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Abstract

Code Pre-trained Models (CodePTMs) based
vulnerability detection have achieved promis-
ing results over recent years. However, these
models struggle to generalize as they typically
learn superficial mapping from source code to
labels instead of understanding the root causes
of code vulnerabilities, resulting in poor per-
formance in real-world scenarios beyond the
training instances. To tackle this challenge,
we introduce VulLLM, a novel framework that
integrates multi-task learning with Large Lan-
guage Models (LLMs) to effectively mine deep-
seated vulnerability features. Specifically, we
construct two auxiliary tasks beyond the vulner-
ability detection task. First, we utilize the vul-
nerability patches to construct a vulnerability
localization task. Second, based on the vulnera-
bility features extracted from patches, we lever-
age GPT-4 to construct a vulnerability inter-
pretation task. VulLLM innovatively augments
vulnerability classification by leveraging gen-
erative LLMs to understand complex vulnera-
bility patterns, thus compelling the model to
capture the root causes of vulnerabilities rather
than overfitting to spurious features of a single
task. The experiments conducted on six large
datasets demonstrate that VulLLM surpasses
seven state-of-the-art models in terms of effec-
tiveness, generalization, and robustness.

1 Introduction

Code Pre-trained Models (CodePTMs) such as
CodeBERT (Feng et al., 2020), GraphCode-
BERT (Guo et al., 2021), and UniXcoder (Guo
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et al., 2022) have been increasingly applied to au-
tomated code vulnerability detection over recent
years, achieving state-of-the-art (SOTA) results. In
particular, these CodePTMs take code snippets as
inputs and predict whether potential vulnerabilities
exist in the code. However, a recent study (Du
et al., 2023a) has highlighted a critical limitation in
these models’ generalization capabilities, particu-
larly when dealing with out-of-distribution (OOD)
data. The limitation arises as existing approaches
tend to capture superficial rather than in-depth vul-
nerability features when learning the mapping from
source code to labels. A notable manifestation is
the inability of such approaches to accurately differ-
entiate adversarial examples (Zhang et al., 2023b,
2020) that merely replace identifiers, indicating
that their predictions are affected by factors that
are irrelevant to the vulnerability. Furthermore,
the learning paradigm via mapping from source
code to labels struggles with the generalization
ability when handling vulnerable code from mul-
tiple projects, as the code from different projects
often varies in programming style and application
contexts, thus leading to divergent distributions of
vulnerability features (Du et al., 2023a).

It is noteworthy that recently emerged Large Lan-
guage Models (LLMs) have demonstrated remark-
able reasoning and generalization capabilities (Ge
et al., 2023; Cao et al., 2023) across various do-
mains, thus inspiring us to harness them for de-
veloping more robust vulnerability detection mod-
els. However, directly applying LLMs in code vul-
nerability detection encounters various challenges
due to the absence of specialized training tailored
to this particular task (Zhang et al., 2023a; Gao
et al., 2023). Unfortunately, simply employing
methods similar to CodePTMs to fine-tune LLMs
will still introduce the above issues with general-
ization. To tackle these challenges with LLMs, this
study presents VulLLM, a novel technique that in-
tegrates code vulnerability knowledge into LLMs
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through instruction tuning (Zhang et al., 2023d).
To prevent the model from learning spurious fea-

tures, we employ the multi-task learning paradigm
to enable LLMs to learn deep-seated features rather
than spurious ones. The insight is to enhance the
mapping from source code to labels by adding two
auxiliary tasks which aim to gain a deeper under-
standing of vulnerabilities by identifying their root
causes and locating the corresponding vulnerable
code elements. The first auxiliary task, vulnera-
bility localization, identifies vulnerable code el-
ements (e.g., statement) that are extracted from
the patch. The second task, vulnerability interpre-
tation, identifies vulnerabilities’ root causes and
outputs their textual interpretation. As no ready-
made interpretation exists, we generate them using
GPT-4. However, LLMs still face challenges in vul-
nerability detection, let alone identifying the root
causes of vulnerabilities. In a manual assessment,
ChatGPT barely understands half of the vulnerabil-
ities it ‘detects’ based on simple prompts (Zhang
et al., 2023a). To tackle this challenge, we intro-
duce the patch-enhanced Chain-of-Thought (Wei
et al., 2022) with Self-Verification (CoT-SV), which
demonstrates effective performance to avoid error
accumulation and illusions in CoT, thus enhanc-
ing the reliability of LLMs (Ni et al., 2023; Gou
et al., 2023). The validations in CoT-SV include
vulnerability labels, Common Vulnerabilities and
Exposures (CVE) descriptions, and vulnerability
lines with contexts extracted from the patch based
on Program Dependency Graph (PDG) (Li et al.,
2022). Auxiliary tasks enhance the variety and
depth of features (i.e., the vulnerable location and
root cause), thereby improving the model’s compre-
hension of the domain knowledge of code vulner-
abilities. Moreover, the diversity of features con-
tributes variably across various tasks, compelling
the model to seek solutions that perform well across
all tasks, thereby preventing overfitting to specific
spurious features of a single task.

In addition to the above data generated for multi-
task learning, our training data also includes two
real-world vulnerability datasets with the highest
label accuracy from two manual evaluations (Chen
et al., 2023; Croft et al., 2023): Devign (Zhou et al.,
2019) and DiverseVul (Chen et al., 2023), to further
enhance LLMs’ learning of various code vulnera-
bilities. Furthermore, to verify the extensive appli-
cability of our framework, we select three widely-
used foundational models to construct VulLLM,
including a general LLM, Llama-2 (Touvron et al.,

2023), alongside two CodeLLMs, namely CodeL-
lama (Rozière et al., 2023) and StarCoder (Li et al.,
2023). The results indicate that VulLLM outper-
forms seven existing SOTA vulnerability detection
models. Overall, compared to the best baseline,
UniXcoder, VulLLM demonstrates superior effec-
tiveness with an improvement in F1 score by 8%
across six datasets. Notably, within these datasets,
the F1 score of VulLLM has increased by 8.58% on
four OOD datasets, indicating its better generaliza-
tion. Furthermore, we introduce three adversarial
attacks to verify the robustness of these models.
Under these attacks, the overall F1 score of Vul-
LLM improves by 68.08% compared to UniXcoder,
highlighting its enhanced robustness.

