
Findings of the Association for Computational Linguistics ACL 2024, pages 1086–1104
August 11-16, 2024 ©2024 Association for Computational Linguistics

PCA-Bench: Evaluating Multimodal Large Language Models in
Perception-Cognition-Action Chain

Liang Chen1, Yichi Zhang1, Shuhuai Ren1, Haozhe Zhao1, Zefan Cai1, Yuchi Wang1,
Peiyi Wang1, Xiangdi Meng1, Tianyu Liu2, Baobao Chang1†

1 National Key Laboratory for Multimedia Information Processing, Peking University
2 Alibaba Group

{leo.liang.chen, yczhang, shuhuai_ren}@stu.pku.edu.cn
tianyu0421@alibaba-inc.com, chbb@pku.edu.cn

� PCA-EVAL PCA-Bench-V1 PCA-Bench-Action-V1

Abstract

We present PCA-Bench, a multimodal decision-
making benchmark for evaluating the inte-
grated capabilities of Multimodal Large Lan-
guage Models (MLLMs). Departing from pre-
vious benchmarks focusing on simplistic tasks
and individual model capability, PCA-Bench in-
troduces three complex scenarios: autonomous
driving, domestic robotics, and open-world
games. Given task instructions and diverse con-
texts, the model is required to seamlessly inte-
grate multiple capabilities of Perception, Cog-
nition, and Action in a reasoning chain to make
accurate decisions. Moreover, PCA-Bench fea-
tures error localization capabilities, scrutinizing
model inaccuracies in areas such as perception,
knowledge, or reasoning. This enhances the
reliability of deploying MLLMs. To balance
accuracy and efficiency in evaluation, we pro-
pose PCA-Eval, an automatic evaluation pro-
tocol, and assess 10 prevalent MLLMs. The
results reveal significant performance dispari-
ties between open-source models and powerful
proprietary models like GPT-4 Vision. To ad-
dress this, we introduce Embodied-Instruction-
Evolution (EIE), an automatic framework for
synthesizing instruction tuning examples in
multimodal embodied environments. EIE gen-
erates 7,510 training examples in PCA-Bench
and enhances the performance of open-source
MLLMs, occasionally surpassing GPT-4 Vi-
sion (+3% in decision accuracy), thereby val-
idating the effectiveness of EIE. Our findings
suggest that robust MLLMs like GPT4-Vision
show promise for decision-making in embod-
ied agents, opening new avenues for MLLM
research. All benchmark data and evaluation
code are made public.

1 Introduction

Multimodal Large Language Models (MLLMs)
have demonstrated remarkable capabilities in tack-
ling complex tasks that necessitate a chain of in-
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You are a driving assistant.  Based on current image, 
what should you do if you want to drive forward safely?
A. Slow down 
B. Keep driving 
C. Call the police 
Please first describe the image and related information, 
then think step by step, and finally give the anwser.

Visual Feature Extractor

Multimodal LLM

The image depicts a wintry scene with a road covered in snow. The sky 
is clear, and no other vehicles on the road. There's a road sign visible, 
with a symbol suggesting caution due to a slippery road surface.

The snow leads a landscape with sparse vegetation. Clear sky
indicating it's likely during the day with good visibility. The road itself 
is not cleared of snow, showing only tire tracks indicating that some 
vehicles have passed before. The road sign warns for icy or snowy 
conditions.
Given these factors, the most appropriate action to take if you want to 
drive forward safely would be:

A. Slow down

Visual
Embeddings

Language
Embeddings

......

Perception

Cognition

Action

Perceiving Input

Reasoning

Making Decision

Figure 1: Example of decision making with MLLMs in
the Perception-Cognition-Action Chain.

tegrated skills, including visual perception, world
knowledge, reasoning, action, and more (OpenAI,
2023; Dai et al., 2023a; Liu et al., 2023b; Li et al.,
2023c; Zhao et al., 2023; Cheng et al., 2024b;
Zhang et al., 2024).

However, current MLLM benchmarks often eval-
uate these capabilities individually (Fu et al., 2023;
Liu et al., 2023e), overlooking the significant in-
tegrated potential that Large Language Models
(LLMs) contribute to multimodal models. While
some benchmarks like MMMU (Yue et al., 2023)
and MathVista (Lu et al., 2023a) require abilities
from both the vision and language part, they lack
error localization techniques beyond accuracy as-
sessments. This complicates identifying which part
of the MLLM malfunctioned when making mis-
takes—whether it was the visual or the language
component—and determines which aspect requires
enhancement to enhance overall performance.
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To address the challenges of insufficient inte-
grated benchmarking and error localization prob-
lems, we introduce PCA-Bench. It arises with
MLLM’s applications in embodied AI and decision
making, where models called agents need to first
process multimodal observation from different en-
vironments, reason with the current situation and
goal, and finally make an action from a given ac-
tion space. The abilities in the complex decision
making process can be abstracted to Perception,
Cognition and Action according to the Perception-
Action loop (Fuster, 2004) in Cognitive Science, a
fundamental concept that describes how organisms
process sensory information to interact with their
environment through actions, offering a compre-
hensive framework for assessment. Figure 1 shows
how MLLMs make decisions in the PCA chain.

The instances in PCA-Bench are from three in-
fluential domains in embodied decision-making:
autonomous driving, domestic robotics, and open-
world gaming. As shown in Figure 2, each in-
stance is annotated by human annotators with a
6-element tuple: <image, question, action candi-
dates, answer, reason, key concept>. The last three
elements serve as anchors for error localization for
Action, Cognition and Perception, correspondingly.

