this reduction can
be self-corrected by knocking out certain attention
layers. Halawi et al. (Halawi et al., 2023) decoded
intermediate layers to understand the mimicry of
harmful outputs by language models, identifying
significant shifts in decision-making between cor-
rect and incorrect input statements in the mid to
later layers, and proposed nullifying key layers to
improve output accuracy when facing misleading
inputs. These studies reveal the potential of analyz-
ing inner states for improving LLM outputs. In our
study, we use the logit lens to decode the outputs
of intermediate layers, capturing changes in output
indices and probabilities within the LLM.

2.2 LLM Factual Detection

Fact-checking LLM outputs is increasingly criti-
cal. Current approaches, such as manual examina-
tion of training datasets (Penedo et al., 2023) and
referencing external databases (Ren et al., 2023),
are labor-intensive and computationally expensive.
Fact-checking involves detecting the factuality of
both inputs and outputs of LLMs. Our task focuses
on output factuality detection. Previous methods
like SPALMA (Azaria and Mitchell, 2023) and
Marks et al. (Marks and Tegmark, 2023) primarily
detect input factuality, while ITI (Li et al., 2023) en-
hances output factuality through inner state manip-
ulation. CCS (Burns et al., 2023) evaluates LLM
outputs using activation values and auto-labeling
by LLMs, which we found unreliable. Semantic
uncertainty (Kuhn et al., 2023) analyzes output
uncertainty through computationally intensive re-
peated sampling. Hallucination detection methods
like SelfCheckGPT (Manakul et al., 2023) and IN-
SIDE (Chen et al., 2024) also rely on sampling,
introducing significant computational overheads.
Our LLM Factoscope enables real-time inference
by leveraging various inner states and using a larger,
more diverse dataset to examine changes across
layers, significantly boosting practicality, accuracy,
and generalizability.
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(a) Activations of factual output.
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(b) Activations of non-factual output.

Figure 1: Activation maps of layers 24-42, showing the top 1% factual-
related neurons.

Figure 2: Case study of final output
rank.

3 Observations

We present an analysis from both static and dy-
namic perspectives. Statically, we examine activa-
tion maps, while dynamically, we use the unembed-
ding matrix to decode and get the probability dis-
tribution over the vocabulary humans understand.

At the static level, we focus on activation maps.
Figure 1 shows the top 1% neurons with the highest
activations when the GPT2-XL-1.5B model out-
puts factual information, resulting in 64 neurons
per layer from its 6,400 neurons per layer. Specifi-
cally, we test with a labeled factual dataset, sorting
the activation values of factual outputs in descend-
ing order and retaining the locations of the top
1% neurons with the highest activations for each
data. We calculate the frequency of these neurons
and then select those with the highest frequency
of appearing in the top 1% activations. These neu-
rons, which are most frequently highly activated
when the LLM outputs factual information, are
displayed as factual-related neurons. Figure 1(a)
demonstrates that when the LLM provides factual
information, the factual-related neurons activate
more intensely. This increased activation is likely
due to the strengthening of these connections from
training on factual data. Conversely, Figure 1(b)
shows a case of non-factual information with less
activation in factual-related neurons. This differ-
ence suggests that activation maps can potentially
serve as indicators for factual accuracy assessment.

From the dynamic perspective, we observe the
evolution of the final output ranks across layers, de-
picted in Figure 2. For instance, when the LLM is
queried about the director of “The Shining” and ini-
tially outputs “Stanley,” we observe its rank across
layers, where rank 1 represents the highest prob-
ability. In factual outputs, the final output rank
ascends to a higher position after layer 22, show-
ing the LLM’s growing confidence to finalize its
output in the later stages of the network. In con-
trast, non-factual outputs show rank fluctuations
after layer 35, reflecting the model’s uncertainty.
Further, we observe the top-k output indices and
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Figure 3: Case study of the top-4 output indices and
their probabilities in the last five layers

their probabilities. For factual responses, as shown
in Figure 3(a), the model consistently prioritizes
the same word as the highest probability output.
On the other hand, while generating non-factual re-
sponses, the top probability words are different in
the last few layers, as seen in Figure 3(b), indicat-
ing a lack of confidence. Additionally, the semantic
similarity between the top-1 output from one layer
to the next is greater for factual than non-factual
outputs. These observations reveal that changes
in final output rank, top-k output indices, and top-
k output probabilities between layers potentially
serve as indicators for factual detection.