Our contributions are summarized as follows:
• Idea. We propose a novel perspective to lever-

age the interpretability of GPT-4 for generating
vulnerability interpretation to enhance the vulner-
ability understanding of LLMs.

• Approach. We propose VulLLM, a framework to
detect vulnerabilities with LLMs through multi-
task instruction-tuning. To our best knowledge, it
is the first attempt to use instruction-tuned LLMs
for vulnerability detection.

• Evaluation. We conduct extensive experiments
across six datasets and find that our approach
significantly improves the effectiveness, gener-
alization and robustness in detecting vulnera-
bilities. We also release the code and data at:
https://github.com/CGCL-codes/VulLLM.

2 Related Work

2.1 Code Vulnerability Detection

Code vulnerability detection is of significant im-
portance for the secure and stable operation of soft-
ware systems. Deep learning methods can auto-
matically learn and generalize features of vulner-
abilities from extensive code samples, enabling
automated inference of vulnerability patterns. This
paradigm has gained widespread attention over re-
cent years. Early vulnerability detection methods
utilize Graph Neural Networks (GNNs) to learn
vulnerability features. With the development of
the Transformer (Vaswani et al., 2017) architecture,
many CodePTMs, such as CodeBERT (Feng et al.,
2020), GraphCodeBERT (Guo et al., 2021), and
UniXcoder (Guo et al., 2022), have achieved bet-
ter performance in vulnerability detection. They
are mainly pre-trained on extensive datasets with
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Figure 1: The general workflow of VulLLM

code and text, and have demonstrated outstand-
ing performance in multiple code-related down-
stream tasks. Additionally, some approaches are
built upon CodePTMs. ReGVD (Nguyen et al.,
2022) encodes source code as a graph with nodes
representing code tokens and features initialized
based on CodePTMs. EPVD (Zhang et al., 2023c)
divides the code into various execution paths based
on Control Flow Graph (CFG) and learns different
path representations based on CodePTMs. These
approaches mainly train models via learning from
a single-task. In this work, we utilize the paradigm
of multi-task learning to enable LLMs to better
understand code vulnerabilities.

2.2 Self-Verification in LLM
CoT (Wei et al., 2022) is a prompting technique
to solve problems with LLMs, which employs a
series of reasoning steps to tackle complex issues,
akin to the thought process of humans in solving
problems. Self-verification (Pan et al., 2023) aims
to mitigate hallucinations (Lin et al., 2022) and un-
faithful reasoning in LLMs (Golovneva et al., 2023;
Lyu et al., 2023), while reducing error accumula-
tion in CoT as well (Weng et al., 2023). Specif-
ically, it corrects the adverse behaviors of LLMs
through feedback, which also aligns with human
learning strategies, that is, a cycle of attempting,
making mistakes, and correcting. Verification often
comes from two sources: manual validation and
automatic validation. Manual validation tends to
be more congruent with human preferences. For
instance, InstructGPT (Ouyang et al., 2022) im-
proves GPT-3 (Brown et al., 2020) through human
feedback. Automatic validation can originate from
the LLM itself or external knowledge. For instance,
SelfCheck (Miao et al., 2023) demonstrates LLM’s
ability for correcting errors in CoT independently,
without external resources. The results from differ-
ent stages are employed to derive an overall con-
fidence score, which is subsequently utilized as a

weight to cast votes among multiple solutions to the
same problem, thereby enhancing the accuracy of
the response. Validations based on external knowl-
edge can originate from various sources, such as
Wikipedia (Varshney et al., 2023) and search en-
gines (Gou et al., 2023). In this study, we obtain
validation for vulnerability interpretation from the
features extracted from the corresponding vulnera-
bility patches (see Section 3.2 for more details).

3 Methodology

3.1 Overview

Figure 1 illustrates an overview of VulLLM, which
comprises three main components: vulnerability
features extraction (Section 3.2), vulnerability inter-
pretation generation (Section 3.3), and multi-task
instruction fine-tuning (Section 3.4).

3.2 Vulnerability Features Extraction

Vulnerability features serve as the essential cues
for vulnerability interpretation. In this study, we
aim to enhance the generalization of LLM in the
context of vulnerabilities. Specifically, we explore
the use of vulnerability lines, vulnerability context,
and CVE descriptions as potential cues for under-
standing vulnerabilities.
Vulnerability Lines. Vulnerability lines directly
point out the vulnerable code elements. We extract
vulnerability lines from the patches of the vulner-
able code. Patches are generated to fix existing
vulnerabilities via adding or deleting certain code
elements. Following existing study (Nguyen et al.,
2016), we consider the deleted lines in patches to
directly reflect the vulnerable semantics. For in-
stance, if the deleted lines involve unsafe coding
practices, such as improper memory management
or insecure input validation, these lines could be
the direct root cause of the vulnerability.
Vulnerability Context. Vulnerability context
refers to the surrounding code (e.g., conditions,
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static int svg_probe(AVProbeData *p)
{

const uint8_t *b = p->buf;
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if (memcpy(p->buf, “<?xml”, 5))
return 0;

while (b < end) {
b += ff_subtitles_next_line(b);
int inc = ff_subtitles_next_line(b);
if (!inc)

break;
b += inc;
if (b >= end - 4)

return 0;
if (!memcpy(b, “<svg”, 4))

return AVPROBE_SCORE_EXTENSION + 1;
}
return 0;