PCA-Eval is an anchor-based evaluation proto-
col consisting of 808 examples, designed to auto-
matically conduct error localization utilizing the
powerful semantic parsing ability of LLMs and
the anchor information in data annotation. In the
past, such localization was both labor-intensive
and time-consuming. PCA-Eval with strong LLMs
like GPT4 demonstrates a strong kappa correla-
tion with human assessments, reaching 0.8+ aver-
age kappa coefficients for perception, cognition,
and action scores. The anchor-based evaluation
provides the LLMs with groundtruth answers for
each sub-score, preventing the systematic bias of
LLM evaluators, such as position bias (Wang et al.,
2023b; Zheng et al., 2023) in the pair-wise eval-
uation and verbosity bias (Zheng et al., 2023) in
simple preference evaluation. We also compared
open state-of-the-art LLMs in PCA-Eval. Though
they lag behind close ones in alignment with hu-
man assessments, we see large improvement when
the model scales up. We believe that with specific
training for error localization and improved general
ability of open LLMs in the future, they would be
more suitable evaluation tools for the reproducible
and transparent characteristics.

Considering the potential cost of using GPT-4

Figure 2: Instances of PCA-Bench in 3 domains.

as an evaluator, we also offer a simplified version
of PCA-Bench called PCA-Bench-Action, which
follows the same format as multiple-choice multi-
modal benchmarks. This version does not require
advanced language models like GPT-4 for evalu-
ating cognition and perception scores; it focuses
solely on action scores, making the evaluation pro-
cess more accessible and easier to implement.

Aiming at scaling up PCA-Bench, using LLM
to synthesize training examples is an increasingly
popular method for enhancing models without ad-
ditional human involvement. We expand this ap-
proach to generate more samples following the
PCA guideline. Unlike text-based instruction gen-
eration methods like Self-Instruct (Wang et al.,
2023c), generating instructions in embodied envi-
ronments poses distinct challenges. It demands not
only the creation of textual instructions but also the
generation of corresponding precise observations.
To address these challenges, we propose Embod-
ied Instruction Evolution (EIE), which integrates
external environments with LLMs, thereby extend-
ing the LLMs’ ability to data synthesize across
various embodied environments, contributing to
7,510 training data in PCA-Bench.

We conduct comprehensive experiments and
analysis on PCA-Bench, our findings are summa-
rized as follows:

1. Visual perception and reasoning with world
knowledge are two core abilities for an MLLM
to make correct decisions in PCA-Bench. GPT4-
Vision shows strong zero-shot cross-modal reason-
ing ability for embodied decision-making tasks,
surpassing open-source MLLMs and even Tool-
Using LLM-agent.

1087



2. EIE could generate training samples signifi-
cantly enhancing the performance of open-source
MLLMs (surpassing GPT-4V at some scores), vali-
dating the effectiveness of the method.

3. PCA-Eval serves as a good error locator.
Above the high average kappa coefficient (0.8+)
with human assessments and its ability to pin-
point the error source, it can effectively distinguish
whether a model’s correct decisions are fluky or
through genuine understanding. This leads to a bet-
ter ensemble metric for MLLM evaluation named
Genuine PCA Score.

2 PCA-Bench

2.1 Problem Definition

Multimodal decision-making problems are com-
monly formalized with a partially observable
Markov decision process. For MLLMs F tested in
PCA-Bench, we care about given the multi-modal
observation o ∈ O, the goal description g, a subset
of candidates actions AC ⊆ A, whether the model
could make correct action a ∈ AC and give proper
reasoning process r.

F(g, o, AC) = (a, r) (1)

As shown in Figure 2, each instance in the bench-
mark is a 6-element tuple: <image, question, ac-
tion candidates, answer, reason, key concept>.
The image is collected from various embodied en-
vironments, including transportation scenes, house-
keeper environments, and Minecraft. Questions,
action candidates, and answers are derived from
real tasks within the corresponding environment.
The reasons explain why the answer is the best
choice for the current image, while the key concept
highlights the most question-related aspect of the
image.

Unlike traditional visual question-answering
datasets that emphasize visual perception (e.g.,
VQA (Goyal et al., 2017)) or visual reasoning
(e.g., NLVR (Suhr et al., 2017)), PCA-Bench man-
dates accurate observation perception, complex
task decomposition, and understanding the out-
comes of various actions simultaneously. Com-
pared to embodied simulation environments such as
ALFRED (Shridhar et al., 2020) and Minedojo (Fan
et al., 2022), PCA-Bench stands out for its focus
on high-level actions, proving to be more effec-
tive for evaluating MLLMs. This is because high-
level actions, which can be readily translated or

programmed into low-level actions within their re-
spective domains, are inherently more accessible
to LLMs. The high-level actions are more compre-
hensible for LLMs than the direct low-level actions
like action vectors in the simulation environments
because (1) the high-level actions are in the form
of natural languages, making it easier for LLMs
to understand the meaning and connect with world
knowledge. (2) LLMs are not grounded with low-
level actions during the pretraining or finetuning
stage, making it hard for LLMs to understand the
consequences of executing an action.

To answer a question in PCA-Bench, the agent
must possess the following abilities: (1) Percep-
tion: Accurately identify the concept related to
the question within the image; (2) Cognition: En-
gage in reasoning based on image perception and
worldly knowledge; (3) Action: Comprehend the
potential actions, selecting the one that best aligns
with the outcome of the reasoning process. A de-
ficiency in any of these abilities would possibly
result in an incorrect answer, posing a significant
challenge to the more integrated capabilities of
MLLMs.

2.2 PCA-Eval
For each instance, we prompt the model to deliver
an answer comprising a reasoning process r, and
a final action a, represented as < r, a >. By com-
paring the model prediction with the ground truth
answer, we can obtain a fine-grained diagnosis of
the decision making process as follows:
Perception Score (P-Score) measures the model’s
accuracy in perceiving the observation. It is com-
puted based on whether the agent’s reasoning pro-
cess r includes the key concept of the instance. A
score of 1 is assigned if at least one question-related
key concept is described by the agent; otherwise,
it is 0. For the top example in Figure 2, the agent
should output “clear road” or “no car visible” or
other semantically equivalent concepts in its de-
scription of the image to get the perception score.

