
Findings of the Association for Computational Linguistics ACL 2024, pages 10728–10739
August 11-16, 2024 ©2024 Association for Computational Linguistics

Batch-ICL: Effective, Efficient, and Order-Agnostic In-Context Learning
Kaiyi Zhang1∗, Ang Lv1∗, Yuhan Chen1,

Hansen Ha2, Tao Xu2, Rui Yan1,3†
1Gaoling School of Artificial Intelligence, Renmin University of China

2Ant Group
3Engineering Research Center of Next-Generation Intelligent Search and Recommendation,

Ministry of Education
{kyzhang02}@gmail.com, {anglv,yuhanchen,ruiyan}@ruc.edu.cn

{hahansen.hhs,tomas.xt}@antgroup.com

Abstract

In this paper, by treating in-context learning
(ICL) as a meta-optimization process, we ex-
plain why LLMs are sensitive to the order of
ICL examples. This understanding leads us to
the development of Batch-ICL, an effective, ef-
ficient, and order-agnostic inference algorithm
for ICL. Differing from the standard N-shot
learning approach, Batch-ICL employs N sep-
arate 1-shot forward computations and aggre-
gates the resulting meta-gradients. These ag-
gregated meta-gradients are then applied to the
forward computation of a zero-shot query to
generate the final prediction. This batch pro-
cessing approach renders the LLM agnostic to
the order of ICL examples. Through extensive
experiments and analysis, we demonstrate that
Batch-ICL consistently outperforms most per-
mutations of ICL examples. In some cases, it
even exceeds the performance of the best order
for standard ICL, all while reducing the com-
putational resources required. Furthermore, we
develop a novel variant of Batch-ICL featur-
ing multiple “epochs” of meta-optimization.
This variant implicitly explores permutations
of ICL examples, further enhancing ICL per-
formance.1

1 Introduction

Brown et al. (2020) demonstrate the capacity of
large language models (LLMs) to perform in-
context learning (ICL) wherein the input context
comprises a handful of illustrative instances of spe-
cific tasks. In this few-shot setting, LLMs are ca-
pable of identifying the task and adapting their
response format and domain accordingly. For in-
stance, when presented with context such as “I love
this movie. Sentiment: positive. \n I hate this
movie. Sentiment: negative. \n This film is interest-
ing. Sentiment:,” the LLM might accurately recog-

∗Equal contribution.
†Corresponding author: Rui Yan (ruiyan@ruc.edu.cn)

1Our code is available at https://github.com/
Cardinalere/Batch-ICL.

nize the sentiment classification task and provide
the appropriate response, which in this case would
be “positive.” Without training or fine-tuning, ICL
sometimes even matches the performance of super-
vised trained models.

Numerous studies (Olsson et al., 2022; Wang
et al., 2023b; Dai et al., 2023; Li et al., 2023;
Akyürek et al., 2023; Von Oswald et al., 2023;
Ren and Liu, 2023; Xie et al., 2022; Lv et al.,
2024) have contributed to understanding the mecha-
nism of ICL. Specifically, some research (Dai et al.,
2023; Ren and Liu, 2023) describes ICL as a meta-
optimization where an LLM is utilized as a meta-
optimizer. Meta-gradients are produced through
forward processing with ICL examples. These
meta-gradients are then applied to the language
model through the attention mechanism, resulting
in an effective ICL model.

We propose that these insights shed light on a
commonly recognized issue: the ICL capacity of
an LLM is highly influenced by the order of exam-
ples. As emphasized by (Lu et al., 2022), changing
the order of ICL examples can lead to significantly
different outcomes. This paper offers a preliminary
explanation for this phenomenon: In an N -shot
ICL process, the meta-gradient is formed based on
N sequentially presented examples. Due to the
causal attention mechanism in LLMs, the meta-
gradient shaped by any given example is indirectly
affected by the ones that came before it. Conse-
quently, the order of these examples plays a critical
role in shaping the final ICL model. This process
is similar to training a neural network with N sam-
ples where the batch size is one. In such cases,
the gradients generated by each sample are influ-
enced not only by the sample itself but also by the
parameter updated by preceding samples. The sam-
ple order leads to variations in parameters and the
overall performance.

Given that gradients from each sample repre-
sents a local optimum and is susceptible to causing

10728

https://github.com/Cardinalere/Batch-ICL
https://github.com/Cardinalere/Batch-ICL

suboptimal results, we suggest there is much po-
tential for improving standard ICL. In this paper,
we introduce Batch-ICL, an effective, efficient and
order-agnostic inference algorithm for in-context
learning. Our method diverges from the standard
ICL, which typically employs a single N -shot pro-
cess for an N -shot ICL task. Instead, we im-
plement N separate 1-shot forward computations.
This is then followed by the aggregation of N corre-
sponding meta-gradients at a specific layer. These
aggregated meta-gradients are then applied to the
LLM in the same layer during the forward compu-
tation of a zero-shot query, ultimately generating
the final predictions. This is equivalent to increase
the meta-batch size in ICL from 1 to N , thereby
reducing the randomness of meta-optimization and
obtaining a better ICL model. Batch-ICL yields
three key advantages:

(1) Batch-ICL alleviates concerns related to the
order of examples in ICL. Across a variety of tasks,
Batch-ICL consistently exhibits improved accuracy
compared to the average accuracy achieved through
all permutations of ICL examples. It sometimes
outperforms the best order. Meanwhile, Batch-ICL
reduces the computational resources needed for
executing an ICL sequence.

