
Findings of the Association for Computational Linguistics ACL 2024, pages 10686–10697
August 11-16, 2024 ©2024 Association for Computational Linguistics

AS-ES Learning: Towards Efficient CoT Learning in Small Models

Nuwa Xi*, Yuhan Chen*, Sendong Zhao†, Haochun Wang, Bing Qin and Ting Liu
Research Center for Social Computing and Information Retrieval,

Harbin Institute of Technology, China
{nwxi,yuhanchen,sdzhao,hcwang,bqin,tliu}@ir.hit.edu.cn

Abstract

Chain-of-Thought (CoT) serves as a critical
emerging ability in LLMs, especially when it
comes to logical reasoning. Attempts have been
made to induce such ability in small models
as well by distilling from the data with CoT
generated by Large Language Models (LLMs).
However, existing methods often simply gen-
erate and incorporate more data from LLMs
and fail to note the importance of efficiently
utilizing existing CoT data. We here propose a
new training paradigm AS-ES (Abstractive Seg-
ments - Extractive Segments) learning, which
exploits the inherent information in CoT for
iterative generation. Experiments show that our
methods surpass the direct seq2seq training on
CoT-extensive tasks like MWP and PET sum-
marization, without data augmentation or alter-
ing the model itself. Furthermore, we explore
the reason behind the inefficiency of small mod-
els in learning CoT and provide an explanation
of why AS-ES learning works, giving insights
into the underlying mechanism of CoT.

1 Introduction

CoT is one of the most important emerging abilities
that distinguishes LLMs from prior models with
smaller scales (Wei et al., 2022). The explicit intro-
duction of CoT enables LLMs to tackle complex
problems that necessitate critical thinking and intri-
cate logical reasoning, thus enhancing the overall
performance of LLMs. (Wei et al., 2022; Zhang
et al., 2023; Wang et al., 2022a).

Intuitively, numerous works extended the CoT
capacity to smaller-scale models (Shridhar et al.,
2023; Hsieh et al., 2023; Fu et al., 2023; Ma et al.,
2023; Chen et al., 2023; Wang et al., 2022b; Ho
et al., 2022). Yet, these endeavors predominantly
concentrate on generating an increased quantity
of high-quality CoT data from LLMs and resort

* Equal Contribution
† Corresponding author

to a direct seq2seq training approach, where the
query forms the input and the CoT-enriched answer
serves as the target. Such methods often overlook
the limited capacity of small models in learning the
complex reasoning in CoT. Taking this into account,
Some works tried to decompose CoT into more
fine-grained reasoning steps, and used LLMs to
generate rationales for each individual step to aug-
ment the original CoT (Hsieh et al., 2023; Ma et al.,
2023; Zhang et al., 2023). Shridhar et al. (2023)
further improved the direct seq2seq paradigm using
the augmented CoT to train separate models for it-
erative generation. However, the use of augmented
CoT is just another way of generating more CoT
data, which is costly and still fails to fully exploit
the inherent information in existing datasets.

Furthermore, although proven to achieve better
performance, using separate small models for CoT
learning raises another question. Similar to using
different modules for information retrieval and rea-
soning in multi-hop QA (Deng et al., 2020; Jiang
and Bansal, 2019; Feng et al., 2020; Mavi et al.,
2022), these methods specialize small models in
single-task operations, in contrast with LLMs us-
ing a singular framework. Such implementation
underlines an assumption that small models, due to
their constrained computational capacity compared
to LLMs, may require separate, specialized mod-
els to perform distinct phases of CoT processing
(Weichert et al., 2019; Fu et al., 2023).

In response to the above issues, we introduce a
novel paradigm different from earlier approaches
for distilling CoT to small models. We classify the
statements inside the CoT-format results of LLMs
into two categories: Extractive Segments (ES) that
remind the model of the context and set the stage
for subsequent conclusions, and Abstractive Seg-
ments (AS) that infer additional insights not explic-
itly stated in the context. With the deconstruction
of CoT into AS and ES components, we curate a
dataset tailored for an iterative learning process,
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A. B.
Weng earns $12 an hour for babysitting. 
Yesterday, she just did 50 minutes of babysitting. 
How much did she earn? Let's think step by step.

# Math Word Problem

# Answer

Weng earns $12 per hour,

which means she earns $1 per 5 minutes.

She babysat for 50 minutes,

which means she earned 50/5 = 10 dollars,

The answer is 10.

Extractive segment Abstractive segment

: Soft tissue shadows can be seen 
in the duodenum, the intestinal wall 
is thickened in the horizontal part, 
and radioactive uptake is abnormally 
increased.

# PET-scan Report

: The nerve nuclei 
under the cerebral cortex 
are clearly visualized, and 
the radioactivity 
distribution is symmetrical.

···
: Multiple small 

nodules were seen in both 
lungs, and radioactive 
uptake was slightly 
increased.

: Abnormal hypermetabolic 
lesions in the ampulla and horizontal 
part of the duodenum.