Parsing the model’s output and determining
whether it entails the key concept using shallow
features of the sentence is not trivial. We leverage
LLM to conduct entailment detection, which turns
out to have a high alignment with human judgment.
Cognition Score (C-Score) assesses the model’s
ability to reason, comprehend, and make informed
decisions based on the perceived input data and
world knowledge. The score is 1 if the reasoning
process is correct, otherwise the score is 0. For
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the instance in Figure 2, the agent should link the
“clear road” to the action “keep driving” based on
transportation commonsense to get the score.
Action Score (A-Score) measures the model’s abil-
ity to generate appropriate and effective responses
or actions based on the perceived input data and
the cognitive understanding of the context. The
score is assigned a value of 1 if the agent selects
the correct action; otherwise, the score is set to 0.

2.3 Automatic Evaluation

Recent advancements have seen researchers har-
nessing powerful LLMs for the evaluation of the
output of language models. Studies have revealed
that the outcomes from LLMs could exhibit re-
markable alignment with human judgments (Zheng
et al., 2023; Wang et al., 2023b,a). In our investiga-
tion, we employed GPT-4 to automatically evaluate
perception, cognition, and action scores based on
the model’s outputs. Our findings underscore a
significant agreement between GPT-4 scoring and
human evaluation results. This is substantiated by
Cohen-Kappa coefficients of 0.71, 0.82, and 0.94
for perception, cognition, and action evaluations,
respectively. Experiments of human evaluation and
comparison of open LLMs are in section 4.1. For a
detailed description of our evaluation tool, kindly
refer to Appendix D.

2.4 Genuine PCA Score

PCA-Eval could pinpoint cases where the MLLM
gets the correct answer by a fluke where perception
or cognition score is 0 but the action score is 1. It
explains why for some models, the action score is
higher than perception and cognition scores. For in-
stance, a model might opt for a conservative action,
such as slowing down, even without accurately rec-
ognizing snowy weather in the image, resulting in
a fluky correct action. In another scenario, if the
model exhibits a preference for a specific choice
index, it will attain a high action score provided
that the evaluation dataset contains a substantial
number of correct choices matching the preferred
index, a phenomenon attributable to the positional
biases inherent in both the model and the dataset.
To overcome the mentioned bias when evaluating
the genuine ability of MLLM, we propose a new
metric Genuine PCA Score. It is equal to one if
the perception, cogntion and action scores are all 1
for one model’s response to a question.

Topology Graph: Harvest beef using iron sword

Craft 2 Iron Ingot

Collect 2 Wood

Craft 1 Stick

Find a Cow

Kill a Cow

Craft an Iron Sword

Collect 2 Iron Ore

Figure 3: Illustration of task topology graph. Events in
green represent the leaf nodes of the graph.

2.5 Benchmark Dataset Overview
For the test set, the examples are written by 3 hu-
man experts for each domain. There are no over-
lapped environmental observations between the
training and test sets. The details of the human
annotation pipeline can be found in Appendix B.
We introduce the three domains encompassed by
our dataset as follows:

Autonomous Driving. In the autonomous driv-
ing domain, instances are derived from real-world
transportation scenes, which requires the agent to
have particular abilities such as traffic sign recogni-
tion, obstacle detection, and decision-making at in-
tersections. The dataset aims to evaluate an agent’s
ability to perceive and interpret visual informa-
tion while making safe and efficient driving deci-
sions. The images are collected from TT100K (Zhu
et al., 2016) dataset and annotators are instructed
to propose an image-conditioned question that is
grounded with real actions of vehicles.

Domestic Robot. The domestic assistance do-
main features instances from the ALFRED (Shrid-
har et al., 2020; Kolve et al., 2017) environment,
which simulates a housekeeper robot performing
tasks within a household setting. These tasks may
include object manipulation, navigation, and inter-
action with various appliances. The environment
assesses an agent’s ability to understand and exe-
cute complex instructions while navigating and in-
teracting with a dynamic environment. Annotators
are asked to select one image from the randomly
generated scenes in the environment, propose a
question related to the items on the scene, and an-
notate the full information of the instance.

Open-World Game. In the open-world game do-
main, instances are sourced from the Minecraft en-
vironment, where agents are tasked with exploring,
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Figure 4: Pipeline of the Embodied Instruction Evolution method.

crafting, and surviving in a procedurally generated
world. This dataset evaluates an agent’s ability to
reason and plan actions within a complex, open-
ended environment, which often requires long-term
strategizing and adaptability. Annotators receive
predefined tasks from MineDojo (Fan et al., 2022)
as a reference during the task generation phase. For
each task, we instruct the annotator to sketch a task
topology graph, exemplified in Figure 3. The task
should be completed under the topological order of
the graph, where the event located in the leaf nodes
should be finished first. Each node in the task topol-
ogy graph can be viewed as a step in the sequential
decision. We list the in-domain task distribution in
Appendix A.

2.6 Embodied Instruction Evolution

The PCA-Bench benchmark also includes subset
of automatic generated samples by Embodied In-
struction Evolution (EIE), which is used as training
set in our experiment.

The annotation of PCA-Bench examples is a
labor-intensive task. As illustrated in Figure 4, we
introduce Embodied Instruction Evolution (EIE),
a method for automatically augmenting examples
in the PCA-Bench format using Large Language
Models, such as ChatGPT. This process involves
four key steps:

1) Setup of Programmable Interface: Estab-
lish a programmable interface with a corresponding
template, ensuring that observations in the embod-
ied environment can be generated based on specific
parameters.

2) Generation of Seed Tasks: Create initial

seed tasks for each environment. These tasks are
representative of the general challenges an agent
might encounter. We provide ChatGPT with sam-
ple tasks and enable it to generate additional seed
tasks.

3) Task Specification and Template Filling:
For each seed task, we instruct ChatGPT to break
down the task into multiple subtasks, following its
event topology graph (as seen in Figure 3). This
approach mimics the multi-step decision-making
process. After determining the subtask names, we
use the LLM to populate the environment parame-
ter templates created in Step 1 for each subtask.