(2) Additionally, we have discovered that al-
though the standard ICL exhibits instability when
presented with different ordered sequences, there
are advantages to be gained from the interaction
among sequential examples. We expand Batch-ICL
into a “multi-epoch” variant, which implicitly enu-
merates the order permutations in a much more
efficient manner, leading to further enhancements.

(3) In Batch-ICL, there is no limit to the num-
ber of demonstration examples provided that the
length of each example does not surpass the pre-
trained context length. This effectively overcomes
a significant constraint encountered in standard N -
shot ICL.

2 Understanding In-Context Learning
from a Meta-Optimization Perspective

Many works (Aizerman et al., 1964; Irie et al.,
2022; Dai et al., 2023; Ren and Liu, 2023) have
demonstrated the similarity between the linear at-
tention and the linear layers optimized by gradient
descent. In this section, we briefly review this sim-
ilarity and then introduce the in-context learning
from a meta-optimization perspective.

2.1 Dual Form between Linear Attention and
Gradient Descent in Linear Layers

Consider a linear layer defined as:

f(x) = W 0x,

where W 0 ∈ Rdout×din represents the initial
weight matrix. Given a sequence of input vectors
xi ∈ Rdin , i ∈ [1, N], and their corresponding la-
bels yi ∈ Rdout , the error signal ei is produced
by backpropagation, where ei = −η ∂L

∂yi
, with η as

the learning rate and L as the loss function. The
weight matrix updates as follows:

W ′ = W 0 +∆W = W 0 +

N∑

i

ei ⊗ xi. (1)

Recap that a linear attention is formulated as:

LA(V ,K, q) = V ⊤Kq =
∑

i

vi(k
⊤
i q). (2)

When focusing on the current input xN , we can
derive the dual form between the linear layer opti-
mized by gradient descent and the linear attention:

f(xN) = (W 0 +∆W)xN

= W 0xN +
N−1∑

i

(ei ⊗ xi)xN

= W 0xN +

N−1∑

i

ei(x
⊤
i xN)

= W 0xN + LA(E,X1:N−1,xN).

(3)

3 Method

3.1 ICL is an Meta-Optimization
In an N -shot ICL setting, a Transformer (Vaswani
et al., 2017)-based LLM consists of K layers. The
LLM processes an input sequence in the form
of I1, l1, I2, l2, . . . , IN , lN , Iq, where Ii and li to-
gether represent a demonstration example, with
Ii being the input and li as the corresponding la-
bel. Here, Iq denotes the genuine query, and the
LLM’s task is to predict its label. We represent
the embedding of the input sequence at k-layer as
Xk = [xk

1,x
k
2, . . . ,x

k
q] with a special focus on

xk
q , which represents the last query token’s repre-

sentation. Without ambiguity, we will omit layer
superscripts. The output of an attention head can
be expressed as follows:

f(xq) = W V X Softmax
(
(WKX)TWQxq√

dout

)
,

(4)

10729

…

LM
head

𝐾 layers

𝑙𝑞

𝐼1 𝑙1 𝐼2 𝑙2 𝐼𝑁 𝑙𝑁 𝐼𝑞

1st-shot
N-shot

…

(a) Standard ICL

……

…

(c) Multi-Epoch

(b) Batch-ICL

…

Aggregate
Replace

𝐼2 𝑙2 𝐼𝑞 𝐼1 𝑙1 𝐼𝑞 𝐼𝑁 𝑙𝑁 𝐼𝑞

k-th layer

1-st epoch

… …

𝐼2 𝑙2 𝐼𝑞

…

𝐼1 𝑙1 𝐼𝑞

…

𝐼𝑁 𝑙𝑁 𝐼𝑞

……

LM
head

𝑙𝑞

𝐼𝑞

…
…

k-th layer

k-th layer

…

(k+1)-th layer

2-nd epoch

Figure 1: (a) Standard in-context learning. (b) Batch-ICL aggregates the meta-gradients generated during individual
1-shot learning forward computations and applies them to a zero-shot forward process. (c) Multi-epoch Batch-ICL
further enhances ICL performance, shown here with a 2-epoch overview.

where WQ, WK , and W V are projection matrices
belonging to Rdout×din . These matrices are utilized
to compute the attention queries, keys, and values,
respectively. To simplify the notation below, we
denote WQxq as q and partition X into [X ′,xq].

Dai et al. (2023) describe ICL as a meta-
optimization process, inspired by the previously
mentioned “dual form.” In their framework, the
LLM acts as the meta-optimizer, with the meta-
gradient according to demonstrations generated
during the forward computation and applied to the
model through the attention mechanism:

f(xq) ≈ W V [X
′;xq](WK [X ′;xq])

⊤q

= W V xq(WKxq)
⊤

︸ ︷︷ ︸
Denoted as W 0

q +

LA(W V X
′,WKX ′, q)︸ ︷︷ ︸

N demonstrations’ effect, denoted as ∆WNq

= (W 0 +∆WN) q.

(5)

In the equation above, the standard attention
is approximated to a relaxed linear attention.
W V xq(WKxq)

⊤ is denoted as W 0 because
W 0q is the attention output in the 0-shot setting.
According to Eq. 3, the outputs from linear atten-
tion can be interpreted as the effect of N demon-
strations. Consequently, this term is denoted as
∆WNq.