}

Figure 2: An example of vulnerability feature extraction

checkers, etc.) that provide a broader understand-
ing of a security vulnerability. Typically, we ex-
tract code statements that have direct or indirect
data dependencies and control dependencies along
with the vulnerable lines as vulnerability context.
To extract these code statements, we first use JO-
ERN (JOERN, 2023) to generate the Program De-
pendency Graph (i.e., PDG) (Li et al., 2022) for the
vulnerability functions. PDG is a directed acyclic
graph where nodes represent code elements, and
various types of directed edges between nodes rep-
resent relationships between code elements (e.g.,
if there exists a data dependency edge originating
from node A and directed towards node B, it indi-
cates that node B depends on a data variable defined
at node A). PDG has been widely utilized in the
domain of vulnerability detection (Li et al., 2021;
Zhang et al., 2023c). Specifically, we start from
the nodes corresponding to the vulnerabilities and
identify neighboring nodes within a k-hop distance
through both data dependency edges and control de-
pendency edges (either outgoing or incoming). The
code lines corresponding to these nodes are then
added to the vulnerability context. Figure 2 illus-
trates an example of vulnerability CVE-2018-7751,
which belongs to the type of CWE-835. The left
side depicts the applied patch, the middle section
showcases the corresponding PDG, and the right
side displays the extracted vulnerability features.
For the vulnerability line at line 9, there is a control
dependency edge from line 8 to line 9, as well as
three data dependency edges—one from line 3 to
line 9, one from line 9 to line 14 and another from
line 9 to line 16. If k is set to 1, the contextual
scope encompasses statements found at lines 8, 3,
14, and 16. The parameter k is used to control the
length of the generated vulnerability context, as
dependency relationships in real-world code can be
particularly complex. In our implementation, the
value of k is set to 1, considering the limited input
length capacity of LLMs.
CVE Descriptions. This information shed lights

（3）推理生成
我们可以迭代这种先验证后纠正的过程，以实现
对模型输出的持续改进。

Approach
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Figure 3: The implementation of CoT with Self-
Verification. Numbered circles denotes the five steps

on the root causes of vulnerabilities, as they com-
prehensively detail common security weaknesses
in software and hardware. These descriptions are
invaluable for understanding the root causes of
vulnerabilities, which often offer relevant back-
ground and context, explaining how these weak-
nesses come about and how they might be exploited
under different circumstances. To collect the CVE
descriptions, we have scraped them for each CVE
from the NVD (NVD, 2023).

3.3 Vulnerability Interpretation Generation
The vulnerability features extracted in the previous
section serve as the critical information for vali-
dating the output of each step in CoT. Figure 3
illustrates the implementation of CoT-SV.
Step 1. Given the demonstrated efficacy of role-
playing in prompt engineering (Kong et al., 2023;
Shanahan et al., 2023), our initial step involves
adopting a role-centric prompting strategy, specifi-
cally focusing on vulnerability detection, to ensure
that the model remains concentrated on the task
throughout the workflow. We use the following
prompt as adapted from a prior work (Zhang et al.,
2023a) in this step.

Prompt1: I want you to act as a vulnerability
detection model. Is the following program
buggy? [Code]

where [Code] refers to the potentially buggy code.
Previous study indicates that the accuracy of LLM
under such prompt is suboptimal (Cheshkov et al.,
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2023). Fortunately, we have the ground truth for
each code. Therefore, if the LLM produces an
incorrect output, we can address it in subsequent
steps. More importantly, this initial step serves to
reinforce LLM’s acknowledgment of the presence
of vulnerabilities, facilitating subsequent vulnera-
bility reasoning. To prevent overfitting, we execute
Step 1 for an equal number of vulnerable and non-
vulnerable code examples to generate vulnerability
explanations. For non-vulnerable code, GPT-4 will
provide interpretations indicating the absence of
vulnerabilities, which will be used to construct the
dataset for non-vulnerable code in the vulnerability
explanation task. For vulnerable code, more pre-
cise vulnerability interpretations will be obtained
through continuous verification of GPT-4’s outputs
in subsequent steps.
Step 2 - Step 4. We adapt a unified prompt tem-
plate for various vulnerability features based on ex-
isting Self-Verification templates (Pan et al., 2023;
Ling et al., 2023). The validity of the output from
each individual step is verified using a directive
composed of the following components: (1) infor-
mation required to be verified for the current step.
(2) an instruction for validity verification, such as
Please double-check the answer and analyze its cor-
rectness. (Ling et al., 2023) (3) requirements for
the output of the subsequent step under the LLM.
Based on the above design, the prompts for obtain-
ing vulnerability interpretations are as follows:

Prompt2: This program is buggy. Please
double-check the answer and analyze its
correctness. Next, please give the description
of the vulnerability.
Prompt3: The description of vulnerability is
[CVE description]. Please double-check the
answer and analyze its correctness. Next,
please provide the lines of code that are
directly pertinent to the identified
vulnerability.
Prompt4: The vulnerability lines are
[Vulnerability lines]. Please double-check the
answer and analyze its correctness. Next,
please provide the data dependency and control
dependency lines related to the vulnerability
lines.

where [CVE description] and [Vulnerability lines]
denote the vulnerability features as extracted in the
previous subsection.
Step 5. Vulnerability context constitutes the final
features for verification within CoT-SV. Following
this verification, we employ the LLM to synthesize
the vulnerability interpretation by integrating the
aforementioned categories of features. Specifically,

we instruct the LLM to generate a vulnerability
interpretation that refers to the vulnerability lines
and vulnerability context.