4 LLM Factoscope

In this section, we begin with an overview of our
pipeline. Then, we introduce the data collection
for factual detection and preprocessing steps for
effective model training. Lastly, we present the
model architecture of the LLM Factoscope.

4.1 Overview

We propose the LLM Factoscope, a pipeline de-
signed to leverage the inner states of LLMs for
factual detection, as depicted in Figure 4. This
pipeline enables easy expansion of the factual de-
tection model’s dataset coverage. Addressing the
absence of word-level factual detection methods,
we develop our dataset by extracting structured fac-
tual data from Kaggle (Sculley, 2023). This dataset
is then deployed to probe LLMs to check whether
their responses align with factual correctness, serv-
ing as labels for our inner states dataset. Concur-
rently, we capture the LLMs’ inner states, which
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Figure 4: Pipeline of the LLM Factoscope.

Figure 5: An instance of using LLM Factoscope.

include the model’s inner representation of knowl-
edge. We use inner states as features for our dataset.
Following data collection and preprocessing, we
train a Siamese network-based model designed to
minimize the embedding distance between similar
class data and maximize the distance between pairs
of dissimilar class data.

In Figure 5, we show a practical application that
enables users to verify the factuality of the LLM’s
outputs. Consider a scenario where a user queries
an LLM to craft a script for a film introduction
video. The user inputs a prompt: “The film titled
The Shining was directed by”. The LLM responds
with “Stanley Kubrick and was released in 1980”.
The LLM Factoscope marks the “Stanley Kubrick”
and the release year “1980” as factual. Given an-
other prompt, “The director who took charge of the
film The Beekeeper is” and the LLM outputs “a
man who has been in the film industry for a long
time” the LLM Factoscope flags each token of the
response as non-factual due to the lack of specific
factual information about the director’s identity or
background related to the film mentioned.

4.2 Factual Data Collection

We start our dataset collection by searching for
factual-related CSV datasets on Kaggle (Sculley,
2023). The CSV format’s inherent structuring into

entities, relations, and targets makes it an ideal can-
didate for the automated generation of prompts and
answers. Our dataset includes various categories
and each category includes multiple relations—for
instance, in the art category, relationships such as
artwork-artist, movie-director, movie-writer, and
movie-year are included. We have manually crafted
clear prompts to ensure that LLMs can accurately
comprehend the questions, guiding them to directly
provide answers, thereby avoiding the repetition
of the question. To further enhance the dataset’s
diversity, we have developed multiple synonymous
question templates for each relation. Table 1 pro-
vides an overview of the datasets. Users can adopt
this collection method with other open datasets to
easily expand the coverage of the factual dataset.
We include a neuron editing dataset from Meng et
al. (Meng et al., 2022) to enrich the data’s scope.

4.3 Inner States Collection

After constructing the factual dataset, we feed the
prompts into the LLM, capturing the responses and
the inner states associated with the last token of
each prompt. This dataset is designed to verify if
the model’s next word output aligns with the facts,
providing insights into the inner states associated
with both factual and non-factual outputs. Due to
the autoregressive nature of LLMs, this method
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Category Example Size

Art (Mexwell, 2023)(Grijalvas, 2023) P: The artist of the artwork Still Life with Flowers and a Watch is A: Abraham Mignon 67,302

Sport (Guardian, 2023)(Upadhyay, 2023) P: The athlete Ole Jacob Bangstad represents the country of A: Norway 31,718

Literary (Naren, 2023) P: The book Twilight was written by A: Stephenie Meyer 54,301

Geography (Wikidata, 2023) P: The city Leipzig is located in the country of A: Germany 1,103

History (MIT, 2023) P: The birthplace country of the historical figure Albert Einstein is A: Germany 56,705

Science (Foundation, 2023) P: The Nobel laureate Jacobus Henricus van ’t Hoff is from A: Netherlands 8,971

Economics (Elgiriyewithana, 2023) P: Microsoft was started by A: Bill Gates 5,228

Multi (Meng et al., 2022) P: The mother tongue of Danielle Darrieux is A: French 21,918

Total 247,246

Table 1: Overview of the Factual Dataset. Abbreviation: P-Prompt, A-Answer.