4) Observation Generation and Filtering:
Generate observations for the environment and im-
plement an automatic process to filter out invalid
instances. The filled templates may contain er-
rors, such as incorrect creature names or impos-
sible items, leading to errors during environment
creation. When such errors occur, the affected tem-
plates are automatically filtered out. For domains
without programmable environments (autonomous
driving), step 1 and step 4 are not needed, we col-
lect real traffic images and utilize GPT4-Vision to
generate seed task based on the image content.

EIE leverages the capabilities of Large Language
Models to reduce manual labor and improve the
diversity and scalability of PCA-Bench.

3 Experiments

3.1 Tracks

Zero Shot End-to-End. The test set of PCA-
Bench serves as an effective tool for comparing
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Model Size
Traffic Domestic Game Average

P C A P C A P C A P C A

MiniGPT4 (Zhu et al., 2023)† 7B 0.45 0.37 0.48 0.81 0.38 0.38 0.38 0.14 0.27 0.55 0.30 0.38
LLaVA1.5 (Liu et al., 2023b)† 7B 0.44 0.44 0.53 0.92 0.48 0.44 0.8 0.35 0.39 0.72 0.42 0.45
Qwen-VL-Chat (Bai et al., 2023)† 7B 0.53 0.36 0.62 0.77 0.41 0.44 0.39 0.18 0.25 0.56 0.33 0.44
MiniGPT4 (Zhu et al., 2023)† 13B 0.41 0.37 0.5 0.85 0.35 0.33 0.41 0.22 0.33 0.56 0.31 0.39
InstructBLIP (Dai et al., 2023b)† 13B 0.36 0.41 0.42 0.90 0.44 0.39 0.33 0.25 0.24 0.53 0.37 0.35
MMICL (Zhao et al., 2023)† 13B 0.31 0.49 0.47 0.81 0.3 0.33 0.41 0.18 0.27 0.51 0.32 0.36
SPHINX-v1 (Lin et al., 2023)† 13B 0.46 0.48 0.61 0.95 0.55 0.31 0.71 0.35 0.43 0.71 0.46 0.45
LLaVA1.5 (Liu et al., 2023b)† 13B 0.49 0.56 0.61 0.95 0.62 0.46 0.74 0.45 0.51 0.73 0.54 0.53
Qwen-VL-Chat-PLUS (Bai et al., 2023)‡ UNK 0.57 0.56 0.65 0.86 0.44 0.43 0.68 0.47 0.49 0.70 0.49 0.52
GPT-4V (OpenAI, 2023)‡ UNK 0.73 0.72 0.74 0.96 0.66 0.62 0.88 0.72 0.69 0.86 0.7 0.68

Table 1: Zero Shot results on the full test set of PCA-Bench. Highest scores in each line are bold while second
highest scores are underlined. Models with † are fully open-source. Models with ‡ only provide API to access. P, C,
and A represent Perception, Cognition, and Action Scores, respectively.

Figure 5: Performance comparsion between models’ zero-shot results and models’ finetuned results with the data
generated by Embodied-Instruct-Evolution (EIE) method. EIE improves the performance on all domains for both
LLaVA1.5-7b and Qwen-VL-Chat models. Results of LLavA1.5-13B and MMICL are in Figure 13 from appendix.

the embodied decision-making and cross-modal
reasoning capabilities of various Multimodal Lan-
guage Learning Models (MLLMs). In this evalu-
ation, the same images and prompts are provided
to each model under test. Additionally, to address
the challenge of perceiving certain non-visual in-
formation from images, details such as “items in
hand” and “items in inventory”, particularly rele-
vant in domestic and gaming domains, are directly
included in the question prompts.

In our analysis, we benchmark the performance
of the most recently open-sourced models, includ-
ing LLaVA1.5 and Qwen-VL-Chat, as well as the
API-only GPT4-V model. All models are evalu-
ated using their default inference configurations to
ensure a fair and standardized comparison.

Finetuning with EIE. In this track, we extend
the capabilities of open-source MLLMs by fine-
tuning them with the training set generated through
our Embodied Instruction Evolution (EIE) method.
After the fine-tuning process, these trained models
are subjected to the test set of PCA-Bench. We
finetune the LLaVA-7b/13b, MMICL and Qwen-
VL-Chat models on the training set for 5 epochs.

The training details are in Appendix E.

Zero Shot Modality Conversion. In this track,
we introduce and compare a new baseline, termed
HOLMES, which utilizes LLM without multi-
modal perception capabilities. Instead, HOLMES
relies on modality conversion APIs for embodied
decision-making processes. Within the HOLMES
framework, the LLM must continuously invoke
various APIs, retrieving and processing return in-
formation about the environment. The HOLMES
method is illustrated in Figure 7 from Appendix.

We evaluate two LLMs in this track: ChatGPT-
3.5-Turbo and GPT-4-0613, comparing their per-
formances against the advanced GPT-4-Vision. Im-
plementation details of the HOLMES framework
and the APIs are provided in Appendix C.

3.2 Evaluation and Metrics

We use our PCA-Eval evaluation tool proposed in
Section 2.3 to automatically assess the output of dif-
ferent models through three lenses: perception (P-
Score), cognition (C-Score), and action (A-Score).
Additionally, we also provide a lightweight bench-
mark, PCA-Bench-Action, derived from PCA-
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Bench to for automatic evaluate action scores of-
fline. The dataset can be found in PCA-Bench-
Action-V1.

3.3 Main Results

Zero Shot Results. The results of the zero-shot
end-to-end track are shown in Table 1. Among
all MLLMs, GPT4-V, outperforms existing open-
source models by achieving the highest scores of
0.86, 0.7, and 0.68 in the perception, cognition, and
action dimensions respectively. This performance
represents a 15% action score improvement over
its strongest open-source counterpart, LLaVA1.5-
13B. The impressive performance of GPT4-V is
primarily attributed to its exceptional ability to per-
ceive visual information across different domains
and the world knowledge in the language model,
particularly in the challenging game domain.