Prompt5: The dependency lines are [Dependency
lines]. Please double-check the answer and
analyze its correctness. Next, considering the
vulnerability's description, please present the
vulnerability interpretation by referring to
the vulnerable and dependent lines.

The results generated by CoT-SV encompass
rich knowledge specific to vulnerabilities. For in-
stance, the CVE description constrains the high-
level overview of the vulnerability, whereas the
vulnerability lines pinpoint its precise location. Fur-
thermore, the dependency lines characterize the
context of vulnerabilities. Such knowledge ensures
that the reasoning process integrates an extensive
repository of domain-specific knowledge on vulner-
abilities. Concurrently, CoT-SV further abstracts
the data flow and control flow of vulnerabilities,
translating the dependency lines into natural lan-
guage descriptions of the vulnerability context. Fi-
nally, all the generated data are manually verified
to exclude instances where the final judgment of
GPT-4 is still incorrect. We take the vulnerable
code in Figure 2 as an example and present differ-
ent interpretations of Step 1 and the entire CoT-SV
generation process separately in Appendix A.

3.4 Multi-Task Instruction Fine-tuning

Data Preparation. The data serving for the above
multi-task data originates from the PatchDB (Wang
et al., 2021), which contains the patch information,
a feature not commonly found in other datasets.
The diffs in patches are directly associated with
vulnerabilities and essential for obtaining vulner-
ability interpretations. However, this patch-based
vulnerability dataset is limited in its quantity and in-
sufficient for LLMs to learn a broad range of vulner-
ability patterns. To infuse LLMs with more vulner-
ability knowledge, we further incorporate two addi-
tional datasets for the vulnerability detection task:
DiverseVul (Chen et al., 2023) and Devign (Zhou
et al., 2019), which are the two real-world datasets
with the highest label accuracy in manual evalua-
tion sampling (Croft et al., 2023; Chen et al., 2023).
Increasing the data volume for the primary task en-
sures that the model does not deviate from the core
objective while learning auxiliary tasks, which also
helps in maintaining the priority of the primary task.
These two datasets contain 797 distinct projects. A
common challenge when training on multi-source
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code datasets is how to handle the variation of fea-
ture distribution among different projects. To mit-
igate this variation, we employ random identifier
substitution to enhance the generalization of LLMs
on multi-project code. The core idea is to reduce
model dependence on a specific project’s features
by increasing data diversity, thereby minimizing
the risk of overfitting and enhancing the model’s
adaptability to different coding styles. Specifically,
we replace 10% of the existing identifiers within
the original code with randomly chosen identifiers
sourced from the complete dataset. The input for
all three tasks is the source code. For the output,
vulnerability detection yields a label of 0 or 1. Vul-
nerability localization identifies the vulnerable line
as extracted in Figure 2, and vulnerability interpre-
tation provides the natural language (the final result
of CoT-SV, as demonstrated in Appendix A).
Instruction Fine-tuning. Instruction fine-tuning
aims to optimize the response of LLMs to specific
directives, thus ensuring the alignment with the re-
quirements of a particular task. Specifically, we
employ instruction fine-tuning to train a more spe-
cialized, adaptable, and efficient LLM for vulnera-
bility detection. For each task, we provide a distinct
instruction. By integrating this instruction with the
input code, the LLM is capable of producing spe-
cific outputs. Subsequently, the LLM quantifies
the discrepancy between the generated output and
the anticipated target, leveraging this deviation to
fine-tune the weights of LLM. In this work, we
adapt the template provided by Alpaca (Taori et al.,
2023) for instruction fine-tuning:
Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.
### Instruction:
[Task Prompt]
### Input:
[Input]
### Response:
[Output]

where [Input] and [Output] are obtained from the
above Data Preparation, and the [Task Prompt] di-
rects LLMs to generate task-specific outputs based
on different tasks. We provide specific examples of
instruction data for different tasks in Appendix A.

4 Experimental Setup

4.1 Datasets
We select six widely-used C/C++ vulnerability de-
tection datasets to evaluate different models ex-

tensitively: DiverseVul (Chen et al., 2023), De-
vign (Zhou et al., 2019), BigVul (Fan et al.,
2020), CVEfixes (Bhandari et al., 2021), Re-
Veal (Chakraborty et al., 2022), and Juliet (Boland
and Black, 2012). The first two datasets are in-
volved in model training (denoted as Dataset1)
while the latter four datasets are not presented in
the training process (denoted as Dataset2). There-
fore, the results on Dataset2 can further reflect the
models’ generalizability besides effectiveness. The
details of the datasets can be found in Appendix B.

4.2 Baselines

In our evaluation, we compare VulLLM with
the following SOTA models, encompassing di-
verse architectures and approaches to ensure a
broad spectrum of comparison. Specifically, our
baselines include two GNNs-based models: De-
vign (Zhou et al., 2019) and ReVeal (Chakraborty
et al., 2022), three CodePTMs: CodeBERT (Feng
et al., 2020), GraphCodeBERT (Guo et al., 2021),
UniXcoder (Guo et al., 2022), and two models
based on CodePTMs: ReGVD (Nguyen et al.,
2022) and EPVD (Zhang et al., 2023c) that are
specifically designed for vulnerability detection.
The details of these baselines can be found in Ap-
pendix C. The implementation details of all the
baselines and our approach can be found in Ap-
pendix E.

5 Results

5.1 Effectiveness and Generalization

We select two versions with different parameter
sizes of Llama-2, CodeLlama, and StarCoder as our
base models respectively, to validate the extensive
applicability of our framework. Specifically, we
evaluate the effectiveness of various approaches
across the six test datasets. Notably, Dataset2,
which is not involved in model training, can further
reflect the model’s generalization.