enables us to extend factuality predictions to each
position in the sequence during testing. In the fol-
lowing, we detail four key types of inner states:
activation maps, final output ranks, top-k output
indices and probabilities. The first shows the loca-
tions and intensity of high activations, representing
the static view, while the latter three display the evo-
lution of decision-making and probabilities with a
dynamic perspective.
Activation Maps: For an LLM input sequence
X = {x1, x2, . . . , xn}, the activation maps An

for the last token xn include the activation val-
ues across all layers in the LLM. They contain the
LLM’s inner representation of the knowledge re-
lated to the input. As the LLM traverses through
its layers, it retrieves information relevant to the in-
put (Meng et al., 2023). When the subsequent word
aligns with the factual answer, it indicates success-
ful knowledge retrieval at the intermediate layers;
otherwise, it suggests inadequate knowledge re-
trieval. These contrasting scenarios are expected to
show distinct activation maps.

Final Output Ranks: Let y be the next token out-
put by the LLM in response to the input X , and
let Hl,y represent the hidden state at layer l when
outputting y. We use Hl,y and apply the same vo-
cabulary mapping used in the final hidden layer
through a linear and softmax layer, thereby obtain-
ing the probability distribution of vocabulary V at
layer l, denoted as Pl,V (y|X). These distributions
are sorted in descending order to get the rank of
the final output token y at each layer, symbolized
as Rl,y. The set of ranks Rl,y across all layers
represents the final output ranks, showing how the
position of the final token changes in the probabil-
ity distribution across different layers. This reflects
the model’s evolving output preferences and how
the likelihood of the final token changes as infor-
mation is processed through the layers.

Top-k Output Indices and Probabilities: From
the probability distribution Pl,V (y|X), we identify
the top-k tokens with the highest logits in each
layer, represented as Tl,k = argtopk(Pl,V (y|X)),
where argtopk selects the indices of the top-k high-
est values in Pl,V (y|X). These indices, Tl,k, repre-
sent the model’s most likely outputs after process-
ing the information at each layer. With Tl,k, we
then extract the corresponding top-k probabilities
Pl,k = {Pl,V (y|X)[i] | i ∈ Tl,k}. This data re-
flects the fluctuating probabilities of these tokens
across layers, providing insights into the model’s
probabilistic reasoning. The relationships among
the top-k indices and their probabilities, both within
and across layers, shed light on various cognitive
aspects of the model’s processing.

Alongside these inner states, we record labels for
factual detection. These labels, derived by evaluat-
ing whether the model’s next word following each
prompt aligns with the factual answer, serve as a
key indicator of the accuracy in factual detection.
A correct alignment is marked as positive, while a
misalignment is categorized as negative.

4.4 Inner States Preprocessing

In this section, we introduce the preprocessing of
inner states for effective integration into the train-
ing process. We detail the preprocessing methods
applied to each category of inner states.

Normalization of activation map: We calculate
the mean µ and standard deviation σ of the dataset.
The activation map An is then normalized using
the formula: Anormalized = (An − µ)/σ. This nor-
malization ensures a uniform scale for the acti-
vation values, enhancing their comparability and
relevance in the model’s learning mechanisms.

Transformation of final output ranks: We adjust
the final output ranks to a 0-1 range, highlighting
lower values. Mathematically, the transformation
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of rank Rl,y can be represented as Rl,y,transformed =
1/[(1−Rl,y) + 1 + 10−7], Rl,y ∈ (1, |V |), where
|V | is the size of LLM’s vocabulary. When the rank
Rl,y is 1 (indicating the highest rank), the trans-
formed rank Rl,y,transformed becomes its maximum
value, close to 1. Adding 10−7 in the denominator
is a small constant to prevent division by zero.

Distance calculation for top-k output indices: In
processing the top-k output indices, we measure
the semantic similarity across adjacent layers by
calculating the cosine similarity between the em-
beddings of tokens, providing insights into how the
model’s decision-making and semantic continuity
evolves across layers.

It is important to note that while the above inner
states require preprocessing to standardize their
scales or enhance their interpretability, the top-k
output probabilities do not need such preprocessing.
This is because the top-k output probabilities are
inherently on a consistent scale, being probabilities
that naturally range from 0 to 1.

4.5 LLM Factoscope Model Design

After preparing the dataset of inner states, we de-
velop the LLM Factoscope model, inspired by the
principles of few-shot learning and Siamese net-
works. It is designed to effectively learn robust
representations from limited data. This approach
distinguishes between factual and non-factual con-
tent and demonstrates impressive generalization
capabilities. Our model comprises four distinct
sub-models, each processing one of the inner states.