Genuine PCA Score Results. Table 3 shows the
genuine PCA score results which are defined in
Section 2.4. We find that for all models, there ex-
ists a significant gap (>10%) between the action
score and genuine PCA score on average, revealing
that relying on a single metric such as choice accu-
racy is very problematic when conducting model
evaluation. In our online leaderboard, both average
action score and average genuine PCA score are
considered when ranking the candidate models.

Impact of Finetuning with EIE. The results of
the fine-tuning track are illustrated in Figure 5. Our
EIE method has been found to significantly en-
hance the general decision-making abilities of vari-
ous models, encompassing perception, cognition,
and action. Notably, it has led to an average in-
crease of 0.24 and 0.19 in action scores for the
LLaVA1.5-7b and Qwen-VL-Chat models, respec-
tively. Results for LLaVA1.5-13b and MMICL are
illustrated in Figure 13, also showing improved
performance when trained with EIE. We note that
there exist reasoning or perception errors in some
of the generated sample due to the hallucination
problem of LLM generated content, however they
do not influence the overall performance. In some
cases, these sub-scores have matched or even sur-
passed those of the GPT4-V model, demonstrating
the potential of the EIE to scale up and apply to
different environments.

Comparison Between End-to-End and Modality
Conversion Method In the zero-shot modality
conversion track, we conduct an analysis and com-

parison of the outputs generated by the End2End
method with GPT4-V, as well as the HOLMES
method with GPT4 and ChatGPT-3.5 in Table 2.

The results show that the HOLMES system
based on GPT4 achieves 0.71 Action Score, which
is on par with GPT4-V’s performance (0.74). This
indicates that, overall, the HOLMES system is able
to accurately understand the task goal, split the
larger goal into multiple smaller steps, and cor-
rectly invoke the relevant APIs to accomplish each
step. Specifically, the HOLMES system based on
GPT4 can recognize the key concepts in a task, and
perceive the state and environment of these con-
cepts through the results returned by APIs. Conse-
quently, the system achieves an average Perception
Score of 0.88, which even outperforms GPT4-V’s
0.84. However, compared to End2End methods,
HOLMES relies on multi-step reasoning for the
final decision, in which reasoning errors tend to
accumulate, and thus achieves a lower Cognition
Score in both Domestic and Game domains.

On the other hand, we also find that the End2End
method effectively mitigates information loss dur-
ing the modality conversion process. As illustrated
in Figure 8 from Appendix, an image depicts a
road with several nearby cars. GPT4-V is capable
of discerning that the street is not crowded, thereby
suggesting that the driver can continue driving.

Conversely, GPT4-HOLMES, while being aware
of the number of cars, lacks information about their
spatial relation, leading it to recommend slowing
down because of the existence of 14 cars. This
suggests that the End2End method is superior in
perceiving certain visual features that are not cap-
tured by the APIs. Conversely, some specialized
APIs, such as traffic sign detection, outperform
GPT4-V in tasks like traffic sign detection, as they
are specifically trained for this task. This could en-
able the HOLMES method to gather more accurate
information than the End2End model.

4 Discussion

4.1 Strong LLMs are Good Error Locators.

As shown in Table 4, we compare the scoring kappa
coefficients with human assessments for different
LLMs. We randomly select 300 model outputs
equally from different domains and ask 3 human
experts to give perception, cognition, and action
scores. The final result is based on the majority
of three annotators. The result underscores a sig-
nificant agreement between GPT-4 scoring and hu-
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Method Model
Traffic Domestic Game Average

P C A P C A P C A P C A

End-to-End GPT-4V 0.75 0.73 0.78 0.81 0.69 0.67 0.95 0.79 0.77 0.84 0.74 0.74

HOLMES
ChatGPT 0.75 0.68 0.66 0.88 0.52 0.50 0.78 0.40 0.36 0.80 0.53 0.51

GPT4 0.87 0.82 0.82 0.85 0.61 0.56 0.91 0.77 0.74 0.88 0.73 0.71

Table 2: Comparison between End-to-End (MLLM) and HOLMES (LLM+API) methods on a subset of PCA-Bench
with API annotation.

Model
Genuine PCA Score

Traffic Domestic Game Avg

LLaVA-1.5-7B† 0.24 0.37 0.22 0.28
Qwen-VL-Chat† 0.37 0.33 0.18 0.29
LLaVA-1.5-13B† 0.36 0.42 0.28 0.35
Gemini-Pro-Vision† 0.49 0.42 0.52 0.48
Qwen-VL-Max† 0.59 0.55 0.66 0.60
GPT4V† 0.54 0.52 0.83 0.63

Table 3: Comparison of Open† and Close† Model of
genuine PCA score results.

Evaluator Model
Kappa Coefficients

P C A

GPT4† 0.71 0.82 0.94
Qwen1.5-72B-Chat† 0.30 0.49 0.60
Qwen1.5-14B-Chat† 0.16 0.24 0.16
Qwen1.5-7B-Chat† 0.20 0.11 0.06

Table 4: Comparison of Open† and Close† LLMs as
Evaluators. Kappa coefficients of Qwens increase when
the model scales up.

man evaluation results. This is substantiated by
Cohen-Kappa coefficients of 0.71, 0.82, and 0.94
for perception, cognition, and action evaluations.

We also compare open models as evaluators.
We choose one of the best open LLMs, Qwen1.51

series from 7B, 14B to 72B version. Currently
open LLMs tend to give wrongly high judgments in
all sub-scores. Although currently trailing behind
GPT-4 in performance, we anticipate that with tar-
geted training focused on error identification and
enhancements in the overall capabilities of open
LLMs, these models will become more effective
evaluation tools compared to closed models. This
is primarily due to the reproducible and transpar-
ent nature of open models, which offer significant
advantages in the development of evaluation tools.