The results shown in Table 1 indicate that Vul-
LLM, based on CodeLlama-13B, exhibits the high-
est performance, yielding an overall F1 score of
66.54%. Across all models and datasets, VulLLM
based on CodeLlama-13B consistently ranks either
first or second, which outperforms the 7 selected
baselines. Therefore, our subsequent analysis of
VulLLM is based on CodeLlama-13B. Compared
to the best baseline model, UniXcoder, VulLLM
demonstrates an overall effectiveness improvement
by 8% (i.e., (66.54-61.61)/61.61) across all six
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Methods Size Dataset1 Dataset2 Average
DiverseVul Devign BigVul CVEfixes ReVeal Juliet Dataset1 Dataset2 All

Devign 1M 60.36 58.93 53.14 55.09 59.43 57.71 59.65 56.34 57.44
ReVeal 1M 57.04 53.84 53.92 53.49 56.67 57.86 55.44 55.49 55.47
CodeBERT 125M 65.45 66.81 55.19 56.03 46.48 5.36 66.13 40.77 49.22
GraphCodeBERT 125M 66.00 66.62 54.70 58.82 55.61 31.22 66.31 50.09 55.50
UniXcoder 126M 67.27 66.05 56.06 59.35 59.57 61.36 66.66 59.09 61.61
ReGVD 125M 65.86 61.14 58.55 60.86 54.94 36.87 63.50 52.81 56.37
EPVD 125M 66.85 66.76 52.89 57.73 48.95 25.86 66.81 46.36 53.17

VulLLM-L2 7B 65.31 66.24 57.84 55.47 52.80 64.08 65.78 57.55 60.29
13B 70.42 70.29 59.54 61.48 57.79 57.04 70.36 58.96 62.76

VulLLM-SC 7B 60.43 63.46 62.31 64.50 50.81 63.32 61.95 60.24 60.81
15B 62.02 62.77 46.17 52.09 59.48 69.50 62.40 56.81 58.67

VulLLM-CL 7B 68.23 67.84 63.51 59.26 66.45 58.84 68.04 62.02 64.02
13B 70.99 71.63 64.42 61.92 64.52 65.77 71.31 64.16 66.54

Table 1: The F1 scores on six datasets. The abbreviations “L2”, “SC”, and “CL” refer to the Llama-2, StarCoder,
and CodeLlama, respectively. The best results are highlighted in bold, while the next best results are underlined

datasets. Notably, it exhibits improvements by
8.58% (i.e., (64.16-59.09)/59.09) in the F1 score
on Dataset2, indicating its superior generaliza-
tion. In addition, existing models generally ex-
hibit poor generalization ability. In the 20 (5 mod-
els × 4 datasets) generalization experiments on
CodePTMs, the average F1 score of the baseline
models decrease by 11.36% to 38.36% (24.33%
on average) compared to Dataset1. In contrast,
VulLLM demonstrates a much smaller decrease
in performance, decreasing by only 10.03%, and
crucially, maintains F1 scores above 60% across
all datasets. While GNN-based models seem to
exhibit a lesser performance decline on Dataset2
compared to CodePTMs, seemingly demonstrat-
ing better generalization, their poorer effectiveness
and complex data preprocessing make them signif-
icantly less versatile than other models, limiting
their practical applicability.

5.2 Robustness

Attack Model DiverseVul ReVeal Total Avg

MHM
UniXcoder 24.97 20.48 22.73
VulLLM 33.22 40.06 36.64

WIR
UniXcoder 4.42 2.18 3.30
VulLLM 16.91 25.25 21.08

DCI
UniXcoder 37.78 31.94 34.86
VulLLM 42.32 46.94 44.63

Table 2: The F1 scores under adversarial attacks. For
simplicity, DCI denotes the Dead Code Insertion attack

We select DiverseVul and ReVeal, from
Dataset1 and Dataset2 respectively, in this ex-
periment. DiverseVul is chosen due to its inclusion
of a wide variety of projects, thus offering a com-
prehensive evaluation of the model’s robustness.
ReVeal is selected because its data is sourced from

the Chromium and Debian packages, which differs
from other datasets that originate from NVD (NVD,
2023) or GitHub repositories. We select two ad-
versarial attacks for CodePTMs that are based on
random identifier replacement: MHM (Zhang et al.,
2020) and WIR-Random (Zeng et al., 2022), since
they achieve the highest attack success rate in re-
cent evaluations (Du et al., 2023b). In addition, we
also construct an attack based on random dead code
insertion, with the form of the dead code derived
from DIP (Na et al., 2023). Since the code of DIP
is not publicly available, and our objective is to
compare the robustness of models under different
attacks rather than pursuing the highest attack suc-
cess rate, we do not directly use DIP. The details of
these attacks can be found in Appendix F.

We select UniXcoder, which performs the best
over all the baselines in Table 1, and VulLLM for
robustness evaluation. Table 2 reveals the F1 score
of two models under three adversarial attacks. It
shows that UniXcoder exhibit a significant decline
in performance under various adversarial attacks.
Notably, the performance under ReVeal is lower
than that under DiverseVul, indicating that UniX-
coder has poorer robustness on OOD data. This re-
duced robustness is a testament to their insufficient
generalization. Conversely, VulLLM demonstrates
superior robustness across all attacks. Compared
to UniXcoder, VulLLM demonstrates an average
improvement by 68.08%. More importantly, Vul-
LLM does not show a further decline in robustness
on OOD samples, indicating that its robustness and
generalization are superior to UniXcoder.