# Impression

: No obvious anomaly. ···

Normal tissue Anomalous tissue Extractive segment Abstractive segment

Task Description

considering the possibility 
of cancer metastasis.

: Partial metabolism 
is slightly increased,

Figure 1: A. Description of PET-scan summarization task: Each blue section denotes the part of the report involving
a particualr organ, with the green representing the related impression. Organ names are bolded and italicized, while
light and dark green distinguish between impression segments. B. Description of Math Word Problem task: The
blue section highlights the question, while light and dark green sections denote distinct segments of the answer.

defined as AS-ES learning to maximize the latent
potential of small models for CoT-intensive tasks
without the need for additional data.

We further experiment with two training strate-
gies, using two models for generating AS/ES re-
spectively and using one unified model for gen-
erating AS/ES together, as an attempt to answer
whether a single small model can handle both ex-
traction and abstractive reasoning effectively akin
to LLMs, and furthermore, whether the subopti-
mal performance of small models trained with CoT
stems from intrinsic limitations or data utilization
inefficiencies.

To cover different scenarios, we take two rep-
resentative problems – impression generation for
PET scan report (PET) and Math Word Problem
(MWP). As shown in Figure 1, the CoT of the two
tasks expands in different ways: MWP requires
a step-by-step solution with CoT following a se-
quential pattern, while PET involves more parallel
processing across multiple body regions.

Here is a paragraph for rebuttal. The first citation
is (Huang and Qiao, 2023). And the second one is
(Xiong et al., 2023).

In summary, the main contributions of our paper
are as follows:

• We introduce AS-ES learning, a novel data-
efficient training paradigm that maximizes the
intrinsic value of existing CoT data, adaptable
across various model sizes and tasks.

• We explore the use of AS-ES dataset and find
that the limitations in CoT learning previously
attributed to the inherent capabilities of small
models can be substantially mitigated through

an improved data utilization strategy without
additional data.

• We explain the efficacy of AS-ES learning
from the loss perspective, offering insights
into the underlying dynamics of CoT that may
benefit future research in the field.

2 Related Work

Deduction in NLP Tasks Deduction is a logi-
cal process of reasoning or inferring specific in-
formation from given premises or data. In NLP,
deduction is used in various tasks, such as sum-
marization, question answering and information
extraction (Mirzaee and Kordjamshidi, 2023; Min-
ervini et al., 2020; Deng et al., 2020; Mavi et al.,
2022; Qu et al., 2020; Nye et al., 2021). Early
research employs end-to-end models to directly
learn reasoning strategies from labeled and struc-
tured data (Minervini et al., 2020; Qu et al., 2020),
which requires the effort of human annotation. Nye
et al. (2021) separates the inference process into a
traditional generation part and an extra validation
part. They construct a symbolic reasoning mod-
ule to validate the generated facts using a minimal
world model. However, the minimal world model
must be hand-engineered. In our work, we em-
ploy a fully automatic strategy to disentangle the
deduction process, achieving both efficiency and
effectiveness.

CoT in Small Models CoT is a significant ability
to improve the performance of complex reasoning,
which is considered as an emergent ability of LLMs
(Wei et al., 2022). Numerous work aims to transfer
this ability to small models (Shridhar et al., 2023;
Hsieh et al., 2023; Fu et al., 2023; Ma et al., 2023;
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Chen et al., 2023). One prevailing method is distill-
ing from LLMs, such as utilizing LLMs to generate
rationales or multi-step solutions as training data
for smaller models (Shridhar et al., 2023; Hsieh
et al., 2023). Chen et al. (2023) also allows LLMs
to generate multiple rationales whose consistency
is enforced by KL-divergence. Ma et al. (2023)
employ a two-stage distillation strategy, in which
LLMs not only generate rationale but also provide
an answer inference process according to the ratio-
nale generated by the student model. However, all
these methods require LLMs as a teacher model. In
our work, we require no additional data generated
by LLMs, which substantially reduces the cost of
time and computational resources.

3 Method

This section elucidates the methodology of our
study, addressing three pivotal questions: (1) How
to segment the complete CoT into AS and ES? (2)
How to construct a dataset using the segmented AS
and ES? (3) How does the AS-ES learning work
for training and generation?

3.1 AS-ES Segmentation

We explore a variety of segmentation techniques
based on distinct characteristics of AS and ES. Af-
ter splitting all sub-sentences Si in the complete
CoT S by punctuation, we calculate the respective
score M using different metrics based on different
segmentation methods. All segmentation methods
except inter and bleu/rouge follow the criteria be-
low to determine which part falls into AS or ES (β
here is a pre-determined hyperparameter).

AS = {Si|M(Si) > βM(S)} (1)

ES = {Si|M(Si) <= βM(S)} (2)

The logic behind the two equations is that, for
ES, model generally shows a higher certainty while
the certainty about AS is relevantly lower. There-
fore, we use the average score of all the sub-
sentences as the borderline. Sub-sentences above
this borderline will be AS and below will be ES.
To give a finer adjustment about the borderline, we
multiply the average score by β.