1https://huggingface.co/collections/Qwen

4.2 Alignment between Agent Decisions and
Human Values

We have observed instances where the decisions
made by the agent contradict human values. Con-
sider the scenario depicted in Figure 9 from Ap-
pendix. The image illustrates a crosswalk with-
out pedestrians. The appropriate response would
be slowing down, as caution is paramount when
approaching a crosswalk, regardless of the pres-
ence or absence of pedestrians. However, upon
processing the information that the crosswalk is
empty, ChatGPT suggests that maintaining the cur-
rent speed is the optimal action, arguing that the
absence of pedestrians eliminates the need to slow
down. The rationale provided by ChatGPT is logi-
cal, yet it does not align with human values.

5 Related Work

MLLM Benchmark. In recent times, there
have been several benchmarks built for evaluating
MLLMs, such as MMBench, MME, Seed-Bench,
POPE (Liu et al., 2023e; Fu et al., 2023; Li et al.,
2023a,e) that assess MLLMs performance from
multiple fine-grained dimensions. Visit-Bench,
LVLM-eHub, M3IT (Bitton et al., 2023; Xu et al.,
2023; Li et al., 2023c) focus on the general instruc-
tion following ability. General VQA tasks like
OKVQA, VQAv2, Vizwiz, ScienceQA, VSR and
IconQA (Marino et al., 2019; Agrawal et al., 2015;
Gurari et al., 2018; Lu et al., 2022; Liu et al., 2023a;
Lu et al., 2021) focus on visual understanding.
MMMU, MathVista, LLaVA-benchmark, MM-Vet,
and some specific task such as Multimodal Trans-
lation, Ego-centric QA (Yue et al., 2023; Lu et al.,
2023a; Liu et al., 2023c; Yu et al., 2023; Cheng
et al., 2023, 2024b,a) require abilities from the vi-
sion part and specific knowledge in the language
part. A lack of error localization techniques be-
yond accuracy assessments is among current bench-
marks. This complicates identifying which part of
the MLLM malfunctioned when making mistakes.
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Unlike prior work, PCA-Bench is more relevant
to evaluate MLLMs’ ability to utilize integrated
abilities to solve one task and make explainable
decisions via error localization.

LLM Agent and Embodied Decision Making.
Using LLMs to empower the AI agents (Xi et al.,
2023; Liu et al., 2023d; Park et al., 2023; Wang
et al., 2023d) becomes more and more promis-
ing. Specifically, we can employ LLMs to enhance
the decision making ability of the agents (Nakano
et al., 2022; Yao et al., 2022; Li et al., 2023d;
Song et al., 2023; Li et al., 2023b), expanding
their perception and action space through strate-
gies like tool utilization (Schick et al., 2023; Qin
et al., 2023; Lu et al., 2023b). This line of research
divides the entire decision-making process into two
phases: (1) information seeking, usually involving
MLLMs to verbalize the current status of AI agents
in the vision-based environment with natural lan-
guage; (2) reasoning and planning with text-based
LLMs to decide what the AI agent should do in
the next step with textual clues. Although LLM-
based agents demonstrate reasoning and planning
abilities through techniques like Chain of Thought
or problem decomposition (Wei et al., 2023; Yao
et al., 2023; Kojima et al., 2022), they inherently
lack visual perception, and are limited to the dis-
crete textual content. Therefore, integrating mul-
timodal information can offer agents a broader
context and a more precise understanding, such
as PaLM-E (Driess et al., 2023), enhancing their
environmental perception. However, there is still
large gap deploying MLLM in various embodied
environments due to the lack of appropriate bench-
mark and interface linking those two domains while
PCA-Bench is an attempt towards that goal.

6 Conclusion

In this paper, we introduce PCA-Bench, a mul-
timodal benchmark designed to assess the inte-
grated decision-making capabilities of MLLMs.
This benchmark features PCA-EVAL, a novel fine-
grained automatic evaluation tool that diagnoses
decision making processes from three critical per-
spectives: perception, cognition, and action. To
enhance the decision making ability from data per-
spective, we propose the Embodied Instruction Evo-
lution method to automatically synthesize instruc-
tion examples from different environments, which
has been proven effective in our main experiments.
We believe that powerful MLLMs pave a new and

promising way toward decision making in embod-
ied environments and we hope PCA-Bench could
serve as a good benchmark in evaluation and error
localization for MLLMs’ development.

7 Limitations

The current scope of PCA-Bench is confined to
merely three domains in static environments. One
of our future works aims to broaden this scope
to encompass more domains and dynamic embod-
ied environments where MLLMs could keep get-
ting feedback, which is closer to real embodied
AI scenarios. We do not apply different infer-
ence enhancement methods like In-Context Learn-
ing and Reflection in the decision making process
of MLLMs. We just use the simplest prompting
method and leave the exploration of a better cross-
modal Chain-of-Thought method for future studies.
Currently, PCA-Eval shows the best consistency
with human evaluators when using powerful close
LLM GPT4, which would bring additional cost to
the user of PCA-Eval. We plan to develop and re-
lease an open error locator for error localization in
the benchmark in the future.
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A Examples of PCA-Bench

A.1 Data Distribution

Figure 6: Domain and required ability distribution of
PCA-Bench.

The PCA-Bench’s data distribution across var-
ious domains is outlined in Figure 6. For the Au-
tonomous Driving domain, instances are grouped
by their respective task types. In the Domestic
Robot domain, instances are grouped by their loca-
tions. In the Open-World Game domain, instances
are grouped by the tasks they aim to accomplish.