To explore the reasons behind the differences
in robustness between the two models, we further
examine the probability densities of correct pre-
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Methods DiverseVul Devign BigVul CVEfixes ReVeal Juliet Total Avg
VulLLM 70.99 71.63 64.42 61.92 64.52 65.77 66.54
w/o DA 68.89↓ 65.08↓ 59.80↓ 61.46↓ 65.65↑ 66.48↑ 64.56↓
w/o MT 66.62↓ 66.56↓ 53.42↓ 59.61↓ 52.87↓ 63.00↓ 60.35↓
w/o DA&MT 70.08↓ 64.06↓ 56.22↓ 59.47↓ 60.31↓ 70.88↑ 63.50↓

Table 3: Results of ablation study. The abbreviations “DA” and “MT” refer to the data augmentation and multi-task
learning, respectively. ↓(↑) indicates that the performance relative to the complete VulLLM decreases (increases)
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Figure 4: Probability density of the DiverseVul and
ReVeal from VulLLM and UniXcoder

dictions made by VulLLM and UniXcoder on the
two datasets. We particularly emphasize the impor-
tance of high prediction probabilities, as accurate
probability predictions are especially crucial when
performing safety-critical tasks. As illustrated in
Figure 4, the overall performance analysis indi-
cates that VulLLM exhibits superior probability
density over UniXcoder across two datasets. On
the DiverseVul dataset, VulLLM shows a signifi-
cantly higher density in the high probability regions
(close to 1.0), indicating stronger confidence in its
results. Its curve peaks around a probability value
of approximately 0.9, and then rapidly declines,
suggesting a higher concentration in high probabil-
ity predictions. On the ReVeal dataset, the differ-
ence in density curves between the two models is
not as pronounced as in DiverseVul, but VulLLM
still maintains a higher density in regions where
the probability is greater than 0.8. Particularly in
the probability range of 0.8 to 1.0, its density curve
is above UniXcoder, peaking near a probability of
0.9. In summary, VulLLM exhibits greater confi-
dence in its predictions, especially when providing
high probability forecasts, contributing to its higher
robustness.

5.3 Ablation Study

In this section, we investigate the impact of multi-
task learning and data augmentation. As demon-
strated in Table 3, after removing multi-task learn-
ing (“w/o MT”), the model exhibits a performance
decline across all datasets, with an overall rela-
tive reduction by 9.30%. This observation under-

scores the pivotal role of multi-task learning within
our approach, evidencing its substantial contribu-
tion towards enhancing the model’s effectiveness
and generalization. When the data augmentation
component is removed (“w/o DA”), the model ex-
hibits a decrease in average performance by 2.98%.
Across different datasets, the model shows a de-
cline in performance on four datasets, but an in-
crease on ReVeal and Juliet. Such variations sug-
gest that while the data augmentation incorporated
into VulLLM effectively enhances model effective-
ness, it may simultaneously impair the model’s
generalization on certain datasets. Finally, when
two components are removed (w/o “DA&MT”), its
performance decreases across five datasets. No-
tably, on the Devign dataset, its performance is
even inferior to that of the three CodePTMs. Ad-
ditionally, on both BigVul and CVEfixes, it falls
short of the performance achieved by ReGVD. In
summary, the ablation study clearly demonstrates
the indispensable roles that multi-task learning and
data augmentation play in enhancing the model’s
overall performance. Notably, multi-task learning
emerges as the more impactful of the two com-
ponents, playing a pivotal role in enhancing the
model’s performance.

5.4 Sensitivity to hyper-parameter

Length Aux Data DiverseVul Reveal Total Avg
512 694 70.99 64.52 66.54

1,024 1,509 69.66 64.36 66.76
2,048 2,138 68.68 67.00 66.89

Table 4: The F1 score of VulLLM under varying num-
bers of auxiliary task samples

Auxiliary task samples. Considering resource con-
straints and training efficiency, previous models
are trained within a context length of 512. Conse-
quently, the amount of auxiliary task data included
is limited. To further explore the impact of the
samples of auxiliary tasks on the performance of
VulLLM, we expand the training context lengths
to 1,024 and 2,048 to include more auxiliary task
samples. We present results for two representative
datasets, similar to Section 5.2, and list the aver-
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age values for six datasets, as shown in Table 4.
We find that an increased number of auxiliary task
samples generally leads to a slight improvement
in model performance, especially on OOD sam-
ples. However, there is a noticeable decline in the
model’s performance on in-distribution samples.
The changes can be attributed to multi-task learn-
ing, where a model learns various tasks together,
focusing on features common to all tasks. With
more auxiliary task samples, the model adapts to
diverse data, improving its overall applicability.
However, this broad focus might lead to less op-
timal performance on specific tasks, as the model
might miss finer, unique features of the original
training set.

r=4 r=8 r=16 r=32 r=64
Rank

55

60

65

70

75

F1
 S

co
re

Average
DiverseVul
Reveal

Figure 5: Average F1 score for six datasets and F1
scores for DiverseVul and Reveal at different ranks

Training parameters. To demonstrate the sensitiv-
ity of VulLLM to training parameters, we conduct
experiments with different ranks in LoRA, which
are proportional to the training parameters. As
shown in Figure 5, we observe that the average F1
score increases as the rank increases, reaching its
peak at 16. Further increasing the rank value leads
to a decrease in performance, following a trend
similar to existing works (Hu et al., 2022). This
phenomenon may be attributed to a limited num-
ber of training parameters constraining the model’s
learning capacity, while an excessive number of
parameters may lead to overfitting or excessive
complexity in handling the parameters.

6 Conclusion

In this paper, we introduce VulLLM, a novel frame-
work for code vulnerability detection utilizing
LLMs. By innovatively integrating a vulnerabil-
ity interpretation task into our multi-task learning
framework alongside data augmentation strategies,
we significantly enhance the LLM’s capability to
detect code vulnerabilities. This combination not
only improves detection accuracy but also enriches

the model’s understanding of the context and ra-
tionale behind vulnerabilities. Extensive evalua-
tions conducted on six diverse and comprehensive
datasets demonstrate that VulLLM surpasses exist-
ing approaches in terms of effectiveness, general-
ization, and robustness. Further validation through
ablation study confirms the critical role of multi-
task learning and data augmentation in boosting
VulLLM’s performance.