In this section, we start by proposing an expla-
nation (§3.2) about the sensitivity of LLMs to the

order of ICL demonstration examples, which is
built upon our comprehension of ICL as a meta-
optimization process. Following this, in §3.3, we
introduce our proposed solution, named “Batch-
ICL,” in which the LLM performs an N -shot ICL
by processing ICL examples in a “batch.” In §3.4,
we elaborate on the extension of Batch-ICL to in-
corporate multiple “epochs,” thus fully harnessing
its potential.

3.2 The Order of ICL Examples Affects
Model Outputs

From this meta-optimization perspective, we pro-
vide an explanation for the well-known issue of
LLMs’ sensitivity to the order of ICL examples (Lu
et al., 2022).

Considering the term ∆WN in Eq. 5, the causal
attention in LLMs permits only later tokens to at-
tend to earlier ones. This implies that altering the
order of demonstration examples will correspond-
ingly change the content of X ′, thereby affecting
the meta-gradients ∆WN and ultimately the result-
ing different obtained ICL model and its outputs.
We would like to compare this meta-optimization
process to optimizing a neural network: for N train-
ing samples with a batch size of one, it requires
N back-propagation steps. During each step, the
gradients are computed and iteratively update the
model. The gradients for each training sample de-
pend not only on the sample itself but also on the

10730

parameters updated by preceding samples. There-
fore, the order of training examples influences the
final model parameters and, consequently, its over-
all performance.

Despite the significant impact of the orders on
performance, this explanation also applies to the ob-
servation by Lu et al. (2022) that an increase in the
number of examples is correlated with greater vari-
ance in performance. This occurs because a larger
set of examples raises the upper limit of potential
performance. However, due to the meta-gradients
being computed sequentially from individual sam-
ples, the optimization process is directed towards
diverging outcomes, most of which are suboptimal.

3.3 ICL Examples Batching and
Meta-Gradients Aggregation

Inspired by the analogy above, we develop an ICL
inference algorithm named “Batch-ICL” which em-
powers LLMs to handle each ICL example and
produce the corresponding meta-gradients individ-
ually, mirroring the way they are arranged in a train-
ing batch. By aggregating these meta-gradients and
then applying them to a zero-shot forward process,
we have observed that LLMs exhibit superior per-
formance compared to standard ICL.

We adhere to the terminology used in Section 2.
Considering a set of N demonstration examples,
we opt for the LLM to undertake N individual 1-
shot ICL learning processes, diverging from the
standard single N -shot learning. Each sample re-
ceived by LLMs is formatted as “Ii, li, Iq”, and i
spans the entire set N . At a selected layer k, we
collect fi(xq) at the last position, i.e., the result of
Eq. 5. Since X

′
in Eq. 5 now represents the repre-

sentation of “Ii, li”, as opposed to the entire set of
ICL examples, we accordingly adjust the formula
to: fi(xq) = (W 0,i +∆W 1,i)q.

When aggregating these hidden states
[fi(xq)]

N
i=1 using the arithmetic mean, we

actually aggregate meta-gradients for each 1-shot
learning:

f̄(xq) =
1

N

N∑

i=1

fi(xq)

=
1

N

N∑

i=1

(W 0,i +∆W 1,i)q

≈ (W 0 +
1

N

N∑

i=1

∆W 1,i) q.

(6)

The approximation here is due to the minor varia-
tions between W 0,i and the actual zero-shot weight
W 0, influenced by xq being affected by the pre-
ceding 1-shot example.

Next, we substitute the zero-shot outputs W 0q
at the same layer k with the aggregated f̄(xq), to
obtain the final prediction.

To determine the value for parameter k, taking
into account the variability introduced by model
size, parameters, and tasks, we employ a general
approach: For any given task and LLM, we evalu-
ate k across the range of maximum layers. We then
choose the k that yields the best performance on
the validation set. The selected k remains constant
during the testing phase for this LLM and task.

We name this inference algorithm as “Batch-ICL”
because it is akin to computing gradients during
the optimization of a neural network using a batch
of inputs.

3.4 Expanding to Multiple “Epochs”
We notice that the meta-optimization perspective
can be extended to encompass “multiple epochs,”
which in turn further enhances Batch-ICL. To clar-
ify this concept, let’s start by distinguishing the
layers with superscripts k in Eq. 5:

fk+1(xq
k+1) = fk+1(fk(xq

k)). (7)

Here, we simplify the feed-forward layer by treat-
ing it as a linear transformation, considering it as
a unit matrix for clarity purposes. When we sub-
stitute the aggregated f̄k(xq

k) for its individual
components fk

i (xq
k), which are the separate out-

puts of each 1-shot ICL at layer k, and then derive
the attention outputs from each k + 1 layer for fur-
ther aggregation, we actually engage in a form of
meta-optimization during an additional epoch. For-
mally, the outputs of each 1-shot ICL at layer k+1
now turns to:

fk+1
i (f̄k(xq

k))

= (W k+1
0 +∆W k+1

i)(W k
0 +

1

N

N∑

j=1

∆W k
j)q

= (W k+1
0 +∆W k+1

i)
1

N

N∑

j=1

(W k
0 +∆W k

j)q

=
1

N

N∑

j=1

(W k+1
0 +∆W k+1

i)(W k
0 +∆W k

j)q.