B Human Annotation Pipelines

The annotation process consists of two stages: (1)
Dataset Annotation, and (2) Dataset Refinement.
During the initial stage, three annotators are as-
signed to each domain, adhering strictly to the re-
spective annotation guidelines. They first pinpoint
the source images from each domain that are in-
formative and meaningful so that they can write
questions for each image. The annotators have the
responsibility to ensure every question has only
one correct answer and accurate rationales. In the
subsequent stage, annotators are instructed to scru-
tinize the output actions and rationales presented by
ChatGPT and check the annotations. This process
aims to address the challenge of multiple correct
answers, as ChatGPT can furnish comprehensive
explanations for its actions. These explanations
assist annotators in assessing the acceptability of
ChatGPT’s response, particularly when it deviates
from the established ground truth answer. This en-
ables annotators to refine annotations to ensure the
presence of a single correct answer.

B.1 PCA-Bench Examples
We list three examples of each domain from PCA-
Bench, as shown in Figure 10, 11, and 12.

C Zero Shot Modality Conversion:
HOLMES

To optimize the evaluation process of HOLMES2

method, we pre-execute all relevant APIs for each
instance within a selected subset of 300 instances
from the PCA-Bench test set, recording the results
for individual instances. This method enables im-
mediate access to specific API results, eliminating
the need to rerun the model for each evaluation
instance.

Traffic Domain. Below is the API description
for the traffic domain.

1 # API Description for Traffic Domain:
2 def detect_traffic_sign ():
3 """
4 Detects traffic signs in the image.
5 :return: list of detected traffic

signs and coordinates , e.g. ['stop
','max speed limit ']

6 """
7 pass
8

9 def object_detection ():
10 """
11 Detects objects in the image.
12 :return: dict of detected objects

and number of the objects , e.g. {'
car ':10, 'person ':1}

13 """
14 pass
15

16 def ocr():
17 """
18 Performs OCR on the image.
19 :return: list of detected text , e.g.

['Changjiang road ', 'Right lane
closure ']

20 """
21 pass
22

23 def image_caption ():
24 """
25 Generates a caption for the image.
26 :return: caption , e.g. 'A red car

driving down the street '
27 """
28 pass
29

30 def weather_detection ():
31 """
32 Detect current weather.
33 :return: weather , e.g. 'rainy ' or '

clear '
34 """
35 pass

• detect_traffic_sign(): The detection of road
traffic signs model utilize YOLO (Redmon and
Farhadi, 2018) which trained on the Tsinghua-
Tencent 100K dataset (Zhu et al., 2016). TT100K

2Originally proposed in an early version of this pa-
per (Chen et al., 2023)
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What is the best action to take when you are 
driving on the highway? 
Actions: A. Slow down B. Keep driving C. Stop 
the car D. Change to other lane

I will first call the detect_traffic_sign() API to 
check if there are any traffic signs in the 
image that could inform the best action.

detect_traffic_sign() = None

Since there are no traffic signs detected, I will now 
call the object_detection() API to check for any 
objects in the image that could inform the best action.

object_detection() = None

Since there are no objects detected, I will now call 
the caption() API to get a general description of the 
image, which might help in determining the best 
action.

caption() = The image features a long, empty 
highway.

Based on the provided caption, it seems that the 
highway is not congested. Therefore, the best 
action to take when driving on the highway in 
this situation would be: B. Keep driving

Autonomous Driving

You are a powerful game assistant in Minecraft. 
Your goal is to Harvest wool. Based on current 
condition, what is the best action to do next? 
Actions:  A. Find sheep B. Shear sheep C. Craft 
shears D. Find iron ore E. Craft iron ingot

In order to answer the question, I would first need to 
check if I already have shears in the inventory. So I 
would call list_inventory_information().

list_inventory_information() = [("shears", 1)]

Given that the inventory does have shears but no 
nearby sheep are detected, the best action to do next 
would be: A. Find Sheep

Open-World Game

Since the inventory contains shears, then the next 
action would be dependent on the presence of sheep. 
I would then call `list_nearby_mobs()` to check if 
there are sheep nearby 

list_nearby_mobs() = None

You are a domestic robot that helps me do 
housework. Your goal is to heat a cup of milk. What 
is the best action to take next? 
Actions: A. Find a microwave. B. Put a cup of milk 
into the microwave. C. Find milk. D. Pick up a cup 
of milk.

I will first call the object_detection_alfred() API to 
check for any relevant objects in the current view.

object_detection_alfred() = ['StoveTopDoor1',
'Lettuce', 'StoveBurner', 'SaltShaker', 'CounterTop',
'Spatula', 'Pot', 'StoveKnob', 'StoveBase1', 'Cabinet',
'DishSponge', 'Microwave', 'Pan', 'PepperShaker',
'Ladle', 'Floor', 'SoapBottle', 'Dishwasher', 'Sink',
'Ceiling', 'Bread', 'Mug']

Since I already have a cup of milk in my inventory, 
the best action to take next is:
B. Put a cup of milk into the microwave.

Domestic Robot

Now that I have detected a microwave and a mug in 
the current view, I will call list_inventory_alfred() to 
check if I already have milk in my inventory.

list_items_in_inventory_alfred() = [“cup of milk”]

Image User LLM Model/API Hub

Figure 7: Three examples of HOLMES solving questions from different domains of PCA-Bench.

comprises 100,000 images encompassing 30,000
instances of traffic signs. The end-to-end YOLO
enables simultaneous detection and classification
of traffic signs.

• object_detection(): Objects demanding atten-
tion during vehicle operation primarily encompass
cars, pedestrians, and bicycles. A surfeit of vehi-
cles can lead to traffic congestion, while the pres-
ence of pedestrians or bicycles ahead necessitates
cars to decelerate and proceed cautiously. Hence,
the object_detection() API predominantly identi-
fies three key object categories: cars, pedestrians,
and bicycles. We utilize PMOP (Ren et al., 2023),
a model trained on vision-language models through
the prompt pre-training method, which enables the
detection and counting of the three mentioned ob-
jectives by modifying specific class names.

• ocr(): We employ PaddleOCR3 to extract tex-
tual information from images, providing crucial
road data for real-time navigation.

• image_caption(): To initially streamline the
road information within the image, we employ the
BLIP2-flan-t5-xl to generate an initial caption for
the picture. This caption, derived from basic im-
age data, is then utilized as input for the model to
facilitate decision-making.