We next introduce the specific segmentation
strategies we experiment with. Each strategy is
denoted by an abbreviation that will be used subse-
quently to identify the segmentation applied.

Entropy-oriented Segmentation (ent/ent*) En-
tropy measures uncertainty, and is intrinsically
linked to the cross-entropy loss commonly em-
ployed in seq2seq training. Denote the input query
as Q and the generated response as R. We can
approximate P (R|Q) by Equation 3, and calculate
the entropy for the response as in Equation 4.

P (R|Q) ≈ softmax(logits(R|Q)) (3)

Hn = −
∑

∀i∈|V |
P (Ri|Q) logP (Ri|Q) (4)

The rationale is that trained models should ex-
hibit greater certainty regarding the ES, which
closely mirrors the input query, thereby resulting in
lower entropy compared to AS. This is a way that
measures the “extractive” and “abstractive” from
the perspective of a model rather than a human one.
The two can diverge largely from each other, and
the latter one is almost impossible due to the large
cost of human annotation. For comparison, we also
employ this segmentation using pre-trained but not
fine-tuned models, designated as ent*.

Location-oriented Segmentation (inter) Many
CoTs naturally fall into an ES|AS|ES|AS|... pat-
tern, especially where in-depth and step-by-step
reasoning is required. Each sentence typically
presents a complete reasoning step, beginning with
context followed by deduction. We exploit this pat-
tern, designating sub-sentences as ES and AS in an
interleaving fashion.

Loss-oriented Segmentation (loss) This ap-
proach is akin to entropy-oriented segmentation,
where the loss of the trained model is used to es-
timate its certainty about a sub-sentence. We hy-
pothesize that the efficacy of AS-ES learning may
be attributed to its ability to lower the loss bound-
ary, as will be shown in Section 5.3. Therefore,
segmenting based on loss could potentially enable
the model to concentrate more effectively on less
well-understood segments.

Similarity-oriented Segmentation (bleu/rouge)
ES typically derives directly from the original
context, sharing greater similarity with the query,
whereas AS, often involves new reasoning, mak-
ing it more different from the query. We utilize
BLEU and ROUGE scores to quantify the similar-
ity between the query and the CoT segments. The
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Weng earns $12 an hour for babysitting. 
Yesterday, she just did 50 minutes of babysitting. 
How much did she earn? Let's think step by step.

# Question # Split Answer
Weng earns $12 per hour,

which means she earns $1 per 5 minutes.

She babysat for 50 minutes,

which means she earned 50/5 = 10 dollars.

The answer is 10.

② Calculate score M 
for each sentence

Weng earns $12 per hour, which means she 
earns $1 per 5 minutes. She babysat for 50 
minutes, which means she earned 50/5 = 10 
dollars. The answer is 10.

# Original Answer ① Split by 
punctuation

βM(S)

M(S)

S1

S2

S3

S4

S5

.15

.65

.20

.57

.32

Extractive 
segment (ES)

Abstractive 
segment (AS)

# Segmented Answer

Weng earns $12 per hour,

which means she earns $1 per 5 minutes.

She babysat for 50 minutes,

which means she earned 50/5 = 10 dollars.

The answer is 10.

③ label AS/ES according to score M# ES dataset

# AS dataset

Input Output
ES1Q

Q ES1 AS1 ES2

Q ES3ES1 AS1 ES1 AS1

Input Output
Q ES1 AS1

Q AS2ES1 AS1 ES1

②③④
 Split into ES and AS 
according to score M

④ Split into 
ES/AS dataset

ES1

AS1

ES2

AS2

ES3

Q

Figure 2: The workflow for labeling raw data as either ES or AS parts, followed by constructing ES/AS datasets.

classification of AS/ES using bleu/rouge segmen-
tation follows the equations below, the opposite of
Equation 1 and 2.

AS = {Si|M(Si) < βM(S)} (5)

ES = {Si|M(Si) >= βM(S)} (6)

3.2 AS-ES Dataset Construction

Training Data Organization Mere segmenta-
tion into AS and ES is insufficient for effective
model training, as the formats of input and tar-
get of the training data play an important role in
the training results. After segmenting the orig-
inal targets into AS and ES, we construct the
AS-ES dataset used for AS-ES learning. As
shown in Figure 2, we first merge the adja-
cent AS or ES as one, and then structure the
data as Q|ES1AS1...ESi−1ASi−1 → ESi and
Q|ES1AS1...ESi−1ASi−1ESi → ASi. Both the
ES dataset and AS dataset are compiled from sam-
ples generating ES and AS respectively.

Stop Sign Another question is when to put a stop
to iterative generation. We employ a stop sign at
the end of sequences generating the final sentence
of the original CoT. In this way, the loop can stop
once this stop sign is detected during generation.
For MWP, the conclusive phrase “the answer is ...”
serves as this marker. In PET summarization where
no inherent stop sign exists, we introduce a special
token < STOP > as the end of each CoT.