For the activation maps, top-k output indices,
and top-k output probabilities, we utilize Con-
volutional Neural Networks (CNNs) with the
ResNet18 architecture (He et al., 2016). The
choice of ResNet18, with its convolutional and
residual connections, is particularly advantageous
for efficiently capturing the relationships between
and within different layers of the LLM. These
CNNs transform the inner states into embeddings
Eactivation, Etop-k index, and Etop-k prob. Each embed-
ding captures unique aspects of the LLM’s pro-
cessing dynamics. As for the final output ranks,
a sequential data type, we use a Gated Recurrent
Unit (GRU) network (Cho et al., 2014), reflect-
ing the temporal evolution of the model’s output
preferences across layers. This network yields an
embedding Erank. The embeddings from these four
sub-models are then integrated through a linear
layer to form a comprehensive mixed representa-

tion, Emixed, which captures an integrated expres-
sion of the LLM’s factual understanding, represent-
ing spatial and temporal insights.

During training, our model uses the triplet mar-
gin loss (Schroff et al., 2015a), a metric integral to
embedding learning in few-shot learning scenarios.
Florianet al. (Schroff et al., 2015b) demonstrated
that triplet margin loss can significantly improve
generalization across varied tasks. When our model
encounters OOD data and its performance drops,
it can adapt swiftly and cost-effectively by adding
minimal additional support data. In contrast, regu-
lar classifiers require extensive data and retraining,
leading to higher costs and reduced flexibility. This
loss function minimizes the distance between in-
stances of the same class while maximizing the dis-
tance between instances of different classes. Each
training instance serves as an anchor. If the an-
chor is a factual instance, the positive example is
another factual instance, and the negative example
is a non-factual instance. Conversely, if the an-
chor is a non-factual instance, the positive example
is another non-factual instance, and the negative
example is a factual instance.

For a given training instance x, we feed it to
the LLM Factoscope model and get an embedding
for its mixed representation, Eanchor. Then, we
select a positive example xpos from the same cat-
egory as the anchor and a negative example xneg
from a different category. Subsequently, we ob-
tain their respective mixed expressions Epos and
Eneg. The triplet margin loss aims to ensure that
the distance between the anchor and the positive
instance, Dist(Eanchor,Epos), is smaller than the
distance between the anchor and the negative in-
stance, Dist(Eanchor,Eneg), by at least a margin α.
This loss function is formally defined as: L =
max(Dist(Eanchor,Epos) − Dist(Eanchor,Eneg) +
α, 0), where Dist(·, ·) is the chosen distance metric,
typically Euclidean distance. By fine-tuning α, we
can enhance the model’s discriminative capability,
ensuring that the distance between the anchor and
the positive instance is less than that between the
anchor and the negative instance by at least the
margin α. The training process minimizes the loss,
refining the model’s ability to accurately differenti-
ate between factual and non-factual content.

In the testing phase, we establish a support
set consisting of data samples and their corre-
sponding targets, denoted as {S1, . . . , Sn} and
{Tsup1 , . . . , Tsupn}, respectively. These samples
have not been used in the training process of the
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LLM Factoscope model. They provide a refer-
ence for comparing and classifying new, unseen
test data. Each sample in the support set is pro-
cessed through the LLM Factoscope model to
generate mixed representations, represented by
{Esup1 , . . . ,Esupn}. The mixed representations are
outputs of the LLM Factoscope model. The test
data’s mixed representation, Etest, is then compared
against these support set representations. The clas-
sification of the test data is determined by identi-
fying the closest support set embedding to Etest.
The target of the test data is the target of this near-
est support set data: Ttest = Tsupi∗ where i∗ =
argmini Dist(Etest,Esupi). Here, the index i∗ iden-
tifies the support set data that is closest to the test
data, and Tsupi∗ is the target associated with this
closest support set data.