(8)
Notice the expression (W k+1

0 +∆W k+1
i)(W k

0 +
∆W k

j)q, which can be understood as conducting

10731

meta-optimization for example j in the first k lay-
ers, followed by a similar meta-optimization for
example i at layer k + 1. We term this procedure
an extra “epoch” within the Batch-ICL, and it can
readily be extended to multi-epoch. Figure 1(c)
illustrates the 2-epoch expansion of Batch-ICL.

Essentially, the multi-epoch Batch-ICL implic-
itly enumerates all permutations of ICL examples,
yet it achieves this more efficiently. To understand
this, we formulate fk+1

i (xq
k+1) as:

fk+1
i (xq

k+1) =
1

N

N∑

j=1

(W k+1
0 +∆W k

ji)q

= (W k+1
0 +

1

N

N∑

j=1

∆W k
ji)q,

(9)

where ∆W k
ji denotes the meta-gradient produced

through optimizing example j in the first k layers,
followed by optimization of example i in the k + 1
layer. By aggregating fk+1

i (xq
k+1) across i =

1 · · ·N , we derive:

f̄k+1
i (xk+1

q) =
1

N

N∑

i=1

fk+1
i (xk+1

q)

= (W k+1
0 +

1

N2

N∑

i=1

N∑

j=1

∆W k
ji)q,

(10)

In this two-epoch setting, it’s evident that N2

orders of 2-shot examples are contemplated in the
summation of meta-gradients. This implicit per-
mutation not only maintains but also, to some ex-
tent, amplifies the interaction between examples,
thereby enhancing the approach, all the while ef-
fectively preserving order-agnostic properties.

3.5 Discussion on the Efficiency
We focus on the computational overhead related
to the attention mechanism in Transformer mod-
els. This part is a critical efficiency bottleneck for
Transformers, showcasing a time complexity of
O(n2) when processing texts of length n.

Consider inputs (I1, l1, I2, l2, . . . , IN , lN , Iq),
and suppose the average length of both an input and
a label is T . In a standard N -shot ICL task, the to-
tal length of N examples combined with the query
is (2N + 1)T , resulting in an approximate time
cost of O((2N + 1)2T 2). In contrast, Batch-ICL
deconstructs the N -shot scenario into N separate
1-shot instances, which are subsequently integrated
with a 0-shot learning. Specifically, we process

(Ii, li, Iq), each with a length of 3T , N times, and
(Iq) with a length of T once, culminating in a total
time cost of approximately 10T 2.

When N > 2, it is obvious that Batch-ICL out-
performs the standard ICL in terms of efficiency.
It’s important to note that, in practical applications,
we execute the N 1-shot learning tasks simulta-
neously in a batch, which effectively reduces the
actual latency. Furthermore, in many situations,
particularly in classification tasks, the length of the
label is considerably shorter than that of the input.
Therefore, the benefits of our approach are even
more pronounced.

To analyze practical resource utilization, we
tested the AGnews dataset utilizing N=4 on an
A100-80G. Batch-ICL completes the inference of
the entire dataset in 512.84 seconds, while the stan-
dard ICL method requires 697.09 seconds. Con-
sidering space efficiency, Batch-ICL provides N
times greater space efficiency than standard ICL
under ideal conditions. In practice, executing the
standard 4-shot AGnews task on Llama 2-13B con-
sumes 32.1 GB of memory, while our method re-
quires only 29.7 GB, wherein model parameters
occupy 26 GB.

4 Comparison between Batch-ICL and
standard N -shot ICL

4.1 Experimental Setup

We conduct this preliminary study to assess Batch-
ICL in comparison to the standard N -shot ICL. We
choose widely-used open-source LLMs, Llama-2-
7B and -13B (Touvron et al., 2023).

We evaluate Batch-ICL on classification tasks,
containing one sentiment detection dataset SST-2
(Socher et al., 2013), two natural language infer-
ence datasets RTE (Dagan et al., 2006; Wang et al.,
2019) and QNLI (Wang et al., 2018), a topic clas-
sification dataset AGNews (Zhang et al., 2015) and
one paraphrase dataset MRPC (Dolan and Brock-
ett, 2005). Moreover, we also utilize Batch-ICL for
free-format generation tasks, such as machine trans-
lation. We choose the WMT2014 En-Fr (Bojar
et al., 2014) benchmark.

Additionally, we compare Batch-ICL with Par-
allel Context Windows (PCW, Ratner et al., 2023)
that also enhances the inference of ICL. In terms
of parallel processed examples, PCW is the most
related work to our study. PCW resets the position
embedding for each example, implicitly handling
these examples in parallel. However, it does not

10732

Task
7B 13B

N -shot Batch-ICL Best PCW F-Ordered N -shot Batch-ICL Best PCW F-Ordered

SST-2 54.9 [6.4] 58.7 [9.2] 58.8 [9.4] 54.2 [6.9] 56.4 [11.8] 63.8 [15.1] 69.7 [11.4] 70.2 [11.5] 51.9 [3.7] 67.7 [10.9]

RTE 53.0 [6.8] 65.2 [1.9] 67.6 [0.5] 56.6 [5.2] 53.9 [5.1] 78.1 [4.2] 79.2 [3.5] 80.9 [2.8] 56.5 [7.3] 80.5 [1.3]

