@inproceedings{mekala-etal-2024-smaller,
title = "Smaller Language Models are capable of selecting Instruction-Tuning Training Data for Larger Language Models",
author = "Mekala, Dheeraj and
Nguyen, Alex and
Shang, Jingbo",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.623",
doi = "10.18653/v1/2024.findings-acl.623",
pages = "10456--10470",
abstract = "Instruction-tuning language models has become a crucial step in aligning them for general use. Typically, this process involves extensive training on large datasets, incurring high training costs. In this paper, we introduce a novel training data selection based on the learning percentage of the samples. We assert that current language models possess the capability to autonomously select high-quality training data, leading to comparable or improved performance compared to training on the entire dataset. Our experiments span different-sized models, revealing that this characteristic holds for models ranging from 1B (small) to 13B (large) in size. Moreover, we demonstrate an interesting finding that the data hardness transfers across model sizes, and a smaller 350M model can effectively curate high-quality training data with hard samples for a larger 13B model, resulting in an equally or superior instruction-tuned model compared to training on the complete dataset. Utilizing open-sourced OPT and Llama-2 models up to 13B in size, two publicly available instruction-tuning training datasets and evaluated by both automatic metrics {\&} humans, our paper introduces a novel approach to training data selection, showcasing a more efficient alternative.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mekala-etal-2024-smaller">
<titleInfo>
<title>Smaller Language Models are capable of selecting Instruction-Tuning Training Data for Larger Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dheeraj</namePart>
<namePart type="family">Mekala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingbo</namePart>
<namePart type="family">Shang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Instruction-tuning language models has become a crucial step in aligning them for general use. Typically, this process involves extensive training on large datasets, incurring high training costs. In this paper, we introduce a novel training data selection based on the learning percentage of the samples. We assert that current language models possess the capability to autonomously select high-quality training data, leading to comparable or improved performance compared to training on the entire dataset. Our experiments span different-sized models, revealing that this characteristic holds for models ranging from 1B (small) to 13B (large) in size. Moreover, we demonstrate an interesting finding that the data hardness transfers across model sizes, and a smaller 350M model can effectively curate high-quality training data with hard samples for a larger 13B model, resulting in an equally or superior instruction-tuned model compared to training on the complete dataset. Utilizing open-sourced OPT and Llama-2 models up to 13B in size, two publicly available instruction-tuning training datasets and evaluated by both automatic metrics & humans, our paper introduces a novel approach to training data selection, showcasing a more efficient alternative.</abstract>
<identifier type="citekey">mekala-etal-2024-smaller</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.623</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.623</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>10456</start>
<end>10470</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Smaller Language Models are capable of selecting Instruction-Tuning Training Data for Larger Language Models
%A Mekala, Dheeraj
%A Nguyen, Alex
%A Shang, Jingbo
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F mekala-etal-2024-smaller
%X Instruction-tuning language models has become a crucial step in aligning them for general use. Typically, this process involves extensive training on large datasets, incurring high training costs. In this paper, we introduce a novel training data selection based on the learning percentage of the samples. We assert that current language models possess the capability to autonomously select high-quality training data, leading to comparable or improved performance compared to training on the entire dataset. Our experiments span different-sized models, revealing that this characteristic holds for models ranging from 1B (small) to 13B (large) in size. Moreover, we demonstrate an interesting finding that the data hardness transfers across model sizes, and a smaller 350M model can effectively curate high-quality training data with hard samples for a larger 13B model, resulting in an equally or superior instruction-tuned model compared to training on the complete dataset. Utilizing open-sourced OPT and Llama-2 models up to 13B in size, two publicly available instruction-tuning training datasets and evaluated by both automatic metrics & humans, our paper introduces a novel approach to training data selection, showcasing a more efficient alternative.
%R 10.18653/v1/2024.findings-acl.623
%U https://aclanthology.org/2024.findings-acl.623
%U https://doi.org/10.18653/v1/2024.findings-acl.623
%P 10456-10470
Markdown (Informal)
[Smaller Language Models are capable of selecting Instruction-Tuning Training Data for Larger Language Models](https://aclanthology.org/2024.findings-acl.623) (Mekala et al., Findings 2024)
ACL