5 Evaluation

5.1 Experimental Setup
Task. Our task is to train an LLM Factoscope
model for detecting the factuality of LLMs’ outputs.
The inputs of the LLM Factoscope are the inner
states of the last token of the LLM’s inputs. The
output is a binary label, indicating whether the
LLM’s output token is factual or not. We input
the prompt of our dataset (e.g. “The birthplace
country of the historical figure Albert Einstein is”)
and then check if the first output word of the LLM
aligns with the fact (e.g. “Germany”). If it does,
the LLM’s output is classified as factual. If the first
output word consists of multiple tokens, we will
concatenate them to form a complete word.
Dataset. We employ various factual datasets en-
compassing art, sports, literature, geography, his-
tory, science, and economics, comprising 247,246
data points. Then, we record the inner states of the
LLM as it provides factual and non-factual outputs,
including activation maps, final output ranks, top-k
output indices, and top-k output probabilities. The
label assigned to each data point indicates whether
the corresponding model output is factual or non-
factual. To ensure dataset balance, we randomly
select an equal number of factual and non-factual
data points for each factual relation. The dataset
is preprocessed to ensure it is standardized and
optimized for model learning.
Models. Our experiments are conducted on several
popular LLMs, each with distinctive architectures
and characteristics. These models include GPT2-
XL (Radford et al., 2019), Llama-2-7B (Touvron

et al., 2023), Llama-2-13B, Vicuna-7B-v1.5 (Chi-
ang et al., 2023), Vicuna-13B-v1.5, and StableLM-
7B (Taori et al., 2023). These models allow us
to comprehensively evaluate the effectiveness of
our factual detection method across various LLM
architectures and configurations.

Baselines. We compare LLM Factoscope against
five existing methods: two white-box methods
and three black-box methods. The first white-box
method is a simple baseline that uses the activations
from a single layer of the LLM, while the second,
SAPLMA (Azaria and Mitchell, 2023), uses hidden
states from a single layer to detect the factuality
of input sentences. We trained SAPLMA on our
dataset to adapt it for detecting LLM output fac-
tuality. The three black-box methods rely on the
LLM’s final output and probabilities. Calibration-
Prob (Tian et al., 2023) uses output probabilities
to determine the factuality of generated content,
Calibration-LLM Label (Tian et al., 2023) relies
on the LLM to label whether the output is factual,
and SelfCheckGPT (Manakul et al., 2023) uses
repetitive sampling to assess output uncertainty.

5.2 Effectiveness

To evaluate the effectiveness of the LLM Facto-
scope, we compared it against five existing meth-
ods. Detailed settings are shown in Appendix A. As
shown in Table 2, our LLM Factoscope consistently
maintains high accuracy levels, ranging between
96.1% and 98.3%, across different LLM architec-
tures. In contrast, the accuracy of the baseline and
SAPLMA fluctuates between 78.5% and 88.8%.
This variation suggests that as LLMs increase in
parameter size, the regions responsible for different
types of factual knowledge might differ, or multiple
layers could be involved in representing a single
type of factual knowledge. Consequently, the base-
line, which relies solely on activation values and
hidden states from a single layer, demonstrated
unstable performance. The three black-box meth-
ods demonstrated lower effectiveness compared to
the first two white-box methods due to their lim-
ited accessible information. Among the black-box
methods, Calibration-Prob performed the best.

Based on the analysis, we believe that the supe-
rior performance of the LLM Factoscope can be
attributed to its consideration of various inner state
changes across layers. By integrating this multi-
dimensional analysis of inner states within LLMs,
LLM Factoscope effectively discerns factual from
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Table 2: Effectiveness results of LLM Factoscope across different LLM architectures.

Method GPT2-XL-1.5B Llama2-7B Vicuna-7B Stablelm-7B Llama2-13B Vicuna-13B

Ours 0.961 0.967 0.982 0.983 0.983 0.974
Baseline 0.880 0.888 0.831 0.817 0.882 0.785
SAPLMA (Azaria and Mitchell, 2023) 0.861 0.843 0.863 0.801 0.854 0.839
Calibration-Prob (Tian et al., 2023) 0.868 0.715 0.725 0.864 0.657 0.709
Calibration-LLM Label (Tian et al., 2023) 0.105 0.344 0.391 0.347 0.405 0.373
SelfCheckGPT (Manakul et al., 2023) 0.646 0.568 0.623 0.645 0.551 0.634

Table 3: Generalization Performance of different LLM architectures. Abbreviations: BL - Baseline, BA - Book-
Author, CC - Celebrity-Country, AC - Athlete-Country.