QNLI 50.7 [1.8] 52.4 [1.3] 55.2 [0.7] 50.1 [0.6] 51.3 [0.8] 51.1 [2.5] 56.7 [0.9] 56.9 [1.2] 51.2 [1.1] 56.2 [3.9]

AGNews 28.7 [3.8] 29.3 [3.1] 29.4 [3.0] 25.8 [2.0] 30.2 [4.9] 30.5 [6.3] 31.4 [3.9] 31.6 [3.8] 25.5 [0.8] 32.1 [6.5]

MRPC 40.5 [10.5] 66.9 [0.5] 68.0 [0.2] 56.8 [14.3] 38.6 [7.6] 52.4 [14.8] 56.5 [0.6] 67.9 [1.7] 63.8 [8.0] 63.3 [6.5]

Table 1: Experimental results of classification tasks. We report the average score and standard deviation [σ] across
10 runs. The “Best” column reports the upper limit of Batch-ICL in which we search for the optimal k for each test
sample. We also compare Batch-ICL with PCW (Ratner et al., 2023) and Fantastically Ordered (Lu et al., 2022).
Batch-ICL not only enhances LLMs’ ICL performance in diverse tasks but also decreases performance variability
across different demonstration examples, often approaching its maximum potential. All bold results passed the t-test
with a p-value < 0.05.

N -shot Batch-ICL

7B 66.38 65.91
13B 67.88 67.63

Table 2: BLEU scores for WMT2014 En-Fr.

improve efficiency and introduces gaps in inference
behavior, potentially compromising performance.
We also compare Batch-ICL with Fantastically Or-
dered (F-Ordered, Lu et al., 2022), a prior study
on selecting the optimal order for ICL. F-Ordered
necessitates the enumeration of all permutations to
identify an optimal prompt sequence.

For classification tasks, we evaluate the accuracy
on the test set when labels are accessible, and we
sample 300 data from the validation set to derive
the optimal value of k. In cases where test labels
are not provided, we evaluate performance on the
validation set and choose 300 data from the training
set for obtaining k. For the machine translation
task, we determine the optimal value of k using the
validation set and report the BLEU score (Papineni
et al., 2002).

In this section, we fix the value of N as 4. Un-
less specifically stated otherwise, we present the
average score obtained from 10 runs, each with dif-
ferent sampled demonstration examples. This en-
sures reliable conclusions, as different ICL demon-
strations lead to varying performance (Zhao et al.,
2021; Perez et al., 2021).

4.2 Experimental Results

We present the experimental results on classifica-
tion tasks in Table 1. Overall, Batch-ICL demon-
strates a substantial improvement over both the
standard N -shot ICL and PCW in various tasks

and across different model sizes. Across four out
of the five datasets analyzed, Batch-ICL surpasses
the performance of F-Ordered, with marginal dif-
ferences observed on the AGnews dataset.

To determine Batch-ICL’s maximum potential,
we identified the optimal k for each test sample
and have included these findings in the “Best” col-
umn. These results show that the performance dis-
crepancy between our chosen k and the theoretical
upper limit of performance is negligible. Further-
more, because Batch-ICL employs a larger batch
size during meta-optimization, which diminishes
noise and randomness in the meta-gradients, we
observe Batch-ICL exhibits markedly more stable
performance than standard ICL across different
demonstrations, as evidenced by the significantly
reduced variation2 in repeated experiments. These
results serve as initial validation for the effective-
ness of Batch-ICL, and also support our explana-
tion in Section 3.2.

Table 2 illustrates the performance comparison
for the machine translation task. Batch-ICL outper-
forms the standard ICL in efficiency. It achieves
this while preserving the BLEU score, experienc-
ing only a minimal decrease of 0.7% for the 7B
model and 0.3% for the 13B model, respectively.

To showcase the robustness and versatility of
Batch-ICL, we have implemented it across different
LLMs, including OPT-6.7B (Zhang et al., 2022)
and Falcon-7B (Almazrouei et al., 2023), using
SST-2 as a benchmark task. Table 3 illustrates the
effectiveness of Batch-ICL across various models,
demonstrating its universality.

2An exception occurs with Llama-2-7B in the SST-2 task,
where Batch-ICL increases variance. This happens because, in
this binary classification task, the “N -shot” is close to stable
random guessing.

10733

N -shot Batch-ICL

OPT-6.7B 38.4 42.5
Falcon-7B 51.2 52.0

Table 3: Experimental results of SST-2 on a broader
array of LLMs.

2 3 4 5 6
N

40

45

50

55

60

65

70

75

80

A
cc

ur
ac

y

7B-N-shot
13B-N-shot

7B-Batch-ICL
13B-Batch-ICL

7B-Best
13B-Best

(a) SST-2

2 3 4 5 6
N

40

50

60

70

80

90

A
cc

ur
ac

y

7B-N-shot
13B-N-shot

7B-Batch-ICL
13B-Batch-ICL

7B-Best
13B-Best

(b) RTE

Figure 2: Performance dynamics across various N on
SST-2 and RTE.

5 Method Analysis

We delve into various aspects of Batch-ICL, includ-
ing the impact of shot number (N), aggregation
layer index (k), the impact of the order of ICL
examples, and the optimization “epochs.” This ex-
ploration aims to provide a deeper insight into both
the efficacy of Batch-ICL and the ICL itself.