Irrelevant Information Processing One prob-
lem of the AS-ES dataset is that it is rather lengthy
compared to the original dataset, which often leads
to the problem of exceeding the maximum input
length of the model. PET summarization serves as
a good example. Due to the limitation of the input
length and consideration and the training cost, we
first divide whole-body PET scans into sections
according to anatomical regions, with each section
treated as an independent CoT instance. Unlike
MWP, where the entire context provided in the
query is integral to formulating the output, PET
scan reports typically contain extensive normality,
which are generally not included in the final im-
pression. To address this discrepancy, segments
depicting normal findings are annotated with “No
obvious anomaly” as the ground truth, and then
incorporated proportionally to ES-dataset. This
enables the ES model to identify and selectively
extract sentences to the final summary. The pro-
portion of normality incorporated is denoted by
γ, which is the ratio of normal findings included
compared to the total number of PET reports.

3.3 AS-ES Learning

Dual-path Learning Existing work that uses iter-
ative generation for CoT learning in small models
uses two separate models, one for heuristic ques-
tioning and the other for answering. AS-ES train-
ing can also adapt to this paradigm by training two
separate models, Extractive Segment generation
Model (ESM) for retrieving and Abstractive Seg-
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ment generation Model (ASM) for reasoning, to-
gether designated as Dual-path Segment generation
Models (DSM). This training paradigm reflects an
underlying assumption that a singular small model
may struggle with the complexity of performing
both extraction and reasoning tasks within an it-
erative sequence. The generation process under
the DSM framework, as depicted in Algorithm 1,
mirrors the procedural logic of the AS-ES dataset
construction. The training set of ASM and ESM
can be denoted as follows.

tr(ASM) = {DAS} (7)

tr(ESM) = {DES} (8)

Uni-path Learning While the dual-path learn-
ing approach has demonstrated efficacy, it neces-
sitates the training and maintenance of two sepa-
rate models, each with its independent parameter
space, complicating the training process and in-
flating computational costs. In response to these
challenges, we propose the uni-path learning frame-
work, a more streamlined method that consolidates
all AS-ES data into a single model. The training set
for the Uni-path Segment generation Model (USM)
is thus a combined dataset:

tr(USM) = {DAS , DES} (9)

Algorithm 1 Dual-Path Generation Process
Require: ESM, ASM ▷ Two models gained from

dual-path learning
1: input← Start token
2: while True do
3: ESM_output← ESM(input)
4: input← input + ESM_output
5: if stop_sign in ESM_output then
6: output← input return output
7: end if
8: ASM_output← ASM(input)
9: input← input + ASM_output

10: if stop_sign in ESM_output then
11: output← input return output
12: end if
13: end while

As detailed in Algorithm 2, USM undertakes the
identical iterative generation procedure as DSM
in Algorithm 1, except that the singular model as-
sumes the responsibilities of both ASM and ESM.
This unified approach posits that a single model,

Algorithm 2 Uni-Path Generation Process
Require: USM ▷ The model gained from

uni-path learning
1: input← Start token
2: while True do
3: USM_output← USM(input)
4: input← input + USM_output
5: if stop_sign in USM_output then
6: output← input return output
7: end if
8: end while

given an effective training strategy, can success-
fully navigate both extractive and abstractive tasks,
thereby simplifying the learning process and reduc-
ing the requisite resources for model training.

4 Experiment

4.1 Dataset

Math Word Problems (MWP) For the MWP
task, we employ the dataset curated by Fu et al.
(2023), which consists of chain-of-thought data
generated by the code-davinci-002 model from
OpenAI. The original questions are sourced from
the GSM8K dataset. Fu et al. enhanced the dataset
by prepending four in-context examples to each
question to serve as prompts for the GPT model.
In our study, we extract only the original questions
and their corresponding answers augmented with
CoT as our dataset.

PET Report Summarization (PET) For the
PET task, we introduce the cPET-11K dataset, a
novel compilation of 11.6k Chinese PET/CT report-
impression pairs. This dataset is a collection of
PET/CT report data from patients with pancreatic
cancer, originating from real clinical data of a ma-
jor tertiary hospital. These PET/CT scans were
performed using three PET/CT machines. All pa-
tient reports have been anonymized, with only the
content of the reports retained. These reports focus
on determining whether the patient has pancreatic
cancer and whether there is distant metastasis of
the pancreatic cancer to other abdominal organs.