Data
GPT2-XL-1.5B Llama2-7B Vicuna-7B

Ours BL SAPLMA Ours BL SAPLMA Ours BL SAPLMA

BA 0.712 0.800 0.836 0.977 0.701 0.770 0.971 0.757 0.760
CC 0.871 0.879 0.747 0.972 0.946 0.759 0.790 0.516 0.855
AC 0.979 0.780 0.720 0.703 0.693 0.635 0.770 0.716 0.734

Average 0.854 0.818 0.768 0.884 0.780 0.721 0.844 0.663 0.750

Data
Stablelm-7B Llama2-13B Vicuna-13B

Ours BL SAPLMA Ours BL SAPLMA Ours BL SAPLMA

BA 0.690 0.333 0.704 0.904 0.854 0.830 0.895 0.814 0.776
CC 0.635 0.610 0.705 0.938 0.849 0.608 0.913 0.698 0.702
AC 0.694 0.756 0.728 0.778 0.686 0.822 0.807 0.703 0.817

Average 0.673 0.566 0.712 0.873 0.763 0.753 0.872 0.738 0.765

non-factual outputs, offering a more robust and re-
liable approach to factual detection. This method’s
success not only highlights the significance of ac-
tivation values in understanding LLM outputs but
also paves the way for future explorations into the
intricate workings of LLMs, particularly in the
realm of natural language processing applications.
We also provide an interpretation analysis on the
LLM Factoscope in Appendix B.

5.3 Generalization
It is well-established in neural network research
that the effectiveness of a model largely depends
on the similarity between training and testing distri-
butions (Yang et al., 2021). Thus, our model’s per-
formance may vary across different distributions.
We adopt a leave-one-out approach for our gener-
alization assessment. Specifically, we remove one
relation dataset, train the model on the remaining
datasets, and then test it on the omitted dataset.
We selected three relations for assessing general-
ization, including Book-Author, Celebrity-Country,
and Athlete-Country, as these relations form sizable
datasets across all LLMs tested. We also compare
our method with baseline and SAPLMA that train
models for factual detection.

Different LLMs exhibit varying generalization
capabilities across different relations, as shown in
Table 3. In the “Book-Author” relation, our method
achieves a notable 97.7% accuracy with Llama2-
7B but 69.0% with Stablelm-7B. This variation is
likely due to each LLM’s unique handling of differ-

ent types of factual knowledge. Our method outper-
forms the baselines in most cases, with its average
performance outperforming the baseline except for
Stablelm-7B. We hypothesize that this could be
attributed to its less effective learning of factual
versus non-factual content it was trained on. The
Stablelm-7B model exhibits unstable variations in
the semantic continuity of its top-k outputs when
predicting OOD data, which may be attributed to
the fewer layers it has. This could compromise its
generalization ability to maintain semantic conti-
nuity across top-k outputs and significantly impact
its performance during OOD testing.

The activation maps are sensitive to the data type
being processed; for instance, neurons activated in
response to art-related prompts may differ from
those responding to science-related prompts. In
contrast, final output ranks, top-k output indices,
and top-k output probabilities are agnostic to the
data type. Leveraging these features to observe the
LLM’s decision-making evolution significantly en-
hances the generalization capabilities of the LLM
Factoscope across diverse domains. While our
LLM Factoscope shows generalization, we advise
matching testing and training data distributions for
optimal use. For example, an LLM used as a his-
torical assistant should train the LLM Factoscope
with historical data for best performance.

5.4 Ablation Study
Contribution of each sub-model. We evaluate
the contribution of each sub-model by incremen-
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Figure 6: Effectiveness of Sub-models Figure 7: Generalization of Sub-models

Figure 8: Effects of Top-k Figure 9: Effects of support set size Figure 10: Effects of architecture

tally adding them to the factual detection model on
GPT2-XL-1.5B. As depicted in Figure 6, we notice
a slight but consistent improvement in accuracy
with adding more sub-models. This indicates that
each sub-model brings a unique dimension to the
model’s capabilities, enhancing its overall perfor-
mance. We employ the “leave one out” training
approach as in Section 5.3 to assess the contribu-
tion of sub-models to generalization. The results
in Figure 7 demonstrate enhanced generalization
as more sub-models are integrated. The figures
illustrate a sequential integration, starting with “1”
that uses activation maps, and culminating in “4”
that combines activation maps, final output ranks,
top-k output indices, and top-k output probabilities.
This improvement is particularly evident in the fi-
nal model, which shows an increase in accuracy
across various datasets compared to the model with
only one sub-model.