5.1 The Effect of N
Different tasks typically demand varying values
of N . The effectiveness of Batch-ICL across dif-
ferent N represents its robustness in various prac-
tical applications. As illustrated in Figure 2, our
Batch-ICL consistently surpasses the standard N -
shot accuracy for different values of N . Also, the
gap between the performance of Batch-ICL and
its upper limit referred to as “Best” is minor and
diminishes as the value of N increases.

Due to the parallel processing of ICL examples,

N = 4 N = 10 N = 20 N = 70

7B 29.3 36.24 39.43 33.3
13B 31.4 32.67 33.70 39.1

Table 4: Results from Batch-ICL on the AGNews task
with varying values of N . Even when N = 70, demon-
stration examples surpass the model’s maximum context
length, yet it still achieves additional improvements.

0 5 10 15 20 25 30 35 40
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
cc

ur
ac

y

N=2
N=3
N=4
N=5
N=6

Figure 3: Performance dynamics across various aggre-
gation layer k.

as long as each individual example doesn’t exceed
the maximum context length, there’s no limit to
the number of examples Batch-ICL can handle. In
Table 4, for the AGNews task, as N increases from
4 to 70, we found the performance first hits a peak
and then drops on Llama-2-7B; By contrast, Batch-
ICL keeps bringing benefits with a larger N on
Llama-2-13B. We assume the drop in performance
at N = 70 on Llama-2-7B may stem from the
fact that 7B model has already exploited its ability,
while 13B is stronger at learning from more shots.
Notably, even when we include N = 70 examples,
averaging a total of 5,447 tokens, which signifi-
cantly exceeds Llama-2’s context limit of 4,096,
Batch-ICL continues to demonstrate additional en-
hancements.

These analyses demonstrate that Batch-ICL is ro-
bust to N and can more thoroughly exploits LLMs’
in-context learning capacity.

5.2 The Effect of k

We examined the effects of k by varying its value
across the full range of layers, monitoring the per-
formance dynamics as aggregated meta-gradients
are implemented at various levels. For each value
of k, we carried out experiments using the Llama-
2-13B model on the SST-2 dataset (Socher et al.,
2013), with N values ranging from 2 to 6.

Figure 3 demonstrates that with a small k, Batch-
ICL does not work. It suggests that the initial, or
shallow, layers of LLMs play a crucial role in es-
tablishing semantic foundations for the subsequent,

10734

2 3 4 5
N

40

50

60

70

80

90
A

cc
ur

ac
y

7B-Worst-Order
7B-Average-Order
7B-Batch-ICL
7B-Best-Order

13B-Worst-Order
13B-Average-Order
13B-Batch-ICL
13B-Best-Order

Figure 4: Comparing Batch-ICL and standard ICL with
various example orders, including the “Best”, “Worst”
and “Average” of all permutations.

Model
N

2 3 4 5

Llama-2-7B 60.0 90.0 65.4 63.7
Llama-2-13B 80.0 88.3 71.3 60.5

Table 5: The percentage of permutations that Batch-ICL
outperforms.

deeper layers. This observation aligns with previ-
ous studies (Wang et al., 2023b; Todd et al., 2023;
Hendel et al., 2023).

As the forward computation goes on, we observe
an abrupt increase in performance. This improve-
ment plateaus rapidly and does not diminish there-
after. This pattern differs from the findings reported
in (Hendel et al., 2023; Todd et al., 2023), where
researchers found that a deeper representation of an
ICL task diminishes the task-related information it
contains. Specifically, when the representation is
extracted and used in a zero-shot forward computa-
tion, the accuracy tends to converge to zero as the
layer depth increases. The discrepancy between
ours and theirs findings might be due to subtle dif-
ferences in input configuration. In our approach,
each 1-shot forward computation uses a true query.
In contrast, previous studies used a pseudo query,
which can lead to significant deviations in deeper
layers because most information gathers at the last
position (Wang et al., 2023b).

5.3 The Effect of ICL Example Order
We meticulously examine all N ! possible permuta-
tions of ICL examples in a N -shot SST-2 (Socher
et al., 2013) task. Due to the prohibitively high
cost associated with enumerating the permutations,
we restrict the value of N within the range of 2 to
5. In Figure 4, the “Average” result is the average
accuracy of all permutations. “Best Order” denotes

the highest accuracy, contrasting with the “Worst
Order” which represents the lowest.

It is clear that, regardless of the model’s size,
the performance under the worst order is close to a
random guess. In stark contrast, the best order sig-
nificantly surpasses the average performance. This
emphasizes the critical role of sequence organiza-
tion in in-context learning (Lu et al., 2022).

In situations where only a few examples are
available (e.g., N=2 or 3), Batch-ICL not only ex-
ceeds the average performance but also surpasses
the best order. This underscores the strength of
our proposed method in data-limited scenarios. As
the number of examples increases, the number of
permutations rises, enhancing the likelihood of
achieving high accuracy; consequently, the best-
order performance improves markedly. Neverthe-
less, Batch-ICL consistently demonstrates superior
performance compared to the average.