4.2 Implementation

Base Model We use two variants of the typical
seq2seq model T5 (Raffel et al., 2020). For MWP,
we follow Fu et al. (2023) and use Flan-T5 (Chung
et al., 2022). For PET impression generation, we
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Metric Para
Model

direct DSM(ent) USM(ent) DSM(inter) USM(inter)

BLEU

77M 31.39 29.18 (↓7.04%) 28.53 (↓9.11%) 28.27 (↓9.94%) 28.93 (↓7.84%)
250M 34.65 30.87 (↓10.91%) 31.12 (↓10.19%) 30.63 (↓11.60%) 29.82 (↓13.94%)
800M 33.53 31.04 (↓7.43%) 31.21 (↓6.92%) 30.08 (↓10.29%) 29.65 (↓11.57%)

Acc

77M 15.25 13.74 (↓9.90%) 16.76 (↑9.90%) 13.19 (↓13.51%) 17.58 (↑15.28%)
250M 19.23 20.60 (↑ 7.12%) 20.74 (↑7.85%) 20.60 (↑7.12%) 21.70 (↑12.84%)
800M 22.53 24.18 (↑7.32%) 24.86 (↑10.34%) 21.29 (↓5.50%) 21.57 (↓4.26%)

Table 1: Results of different models for Math Word Problem. The best scores and improvements are in bold.

Metric
Model

direct DSM(ent) USM(ent) DSM(inter) USM(inter)
BLEU 2.17 3.29 (↑51.61%) 3.83 (↑76.49%) 0.37 (↓82.94%) 0.67 (↓69.12%)

ROUGE-L 17.15 22.25 (↑29.73%) 23.96 (↑39.70%) 7.39 (↓56.90%) 8.38 (↓51.13%)
MR 39.34 28.4 (↓27.80%) 24.78 (↓37.01%) 58.87 (↑49.64%) 33.04 (↓16.01%)

Table 2: Results of different models for PET-scan ummarization. The best scores are in bold. Lower MR metric
indicates better performance.

use mt5 (Xue et al., 2020) for its multilingual ca-
pabilities. We conduct experiments with three dif-
ferent sizes of Flan-T5 (small, base, large) to inves-
tigate the impact of model size on the efficacy of
AS-ES learning. Unless otherwise specified, the
default models used are Flan-T5-base for MWP
and mT5-base for PET impression generation.

Training Process As the size of the AS-ES
dataset is usually bigger than the original dataset, to
ensure a fair comparison among different methods,
all uni-Path approaches are trained with the same
amount of batch size and learning rate given the
same amount of training time. Conversely, dual-
path approaches undergo training for around half
the duration per model in accordance with their
data amount.

Checkpoint Selection Considering the final gen-
erated results can not be directly obtained dur-
ing evaluation for iterative approaches like AS-ES
learning, traditional evaluation metrics like BLEU
score or validation loss may not directly correlate
with actual model performance. Furthermore, even
for a direct approach, a higher BLEU score or lower
loss does not necessarily lead to a higher accuracy
for MWP. As for PET scan impression generation,
the BLEU score can be significantly influenced by
variations in formatting, necessitating additional
post-processing steps that can alter the metric’s
relevance to actual performance.

To address the above issues, we select three dif-

ferent checkpoints for each approach, and report
the best performance among the three. The de-
tailed criteria are as follows. (1) best_train: the
model with the lowest loss on the training set. (2)
best_loss: the model with the lowest loss on the
validation set. (3) best_bleu: the model with the
highest BLEU on the validation set. For MWP,
accuracy is deemed the primary performance indi-
cator, while for PET, we prioritize BLEU scores.

MR =
1

N

N∑

i=1

( |RGTi − (RGTi ∩RGRi)|
|RGTi |

)

(10)

Evaluation Metrics For MWP, we use BLEU
(Papineni et al., 2002) and accuracy as the evalu-
ation metrics with a focus on accuracy. For PET,
we use BLEU, ROUGE (Lin, 2004) and MR (miss-
ing ratio) as the evaluation metrics with a focus
on BLEU. MR is calculated using Equation 10, as-
sessing the proportion of anomalies omitted in the
generated summaries. Here, R denotes the various
organs or regions identified via keyword mapping,
GT and GR represent the ground truth and gener-
ated results respectively, and N is the size of the
test set.

4.3 Overall Performance of AS-ES Learning
As AS-ES learning has multiple combinations of
segmentation strategy and training strategy, we
here report the most effective segmentation for
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the two tasks respectively, and apply both USM
and DSM for the two segmentation strategies. As
shown in Table 1 and Table 2, AS-ES learning
improves the model performance on both tasks
with the appropriate strategy. Entropy-oriented seg-
mentation shows a generalizability across different
model sizes and tasks, while interleaving segmen-
tation is more targeted.

We here summarize some key aspects in the ex-
periments as a summary of the characteristics of
AS-ES learning, as well as an attempt to answer the
question mentioned in Section 1, that is, whether
the inferiority of small models in CoT-related tasks
stem from its inherent incapability to do extraction
and reasoning with a singular model.

4.3.1 Lower BLEU with Higher Accuracy
The first thing to notice in Table 1 is that, although
all AS-ES learning leads to lower BLEU score com-
pared to the direct approach, most of them leads to
a higher accuracy. This may implicate that instead
of memorizing the solution provided in the training
set in direct approach, AS-ES learning enables log-
ical reasoning of higher granularity in small mod-
els through a literal step-by-step process. Models
trained through AS-ES learning could yield differ-
ent solution and therefore although differs from
the ground truth in terms of textual similarity, still
leads to the same correct results.