Effects of different top-k. The top-k affects the
top-k output indices and top-k output probabilities.
The previous experiments set the top-k to top-10
unless otherwise stated. Now, we will evaluate the
effect of choosing different values for top-k on the
performance of the factual detection model. We
set the k to 2, 4, 6, 8, 10 on GPT2-XL-1.5B. The
results of the experiment are shown in Figure 8.
The lowest performance is 90.4% when k is 4, and
the highest performance is 95.4% when k is 10.
The difference between the two is 5%.

Effects of different support set size. We also try
different support set sizes from 50 to 250, observ-
ing their impact on the performance of the factual
detection model. This evaluation was conducted
on the Llama2-7B. The results, as presented in
Figure 9, demonstrate that the change in support

set size does not significantly impact the model’s
performance across most metrics.

Effects of different sub-models’ architectures.
We use different sub-model architectures and assess
the performance of the factual detection model. We
use fully connected layers to replace the ResNet18
and RNN to replace the GRU network. As shown
in Figure 10, when we replace parts of the archi-
tecture with fully connected layers (act-fc, prob-fc)
and RNNs (rank-rnn), we notice a slight decline in
performance. In contrast, the emb-fc architecture,
where we replace the ResNet18 with fully con-
nected layers, results in a significant performance
drop with accuracy falling to 73.6%. Such a drastic
drop highlights the pivotal role of ResNet18 in ef-
fectively capturing the LLM’s top-k output indices.
The results show that while the model demonstrates
resilience to certain architectural changes, some al-
terations can substantially impact its performance.

6 Conclusion

We discover effective inner states and provide ob-
servation for LLM factual detection. Then, we
develop a factual detection pipeline, the LLM Fac-
toscope, which leverages these inner states to detect
the factuality of LLM outputs. The LLM Facto-
scope consistently demonstrated high factual de-
tection accuracy, surpassing 96% in our custom-
collected datasets. Our research not only provides
a novel method for LLMs’ factual detection but
also opens new avenues for future explorations into
the LLMs’ inner states. By paving the way for
enhanced model understanding and reliability, the
LLM Factoscope sets a foundation for more trans-
parent, accountable, and trustworthy use of LLMs
in critical applications.
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Limitations. Our research assumes LLMs’ train-
ing corpora are predominantly factual, despite the
potential inclusion of some non-factual content.
Our pipeline remains effective as long as factual
outweighs non-factual data. When creating our
dataset, we generate various prompts and responses
to simulate factual inquiries. Despite our efforts,
the diversity and complexity of real-world knowl-
edge may not be fully represented in our custom
dataset. However, owners of LLMs providing fac-
tual detection services likely have access to more
comprehensive and meticulously vetted datasets.
Such resources could potentially enhance the per-
formance and accuracy of LLM Factoscope. The
LLM Factoscope shows generalizability in our eval-
uations, effectively detecting factuality across var-
ious contexts. However, it may encounter chal-
lenges when dealing with data types that signifi-
cantly deviate from those in our training dataset.
Following our pipeline to fine-tune the model with
new, more representative datasets could further re-
fine its accuracy and broaden its applicability.

Ethical Consideration. Our research utilizes pub-
licly available datasets from Kaggle, which do not
contain sensitive content, thereby mitigating direct
concerns regarding data privacy and protection. We
have adhered strictly to Kaggle’s terms of use and
conditions, ensuring the lawful utilization of these
datasets. Although our research aims to detect the
factuality of LLMs’ outputs, the development and
application of this technology could have broader
social impacts. Positively, improving information
accuracy can increase public trust in digital con-
tent and has beneficial implications for education,
scientific research, and journalism by verifying the
factuality of LLM outputs. However, we are also
cautious of potential misuse, such as employing
this technology for censorship, controlling infor-
mation flow, exacerbating subjective interpretations
and manipulation of “facts”.
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A Training Details

Dataset. The training set to test set ratio is 0.8:0.2.
Due to varying numbers of factual and non-factual
outputs for each LLM, we employ datasets of dif-
ferent scales to train the Factoscope for different
LLMs, as shown in Table 4. We use a Siamese-
based model architecture in the LLM Factoscope.
The LLM Factoscope model comprises several sub-
models, each tailored to handle a specific type of
inner state. This includes a ResNet18 model for
processing activation values, a GRU network for
final output rankings, and two additional ResNet18
models for handling top-k output indices and top-k
output probabilities.