Additionally, we performed a statistical analysis
on the percentage of permutations that Batch-ICL
outperforms. In Table 5, it is obvious that Batch-
ICL exceeds the majority of permutations for every
N . This is particularly noticeable for a smaller N
and a larger model. Overall, this study confirms
our motivation, demonstrating that Batch-ICL ef-
fectively alleviates concerns related to ICL example
orders, leading to a satisfactory solution.

5.4 The Effect of Epochs

In Table 6, we present the results of adding more
epochs to Batch-ICL on SST-2 (Socher et al.,
2013) and RTE (Dagan et al., 2006; Wang et al.,
2019). This table illustrates the model’s perfor-
mance across various numbers of N and a range of
epochs. Our findings indicate that, across the major-
ity of N and model sizes, there is an improvement
in the model’s performance over several epochs.
Specifically, in the RTE task, we observe a perfor-
mance plateau typically achieved within 2 epochs.
Conversely, in the SST-2 task, we extend our in-
vestigation across more epochs, typically reaching
a plateau after approximately 10 to 20 epochs, as
illustrated in Table 7.

Overall, we observed a more pronounced ef-
fect in the 7B model compared to the 13B model.
The 7B model consistently shows enhanced per-
formance with an increasing number of epochs,
peaking at 4 epochs. On the other hand, the 13B
model reaches the plateau earlier. This could be
due to the larger capacity of the 13B model, which

10735

N
7B 13B

Epoch 1 2 3 4 Epoch 1 2 3 4

2
SST-2 57.97 58.78 58.91 59.48 SST-2 70.09 70.30 69.79 69.83
RTE 67.7 67.8 67.7 67.9 RTE 79.7 80.0 79.5 79.7

3
SST-2 60.49 64.27 65.11 67.77 SST-2 71.58 71.35 71.39 71.40
RTE 68.2 68.3 68.3 68.3 RTE 79.9 80.1 80.0 80.0

4
SST-2 58.84 60.52 60.60 62.10 SST-2 70.19 69.90 69.93 69.83
RTE 67.6 67.9 67.8 67.7 RTE 80.9 80.9 81.1 81.3

5
SST-2 57.80 59.96 60.32 61.39 SST-2 71.80 71.82 71.37 71.26
RTE 68.2 68.3 68.4 68.1 RTE 81.4 81.6 81.4 81.4

6
SST-2 61.49 63.08 63.32 64.57 SST-2 76.52 76.55 76.26 75.84
RTE 67.6 67.7 67.8 67.9 RTE 81.8 82.0 82.0 82.0

Table 6: Multiple epochs prove to enhance accuracy on SST-2 and RTE, irrespective of model size and shots. Note
that, in this study, we do not determine k based on the validation set but rather employ the optimal value for each
individual sample.

Epoch=4 Epoch=10 Epoch=20
7B 62.10 67.84 67.40

13B 69.83 76.30 72.38

Table 7: Performance of Batch-ICL with more epochs.

enables it to more effectively capture linguistic sub-
tleties and contextual details with fewer implicit
interactions among ICL examples (see Eq.10).

6 Related Works

In addition to PCW we compared in §4, our study
is also related to the findings of Hendel et al. (2023)
and Todd et al. (2023). These works discovered
that in few-shot learning tasks, the representation
in deep layers carries the task information. Hendel
et al. (2023) focused on identifying and aggregat-
ing the outputs of induction heads (Olsson et al.,
2022). They emphasized the content analysis of
aggregated hidden states. In contrast, we focus on a
simpler yet effective method for enhancing the ICL
and do not differentiate specific heads. When com-
pared to Hendel et al. (2023), our method demon-
strates greater efficacy and surpasses the original
few-shot learning performance by using zero-shot
learning, an achievement not realized by Hendel
et al. (2023). Theoretically, our work offers an
explanation for the “training set compression” pro-
posed by Hendel et al. (2023) and elucidates why
averaged attention activation conveys ICL task in-
formation (Todd et al., 2023).

7 Conclusion

From a meta-optimization perspective, we ex-
plain ICL example orders’ impact on performance.
Building on our insights, we introduce Batch-ICL,
an efficient and effective algorithm for ICL in-
ference. Batch-ICL processes ICL examples in
batches, aggregating their meta-gradients. Aggre-
gated meta-gradients are then applied to a zero-shot
forward computation for final predictions. Due to
the batch processing, Batch-ICL is agnostic to the
order of ICL examples, surpassing the average per-
formance of all order permutations across various
tasks, and supports much more examples. We ex-
pand Batch-ICL by developing multi-epoch vari-
ants that implicitly enumerate permutations of ICL
examples, which fosters better interaction between
inputs and further improves our method.

Acknowledgments

This work was supported by the National Natu-
ral Science Foundation of China (NSFC Grant No.
62122089), Beijing Outstanding Young Scientist
Program NO. BJJWZYJH012019100020098, and
Intelligent Social Governance Platform, Major In-
novation & Planning Interdisciplinary Platform for
the "Double-First Class" Initiative, Renmin Univer-
sity of China, the Fundamental Research Funds for
the Central Universities, and the Research Funds
of Renmin University of China. This work was
supported by Ant Group Research Fund. Ang Lv
is supported by the Outstanding Innovative Talents
Cultivation Funded Programs 2023 of Renmin Uni-
versity of China.