4.3.2 Different Model Size Reacts Differently
to Segmentation Strategy

As shown in Table 1, entropy-oriented segmen-
tation works best for Flan-T5-large while inter-
leaving segmentation works best for Flan-T5-small.
The reasons behind this could be two-fold. First,
entropy calculation is the key for entropy-oriented
segmentation. The inherent superiority of larger
models after fine-tuning results in a better grasp of
data, leading to a better segmentation. Furthermore,
when it comes to task of highly sequential CoT so-
lution like MWP, entropy-oriented segmentation
does not seem that straightforward and easy for
small models to grasp, especially with the subopti-
mal entropy calculation by small models. Overall,
the specific performance of AS-ES learning de-
pends on both the quality of AS-ES dataset and the
capacity of models to handle to data.

4.3.3 Segmentation Works Differently for
Different Tasks

As shown in Table 1 and Table 2, PET scan sum-
marization and MWP show rather large divergence

using entropy segmentation and interleaving seg-
mentation. The former benefits largely from en-
tropy segmentation while suffers a lot from inter-
leaving segmentation. On the contrary, interleav-
ing segmentation works for most cases in MWP,
depending on the size of the model. The reason
behind this is quite intrinsic. The structure of math
word problems typically follows a logical progres-
sion where statements provide context or premises
(ES) followed by a step in reasoning or calculation
(AS), and this pattern tends to repeat as the prob-
lem is broken down into solvable parts therefore
naturally aligns with the interleaving segmentation
approach. Impression generation from PET scans,
on the other hand, tend to consist of multiple ob-
servations (ES) followed by a collective diagnostic
insight (AS), or vice versa without an interleaving
pattern, therefore better accommodates to entropy
segmentation.

4.3.4 USM v.s. DSM: Is One Model Enough?
Although existing works all use two separate mod-
els for iterative generation approach, experiments
results for both MWP and PET suggest that one
model is enough and lead to even better results
compared to using two models, at least for AS-ES
learning. Although both suffering from error ac-
cumulation, USM consistently outperforms direct
approach compared to DSM. The integrated con-
text for training USM might enable the model to
better understand the interplay between different
types of reasoning, leading to a more nuanced un-
derstanding of the data. Furthermore, the separate
model in DSM leads to separate optimization, mak-
ing the checkpoint used for test may not be fully
display its capacity, even with multiple checkpoint
selection strategy. This phenomenon suggests that
it is more about the training strategy but rather the
capacity of model itself.

5 Discussion

5.1 Effect of Segmentation Strategy

As shown in Table 3, different segmentation strate-
gies do play a key role in AS-ES learning. seg-
mentation by inter, loss and ent calculated from
fine-tuned models all yield better results compared
to the direct approach. The decreased performance
using bleu/rouge segmentation indicates that sim-
ply segmenting AS/ES by its textual similarity (as
what is intrinsic to humans) is not the same way for
models. Furthermore, using entropy calculated by
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Figure 3: results of different hyperparameter settings for AS-ES learning. The BLUE metric values (blue line)
correspond to the right Y-axis (secondary axis). γ is set to 1.0 in Figure 3b, while β is set to 1.0 in Figure 3c.

Segment BLEU Accuracy
baseline 34.65 19.23

inter 30.62 (↓11.63%) 20.60 (↑7.12%)
ent 30.87 (↓10.90%) 20.60 (↑7.12%)
ent* 30.88 (↓10.88%) 18.96 (↓1.40%)
bleu 29.97 (↓13.50%) 17.72 (↓7.85%)

rouge 27.46 (↓20.75%) 16.21 (↓15.70%)
loss 30.34 (↓12.43%) 20.19 (↑4.99%)

Table 3: Results of DSM for MWP using different seg-
mentation method. Baseline refers to direct approach.
The best scores are in bold.

pre-trained but not fine-tuned models introduces no
further improvement, which makes sense since pre-
trained models have less grasp about which part is
extractive/abstractive.

5.2 Effect of Hyperparameters
Most segmentation methods introduce a hyperpa-
rameter β as in Equation 1 and 2, and PET summa-
rization introduces a hyperparameter of γ which
evaluates the amount of incorporated normality.
Here we evaluate how these hyperparameters affect
different training strategies for different tasks.

Effect of Ratio β As shown in Figure 3a and
Figure 3b, entropy segmentation for both USM and
DSM for different tasks has a β threshold (around
1) where the model achieves the best balance be-
tween ES and AS.

Effect of Ratio γ As shown in Figure 3c, γ at
1.0 reaches the lowest point on the curve, which
might be a tipping point where the inclusion of
normal findings is enough to dilute the model’s fo-
cus on anomalies without providing the additional
contextual benefits seen at higher γ values. Overall
speaking, the model performance is less affected by
γ compared to segmentation and training strategy.