Parameters. We set top-k to top-10. The output
of each sub-model is an embedding of dimension
24. These embeddings from each sub-model are
concatenated, resulting in a combined embedding
of dimension 96. (24 dimensions from each of
the four sub-models). This combined embedding is
then fed into a fully connected layer, which reduces
the dimensionality to 64, ensuring a compact yet
informative representation. The final embedding
undergoes ReLU activation and L2 normalization,
providing a normalized feature vector for each in-
put. During testing, the size of the support set is
set to 100. During training, the triplet margin loss
function with a margin α of 1.0. This configuration
enhances the model’s distinction between factual
and non-factual content.

We use activation values from specific layers to
establish a comparative baseline. For GPT2-XL-
1.5B, the model is based on the activation values
from the 31st layer. In the case of Llama2-7B and
Vicuna-7B, the 23rd layer’s activation values are
used. For Stablelm-7B, the baseline model relied
on the 12th layer, while Llama2-13B and Vicuna-
13B utilize the activation values from their 32nd
layers. To ensure reproducibility and transparency
in our research, we have documented the key pa-
rameters relevant to our experiments in Table 5.
This detailed listing of hyperparameters aims to
provide comprehensive insights into the configura-
tion settings used in our model, thereby facilitating
the replication of our study and validation of our
findings.

Environment. We conduct experiments on a
server with 32 Intel Xeon Silver 4314 CPUs at
2.40 GHz, 386 GB of RAM, and an NVIDIA A100
Tensor Core GPU. Training LLM Factoscope on
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Table 4: Training and Testing Data for Various LLM
Architectures

Model Train Test

GPT2-XL-1.5B 21,254 9,009
Llama2-7B 57,614 24,593
Llama2-13B 49,282 21,022
Vicuna-7B 51,949 22,164
Vicuna-13B 50,936 21,730
Stablelm-7B 3,445 1,377

different LLM architectures takes under 24 hours.
Results presented are from a single run, but multi-
ple runs yield similar outcomes.

Parameter Value
k 10

Sub-model Output Embedding Dimension 24
Combined Embedding Dimension 96

Fully Connected Layer Output Dimension 64
Activation Function ReLU

Normalization L2 normalization
Support Set Size 100

Epochs 30
Batch Size 64

GRU Model Hidden Dimensions 1st - 128, 2nd - 64
Dataset Split 80% training, 20% testing

Activation Dimension of GPT2-XL 6400
Activation Dimension of Llama-2-7B 11008

Activation Dimension of Vicuna-7B-v1.5 11008
Activation Dimension of Llama-2-13b 13824
Activation Dimension of StableLM-7B 24576

Optimizer Adam
Learning Rate 0.001

Betas 0.9, 0.999
Epsilon 1e-08

Weight Decay 0
Loss Function Triplet Margin Loss

Margin 1.0
p 2.0

Epsilon 1e-06

Table 5: Model Parameters for LLM Factoscope

B Interpretability

We delve into the interpretability of the LLM Facto-
scope, aiming to analyze the contribution of these
features in discerning the factualness of LLM out-
puts. Specifically, we use the Integrated Gradi-
ent (Sundararajan et al., 2017) to analyze the con-
tribution of activation maps, final output ranks,
top-k output indices, and top-k output probabil-
ities. Integrated Gradient is particularly chosen
for its higher faithfulness in interpretability assess-
ments (He et al., 2023). Our analysis reveals that
the most influential features are mainly in the mid-
dle to later layers of the LLMs, consistently ob-
served across all four data types. To provide a
clearer visualization of this pattern, we present a
typical example in Figure 11. In the figure, red
indicates a positive contribution, while blue sig-
nifies a negative contribution, with deeper colors
representing higher importance. Due to the high
dimensionality of activation maps, we display the

(a) Average ac�va�on

(b) Final output rank

(c) Top-k output index

(d) Top-k output probability

Figure 11: Visualization of different inner states’ contri-
bution.

average importance of features at each layer. The
majority of positive contributions emerge after the
15th layer. This finding aligns with our observa-
tions that the model initially filters semantically
coherent candidate outputs in the earlier layers, and
then progressively focuses on candidates relevant
to the given prompt task in deeper layers.

13
10230