10736

Limitations

The theoretical foundation of our work is grounded
in various studies (Aizerman et al., 1964; Irie et al.,
2022; Dai et al., 2023) which takes the attention
in Transformers as a linear attention. Some re-
search (Ren and Liu, 2023) suggests that even with-
out this simplification, the conclusions and insights
of these studies remain valid. Nevertheless, for the
sake of clarity in presentation and ease of compre-
hension, we adhere to the linear simplification. Ad-
ditionally, in the section where we explore multiple
“epochs,” we simplify the feed-forward layer as a
linear transformation. This simplification is widely
adopted in many works on interpretability (Olsson
et al., 2022; Wang et al., 2023a; Yu et al., 2023;
Wang et al., 2023c) due to the considerable chal-
lenges associated with analyzing nonlinear MLP.

The potential risks of our study are similar to
those of other works involving LLMs, as they can
sometimes generate toxic responses.

References
M. A. Aizerman, È. M. Braverman, and L. I. Rozonoèr.

1964. Theoretical foundation of potential functions
method in pattern recognition. In Avtomat. i Tele-
mekh., volume 25, pages 917–936.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas,
Tengyu Ma, and Denny Zhou. 2023. What learn-
ing algorithm is in-context learning? investigations
with linear models. In The Eleventh International
Conference on Learning Representations.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hesslow,
Julien Launay, Quentin Malartic, Daniele Mazzotta,
Badreddine Noune, Baptiste Pannier, and Guilherme
Penedo. 2023. The falcon series of open language
models.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Aleš Tam-
chyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,

Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges. Evaluating
Predictive Uncertainty, Visual Object Classification,
and Recognising Tectual Entailment, pages 177–190,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2023. Why can GPT
learn in-context? language models secretly perform
gradient descent as meta-optimizers. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 4005–4019, Toronto, Canada. Associa-
tion for Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Roee Hendel, Mor Geva, and Amir Globerson. 2023.
In-context learning creates task vectors.

Kazuki Irie, R’obert Csord’as, and Jürgen Schmidhuber.
2022. The dual form of neural networks revisited:
Connecting test time predictions to training patterns
via spotlights of attention. In International Confer-
ence on Machine Learning.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Pa-
pailiopoulos, and Samet Oymak. 2023. Transform-
ers as algorithms: Generalization and stability in
in-context learning. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research,
pages 19565–19594. PMLR.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Ang Lv, Yuhan Chen, Kaiyi Zhang, Yulong Wang,
Lifeng Liu, Ji-Rong Wen, Jian Xie, and Rui Yan.
2024. Interpreting key mechanisms of factual recall
in transformer-based language models.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jack-
son Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. 2022. In-context

10737

http://mi.mathnet.ru/at11677
http://mi.mathnet.ru/at11677
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
http://arxiv.org/abs/2311.16867
http://arxiv.org/abs/2311.16867
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
http://arxiv.org/abs/2310.15916
https://api.semanticscholar.org/CorpusID:246823378
https://api.semanticscholar.org/CorpusID:246823378
https://api.semanticscholar.org/CorpusID:246823378
https://proceedings.mlr.press/v202/li23l.html
https://proceedings.mlr.press/v202/li23l.html
https://proceedings.mlr.press/v202/li23l.html
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
http://arxiv.org/abs/2403.19521
http://arxiv.org/abs/2403.19521

learning and induction heads. Transformer Circuits
Thread. Https://transformer-circuits.pub/2022/in-
context-learning-and-induction-heads/index.html.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. In
Advances in Neural Information Processing Systems.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram,
Inbal Magar, Omri Abend, Ehud Karpas, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2023. Parallel context windows for large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 6383–6402, Toronto,
Canada. Association for Computational Linguistics.

Ruifeng Ren and Yong Liu. 2023. In-context learning
with transformer is really equivalent to a contrastive
learning pattern.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron
Mueller, Byron C. Wallace, and David Bau. 2023.
Function vectors in large language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-
dazzo, Joao Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. 2023.
Transformers learn in-context by gradient descent.
In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 35151–35174.
PMLR.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023a. Inter-
pretability in the wild: a circuit for indirect object
identification in GPT-2 small. In The Eleventh Inter-
national Conference on Learning Representations.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023b. Label
words are anchors: An information flow perspective
for understanding in-context learning. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 9840–9855,
Singapore. Association for Computational Linguis-
tics.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023c. Label
words are anchors: An information flow perspective
for understanding in-context learning. In The 2023
Conference on Empirical Methods in Natural Lan-
guage Processing.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In Interna-
tional Conference on Learning Representations.

Qinan Yu, Jack Merullo, and Ellie Pavlick. 2023. Char-
acterizing mechanisms for factual recall in language
models. In The 2023 Conference on Empirical Meth-
ods in Natural Language Processing.

10738

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://openreview.net/forum?id=ShnM-rRh4T
https://doi.org/10.18653/v1/2023.acl-long.352
https://doi.org/10.18653/v1/2023.acl-long.352
http://arxiv.org/abs/2310.13220
http://arxiv.org/abs/2310.13220
http://arxiv.org/abs/2310.13220
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/2310.15213
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://openreview.net/forum?id=OkQD6RMUK5
https://openreview.net/forum?id=OkQD6RMUK5
https://openreview.net/forum?id=OkQD6RMUK5
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=OUiW2DzpzT
https://openreview.net/forum?id=OUiW2DzpzT
https://openreview.net/forum?id=OUiW2DzpzT

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 12697–12706.
PMLR.

10739

http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html