5.3 Why AS-ES Learning Works?

We here further explore the underlying mechanism
of AS-ES learning to see why it works from a dif-
ferent perspective other than just performance and
intuition. As shown in Figure 4c, the best train-
ing loss boundary of ESM is generally lower than
ASM, which aligns with our hypothesis that extrac-
tion comes more easily while logical reasoning is
not quite so. Figure 4d shows the best training loss
boundary for the direct approach, USM, ASM and
ESM respectively. As expected, the lowest loss
boundary for the direct approach is significantly
larger than AS-ES learning, which partly explains
why AS-ES learning works. The divergence of
MWP and PET to segmentation strategy could also
be explained from this perspective. As shown in
Figure 4a and 4b, interleaving segmentation gen-
erally reaches a lower boundary than entropy seg-
mentation for MWP therefore resulting in a better
performance using interleaving segmentation, and
vice versa for PET. The overall discovery suggests
that AS-ES learning works by achieving a gener-
ally lower loss boundary compared to the direct
approach.

6 Conclusion

In this paper, we introduce a data-efficient CoT dis-
tillation strategy for small models. By segmenting
CoT data into extractive part and abstractive part
respectively, we improve the model performance
through an iterative generation approach without
incorporating additional data. The generalization
of AS-ES learning to different model sizes and
tasks shows its effectiveness. We further explore
whether two models are necessary for this interac-
tive generation approach, and answer the derivative
question that the limitation of small models in CoT
learning stems from the training paradigm instead

8
10693



(a) AS-ES learning with entropy segmentation for MWP (b) AS-ES learning with entropy segmentation for PET

(c) ASM/ESM with different segmentation for MWP (d) USM/ASM/ESM with entropy segmentation for MWP

Figure 4: Smoothed training curve for AS-ES Learning. In Figure 4a and Figure 4b, grey, pink and yellow denote
direct approach, interleaving segmentation and entropy segmentation respectively. Figure 4c and Figure 4d show
the curve of the best training loss among time. All curves for ASM are displayed in red with ESM in bleu in Figure
4c. In Figure 4d, curves for ASM, ESM, USM are displayed in green, blue and pink, respectively.

of its inherent capacity, providing insights into the
underlying mechanism of CoT.

Limitations

In this paper, we mainly experiment and discuss
the use of AS-ES Learning based on the direct
training approach. Although experiments show
that the use of one single model is better than two
separate models, this may not be the case when
there is a solution for DSM to be simultaneously
trained. Furthermore, although we come up with
a general range of the hyperparameter settings for
AS-ES learning, the specific optimal settings of
AS-ES Learning on different datasets may vary and
therefore require a need for specific exploration.

Ethical Considerations

In this work, we introduce a new Chinese PET
report-impression dataset. The data collection
protocol is approved by an ethics review board.
All experimental datasets involved have been de-
identified by dataset providers and used for re-
search only.
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A Details of Implementation

Our model utilizes the Pytorch-based (Paszke et al.,
2019) Huggingface Transformers (Wolf et al.,
2020) packages. All experiments are conducted
with the same batch size of 64. The learning rate
is set to 5e-4 for MWP and 1e-3 for PET using
early stopping. Both MWP and PET datasets are
split into train, validation, test sets with a ratio of
80%, 10%, and 10% respectively. The results re-
ported are the average of three separate runs. Most
experiments were conducted on NVIDIA A100-
80GB-PCIe GPUs or A100-SXM4-80GB GPUs,
some were conducted on Tesla V100S-PCIE-32GB
GPUs. Code and dataset are available at https:
//github.com/rootnx/AS-ES-learning/.

B Human Evaluation of AS-ES Dataset

AS-ES learning initially gains inspirations from
multi-hop QA. Following the idea of separating
retrieval and reasoning, ES is considered to be
extractive and AS is considered to be deductive.
However, do the automatic AS-ES segmentation
methods share the same taste as human? To an-
swer this question, we randomly sample 100 dif-
ferent question-answer pairs for human evaluation.
We annotate each sub-sentence in the answer with
“AS” or “ES” and compare with the results of
different segmentation strategy. ent shows high
average matching rate compared to human eval-
uation (76.90%), while inter does not (51.90%).
Although this may contradict with the improve-
ment in small (77M) USM(inter) and base(250M)
DSM(inter)/USM(inter), we further find that CoT
with high matching rate (>75%) under inter seg-
mentation makes up about half of the dataset (49%).
These questions tend to have simpler and more
structured solution. This indicates that for mod-
els with smaller scales, inter improves their per-
formance on these relatively “simple” problems,

leading to its performance gain; while for large
models, these “simple” problems can be already
solved using direct seq2seq training, thus remain
comparable performance.

C Case Study of Model Outputs

Here we demonstrate a few cases to give a gen-
eral impression about how the outputs of AS-ES
learning differs from the direct approach.