Limitations

Due to resource limitations, our experiments are
conducted on LLMs with size of 7B, 13B, and
15B, utilizing the parameter-efficient fine-tuning
approach LoRA. This approach may affect the fi-
nal performance. Additionally, the acquisition of
vulnerability interpretations is contingent upon the
capabilities inherent in the LLMs. To mitigate this
limitation, we employ the SOTA LLM, GPT-4, in
conjunction with CoT-SV for generating interpreta-
tions. However, there remains a potential for bias in
these vulnerability explanations, particularly when
dealing with code that involve complex vulnerabil-
ity contexts.
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Task Instruction Data

Vulnerability
Detection

Instruction: Detect whether the following code contains vulnerabilities.
Input: {The vulnerable code in Figure 2}
Output: 1

Vulnerability
Localization

Instruction: Identify any security vulnerabilities in the following code, and specify the lines where they
occur.
Input: {The vulnerable code in Figure 2}
Output: 9: b+= ff_subtitles_next_line (b);

Vulnerability
Interpretation

Instruction: Analyze the following code from the perspective of whether it contains vulnerabilities.
Input: {The vulnerable code in Figure 2}
Output: The vulnerability in svg_probe arises from how b is incremented in line 9. This, in combination
with the control flow in line 8 and the dataflow/boundary check in line 14, can lead to an infinite loop
under certain conditions. This scenario highlights the importance of meticulously managing pointer
arithmetic and loop conditions in low-level programming, particularly in functions processing external
inputs.

Table 5: Instruction examples of different task

A Example of Multi-task Data

For the vulnerable code as shown in Figure 2,
when only the prompt from Step 1 in Sec-
tion 3.3 is used, GPT-4’s response is: “Buffer
Overrun: The function relies on the behavior of
ff_subtitles_next_line(b). If this function fails to
correctly handle the end of the buffer, it could result
in b pointing beyond the end, causing a buffer over-
run.” However, the response following the com-
plete CoT-SV is: “The vulnerability in svg_probe
arises from how b is incremented in line 9. This,
in combination with the control flow in line 8 and
the dataflow/boundary check in line 14, can lead
to an infinite loop under certain conditions. This
scenario highlights the importance of meticulously
managing pointer arithmetic and loop conditions
in low-level programming, particularly in functions
processing external inputs.” These results indicate
that when GPT-4 directly analyzes a vulnerable
code, its interpretation can be imprecise and bi-
ased, and misidentifies the example code as buffer
overrun. In contrast, the vulnerability interpre-
tation provided by CoT-SV is more accurate and
align more closely with the CVE descriptions as
illustrated in Figure 2, emphasizing the infinite
loop. Based on the vulnerability line obtained from
Figure 2 and the above-mentioned vulnerability in-
terpretation, we present the instruction fine-tuning
data examples for three tasks as shown in Table 5.

B Dataset details

We perform undersampling on non-vulnerability
functions to ensure the numbers of vulnerable and
non-vulnerable samples are balanced. For Devign,
we utilize the standard partitions provided by the

dataset to create training, validation, and test sets.
Regarding DiverseVul, which does not provide
standard partitions, we randomly split them into
the training, validation, and test sets with an 8:1:1
ratio, ensuring a 1:1 ratio for both classes in each
set. Subsequently, we concatenate the training, val-
idation, and test sets of the two datasets to obtain
the corresponding training and validation sets. The
final mixed dataset used for training, validation
contains 23,078 and 2,864 examples, respectively.
In our work, Big-Vul, CVEfixes, ReVeal, and Juliet
are solely used as testing data. We also perform
data cleaning, deduplication, and ensure a 1:1 ratio
between positive and negative samples for these
datasets. For Big-Vul and Juliet, we randomly se-
lect 10% of the processed data for testing. As for
ReVeal, due to its limited size, we utilize the entire
dataset for testing. Finally, the DiverseVul, Devign,
BigVul, CVEfixes, ReVeal, and Juliet used for test-
ing respectively contain 1,532, 1,312, 1,170, 4,216,
2,028, and 3,152 examples.

C Baselines

Devign (Zhou et al., 2019). Devign is a classic
method that utilizes GNNs for vulnerability detec-
tion. It extracts information from mutiple dimen-
sions of the code, encoding it into a joint graph,
and employs GGNN to learn hidden layer represen-
tations. It uses a convolutional module to extract
features from nodes for graph-level classification.
Another significant contribution of Devign is the
release of a large dataset collcted and manually la-
beled from 4 popular C language libraries. This
dataset has been widely used in subsequent related
works. In our implementation, we use the source
code released in ReVeal (Chakraborty et al., 2022)
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to conduct our experiments.
ReVeal (Chakraborty et al., 2022). Addressing
issues such as data repetition and imbalanced data
samples in existing datasets, ReVeal introduced
a dataset constructed through its own collection
efforts and conducted a systematic evaluation on
this dataset. Additionally, ReVeal proposed a new
vulnerability detection method. It represents code
as a Code Property Graph (CPG), utilizes GGNN
to obtain a graph representation, and then feeds
it into a Multi-Layer Perceptron (MLP) layer for
vulnerability detection.
CodeBERT (Feng et al., 2020). CodeBERT is a
pre-trained model that is based on the RoBERTa
model architecture, specifically designed for under-
standing and generating programming languages.
Its training data consists of both programming
languages (PL) and natural languages (NL), em-
ploying masked language modeling (MLM) and
replaced token detection (RTD) as pre-training
tasks. For fine-tuning CodePTMs on vulnerabil-
ity detection, we adopte the parameter settings in
CodeXGLUE (Lu et al., 2021).
GraphCodeBERT (Guo et al., 2021). Graph-
CodeBERT extends the BERT architecture. In
addition to the Masked Language Modeling pre-
training task on both natural language and code lan-
guage inputs, GraphCodeBERT allows the incorpo-
ration of the structural information of the code (i.e.,
dataflow). Correspondingly, it introduces two addi-
tional pre-training tasks: edge prediction and node
alignment. The edge prediction and node alignment
tasks are designed to encourage the model to learn
semantic relationships between code structures and
mapping relationships between code tokens and
variable representations.
UniXcoder (Guo et al., 2022). UniXcoder is an
unified and cross-modal pre-trained programming
language model based on a N-layer Transformer
architecture. The model takes a code representa-
tion which enhanced by code comments and seri-
alized Abstract Syntax Tree as input. UniXcoder
utilizes self-attention masks to control the model’s
behavior between Encoder-Only, Decoder-Only,
and Encoder-Decoder. It concurrently employs lan-
guage modeling tasks corresponding to these three
behaviors for pre-training the model. Addition-
ally, the authors introduced two pre-training tasks
to learn code semantic embeddings: multi-modal
contrastive learning and cross-modal generation.
ReGVD (Nguyen et al., 2022). ReGVD is an effec-
tive model for code vulnerability detection. It treats