We find that the direct approach tends to miss
steps or add additional but erroneous step. In some
complicated question, the direct approach could
lose its logic during the process. All these issues
could be alleviated in AS-ES learning.

Furthermore, the AS-ES learning does not nec-
essarily use the same solution as the ground truth
answer, which aligns with our findings in Section
4.3.1, suggesting the more diverse solution gen-
erated by AS-ES learning, rather than simply re-
membering and copying solution following a fixed
pattern.
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Question Ground Truth Answer Direct AS-ES Learning
Marcus is having a
water balloon party.
He has 100 balloons.
Each balloon holds 3
ounces of water. He
can buy 50 ounces
of water for $2.5 a
bottle. If he walks
into the store with
2 $10 bills, how
much change will he
have after he buys all
the water he needs?
Let’s think step by
step

Marcus needs 100 bal-
loons x 3 ounces of wa-
ter = 300 ounces of wa-
ter. He can get 50 ounces
of water for $2.5 a bot-
tle, so he needs to buy
300 / 50 = 6 bottles of wa-
ter. Each bottle of water
costs $2.5, so he needs to
spend 6 x $2.5 = $15 for
water. Marcus has $10 x
2 = $20 to spend. He will
have $20 - $15 = $5 in
change. The answer is 5.

Marcus has 100 balloons,
each holding 3 ounces of
water. So, he needs 100
x 3 = 300 ounces of wa-
ter. He can buy 50 ounces
of water for $2.5 a bottle.
So, he needs 300/50 = 6
bottles of water. He has 2
$10 bills, so he has $10 +
$10 = $20. He will have
$20 - $6 = $14 in change.
The answer is 14.

Marcus has 100 balloons,
Each balloon holds 3
ounces of water, So, he
needs 100 x 3 = 300
ounces of water, He can
buy 50 ounces of water
for $2.5 a bottle, So, he
needs 300/50 = 6 bot-
tles of water, Each bottle
costs $2.5, So, he needs
6 x $2.5 = $15 worth of
water, He walks into the
store with 2 $10 bills, So,
he has $10 + $10 = $20,
He will have $20 - $15 =
$5 in change, The answer
is 5.

Ben’s hockey team
is 60% boys and the
rest are girls. Half
the girls are juniors
and the other half are
seniors. If the team
has 50 players, how
many junior girls are
there? Let’s think
step by step

Of the 50 players, the
team is 60% boys, so
there are 50 x 0.6 = 30
boys. This means there
are 50 - 30 = 20 girls. Of
these 20 girls, half are ju-
niors and half are seniors,
so there are 20/2 = 10 ju-
nior girls. The answer is
10.

The team is 60% boys
and 40% girls. There are
50 players, so there are
50 * 0.6 = 30 boys. There
are 50 - 30 = 20 girls.
Half of the girls are ju-
niors, so there are 20 *
0.5 = 10 junior girls. The
other half are seniors, so
there are 20 * 0.5 = 10 se-
niors. There are 10 + 10
= 20 junior girls. The an-
swer is 20.

The team is 60% boys,
so 60% of 50 = 30 boys,
The rest of the team is
girls, so 50 - 30 = 20 girls,
Half the girls are juniors,
so half of 20 = 10 junior
girls, The other half of
the team are seniors, so
the other half of the team
is 20 - 10 = 10 seniors,
The answer is 10.

A portable computer
drive has enough
kilobytes of storage
space to store 2000
photos. Each photo
is 1.5 kilobytes in
size. How many
200-kilobyte videos
can it store if it
already has 400
photos on it? Let’s
think step by step

Since the drive has 2000
photos, it has 2000 * 1.5
= 3000 kilobytes of space.
It has 400 photos, so 400
* 1.5 = 600 kilobytes of
space are already used.
This means that there are
3000 - 600 = 2400 kilo-
bytes of free space. The
videos are 200 kilobytes
each, so 2400 / 200 = 12
videos can be stored. The
answer is 12.

The computer drive has
enough storage space to
store 2000 photos. Each
photo is 1.5 kilobytes
in size. So, 2000 pho-
tos will take 2000 x 1.5
= 3000 kilobytes. The
computer drive already
has 400 photos on it.
So, it can store 3000
- 400 = 2400 kilobytes
more. Each 200-kilobyte
video will take 200/1.5
= 160 kilobytes. So,
the computer drive can
store 2400/160 = 10 200-
kilobyte videos. The an-
swer is 10.

The computer drive has
enough kilobytes of stor-
age space to store 2000
photos, Each photo is
1.5 kilobytes in size, So,
2000 x 1.5 = 3000 kilo-
bytes of storage space
can be stored, The com-
puter drive already has
400 photos on it, So,
3000 - 400 x 1.5 =
3000 - 600 = 2400 kilo-
bytes of storage space
can be stored, Each 200-
kilobyte video is 200 kilo-
bytes in size, So, 2400
/ 200 = 12 200-kilobyte
videos can be stored, The
answer is 12.

Table 4: Case study of model outputs.
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