source code as token sequences to construct graphs
with node features initialized by a pre-trained lan-
guage model. By leveraging GNNs with residual
connections, ReGVD enhances learning and rep-
resentation capabilities. The model combines sum
and max pooling for graph embedding, which is
then processed through a fully-connected and soft-
max layer to predict vulnerabilities.
EPVD (Zhang et al., 2023c). EPVD works by
decomposing a code snippet into several execu-
tion paths, analyzing these paths using a CodePTM
and a convolutional neural network (CNN) to cap-
ture both intra- and inter-path attention, and then
combining these analyses to form a comprehensive
code representation. This representation is then
used by a multilayer perceptron (MLP) classifier
to identify vulnerabilities. This method effectively
addresses issues related to irrelevant information
and long code snippets in traditional vulnerability
detection approaches.

D Metrics

Precision (P) is the proportion of vulnerable code
correctly predicted as vulnerability among all code
predicted as vulnerability. Recall (R) is the pro-
portion of vulnerable code correctly predicted as
vulnerability among all known real vulnerable code.
F1 denotes the harmonic mean of precision and re-
call and is calculated as: F1 = 2∗(P ∗R)/(P+R).
Given that the F1 score represents the harmonic
mean of precision and recall, it effectively balances
the impact of both metrics. Utilizing the F1 score
allows for a more comprehensive and equitable
evaluation of the performance of vulnerability de-
tection models. This ensures that the system neither
generates excessive false positives nor overlooks
too many genuine vulnerabilities. Consequently, in
all evaluations, the F1 score is employed to evalu-
ate the performance of different models.

E Implementation Details

All the experiments are conducted on an Ubuntu
20.04 server with AMD Ryzen Threadripper 3960X
24-Core Processor CPU, 128GB of RAM, and
2 NVIDIA A800 80G GPUs. For fine-tuning
CodePTMs, the learning rate is set to 2e-5, the
max length is set to 512, the batch size is set to
32, and the epoch is set to 5. These parameter set-
tings are consistent with those established on the
CodeXGLUE (Lu et al., 2021) benchmark. For
fine-tuning Llama-2 and CodeLlama, the learning
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rate is set to 1e-4, the max length also set at 512,
the batch size is set to 32, and and the epoch is set
to 3. For fine-tuning StarCoder, the learning rate
is set to 2e-5, the max length also set at 512, the
batch size is set to 16, and and the epoch is set to 3.
To improve training efficiency, we load all LLMs
with 8-bit quantization. We employ LoRA (Hu
et al., 2022) for instruction-tuning LLMs. The spe-
cific settings for LoRA include: the rank is 16,
the alpha value is set to 32. The target modules
for Llama-2 and CodeLlama are set to ‘q_proj’,
‘v_proj’, ‘k_proj’, and ‘o_proj’, while the target
module for StarCoder is set to ‘c_proj’, ‘c_attn’,
‘q_attn’. The partial parameters of different LLMs
vary due to the distinct model settings provided in
the official code. We have adhered to these settings
in our experiments.

F Adversarial Attack

MHM (Zhang et al., 2020). MHM utilizes an it-
erative identifier substitution method based on the
Metropolis-Hastings (M-H) sampling (Metropolis
et al., 1953). This attack involves randomly choos-
ing potential replacements for local variables and
then making a strategic decision to either accept or
reject these substitutions. MHM’s effectiveness in
selecting adversarial examples is enhanced by uti-
lizing both the predicted labels and their confidence
scores from the target model.
WIR-Random (Zeng et al., 2022). WIR-Random
employs the Word Importance Rank (WIR) method
to establish the order in which identifiers are substi-
tuted. This attack assigns a rank to each identifier
based on the change in probabilities produced by
the model when the identifier is renamed to “UNK”.
Following this ranking, WIR-Random systemati-
cally substitutes the identifiers, choosing replace-
ments from a random pool of candidates.
Dead Code Insertion. We employ a form of dead
code construction in DIP (Na et al., 2023) as fol-
lows: char var_2[] = “snippet”; Where var
is an identifier randomly selected from the dataset.
To avoid the low probability of duplicate names,
it is named var_2. The code snippet is also ran-
domly obtained from the dataset. An example of a
dead code snippet is: char xpath_2[] = “err =
sock_do_ioctl(net, sock, cmd, (unsigned
long)&ktv);”. We ensure the syntactic correct-
ness and semantic consistency of the original code
while inserting the generated dead code into ran-
dom positions within the code.
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