3https://github.com/PaddlePaddle/PaddleOCR/
tree/release/2.7

• weather_detection(): Weather detection lever-
ages a pre-trained ResNet50 model4, derived from
a dataset of more than 70,000 weather records. This
model extracts weather information from provided
images to inform decision-making.

Domestic Robot Domain. Below is the API de-
scription for the Domestic Robot domain.

1 #API Description for Domestic Robot
Domain

2 def object\_detection ():
3 """
4 Detects objects in current view ,

which you don't need do find.
5 :return: list of detected objects , e

.g. ['chair ','table ']
6 """
7 pass
8

9 def list_items_in_hands ():
10 """
11 Lists items in your hand , which you

don't need to pick up
12 :return: list of items in hand , e.g.

['coffee cup ','milk ']
13 """
14 pass

Game Domain. Below is the API description for
the Game domain (Minedojo).

1 #API Description for Game Domain
2 def list_nearby_mobs_in_minecraft ():

4https://github.com/mengxianglong123/
weather-recognition
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3 """
4 Lists nearby mobs in Minecraft.
5 :return: list of nearby mobs , e.g.

['creeper ', 'pig ']
6 """
7 pass
8

9 def list_inventory_information ():
10 """
11 Lists inventory information of the

player in Minecraft.
12 :return: list of inventory

information with number , e.g. [('
diamond ', 64), ('iron ', 32)]

13 """
14 pass

Note that within the Domestic Robot Domain
and Game Domain, APIs can be directly accessed
within the virtual environment, allowing for the per-
ception of the surrounding objects and the current
picture context.

What is the best action to take when you are driving? 
Actions: A. Slow down B. Keep driving C. Stop the 
car D. Change to other lane

Autonomous Driving

GPT4-V

The traffic appears to be moving smoothly without 
any apparent obstructions. The traffic signals are not 
visible in the image, so there's no indication that you 
need to slow down or stop.
The best action to take when driving in the scenario 
pictured is: B. Keep driving

GPT4

Based on the object detection results, there are 14 
cars in the image. It's better to be cautious as the road 
might be congested with cars. The best action to take 
is: A. Slow down.

……

Figure 8: A Comparison between GPT4-V and GPT4-
HOLMES

What is the best action to take when you are driving? 
Actions: A. Slow down B. Keep driving C. Stop the 
car D. Change to other lane

Autonomous Driving

ChatGPT

Based on the provided caption and the result of object 
detection, the image depicts an empty crosswalk with 
no humans or cars. Therefore, the best action is B: 
Keep driving, as it's not necessary to slow down.

object_detection() = {‘car’:0,’human’:0, ‘bicycle’:0}

caption() = An empty crosswalk.

……

Figure 9: An case showing the value mis-alignment
between of agent and human’s decision.

D Automatic Evaluation

We utilize the template as shown in Table 5 to
query GPT-4, aiming to evaluate its responses and
assign scores for perception, cognition, and action.
By feeding both the agent’s output and the ground
truth answer to GPT-4, based on this template, we
can then extract the three distinct scores from the
conclusion of GPT-4’s response.
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Based on current image, what is the best 
action to take when you are driving on road?

(B) Drive close to the left side

(A) Drive close to the right side
(B) Drive close to the left side (C) Call 911

Based on the image, The right side of the road 
is closed, so you should drive close to the left.

right lane closure

image：

Quetsion：
Based on current image, What should you do 
if you want to drive forward safely?
Action candidates：

Answer：
(A) Slow down

(A) Slow down (B) Keep driving (C) Call the 
police

Reason：

Key Concept：

The current heavy snowfall is causing 
slippery roads. So you should slow down.

Snowy weather

image：

Quetsion：

Action candidates：

Answer：

Reason：

Key Concept：

image：

Quetsion：
You are at 20km/h now. What should you do 
if you want to overtake the car in front of you?
Action candidates：

Answer：
(B) You can't overtake now

(A) Speed up to 50km/h (B) You can't 
overtake now (C) Turn Left

Reason：

Key Concept：

You did not exceed the speed limit. But road 
is congested. So you can't overtake now.

congested road

Figure 10: Three examples of PCA-Bench in the autonomous driving domain.

You are in a room, the goal is to water the 
plant. What is the best action to take next?

(C) Use sprinkler water the plant

(A) Find a sprinkler (B) Pick up the sprinkler 
(C) Use sprinkler water the plant

There is a house plant in front of us. We have 
a sprinkler in hands. Therefore, our next step 
is to water the plant using the sprinkler.

plant, sprinkler

image：

Quetsion：
You are in a room, the goal is to wash the cup. 
What is the best action to take next?
Action candidates：

Answer：
(A) Find the cup

(A) Find the cup (B) Find the dish sponge 
(C) Find a sink (D) Open the faucet

Reason：

Key Concept：

There is no cup in front of us. Therefore, our 
next step is to find a sink. 

cup, dish sponge, sink

image：

Quetsion：

Action candidates：

Answer：

Reason：

Key Concept：

image：

Quetsion：
You are in a room, the goal is to cook rice. 
What is the best action to take next? 
Action candidates：

Answer：
(A) Go to the kitchen

(A) Go to the kitchen (B) Pick up rice 
(C) Pick up pot (D) Boil water

Reason：

Key Concept：

We can infer from the objects around us that 
we are in the living room so our next step is to 
go to the kitchen

rice, kitchen, living room

Figure 11: Three examples of PCA-Bench in the domestic robot domain.

(C) craft iron sword 

(A) find cow (B) kill cow (C) craft iron sword 
(D) find iron ore (E) craft iron ingot

You need a cow and kill it with an iron sword for 
beef. You're near a cow, but lack an iron sword. 
So, craft one using two iron ingots and a stick. 
You have two iron ingots, and two sticks so you 
can craft an iron sword.

Cow nearby, No iron sword, 2 sticks,2 iron ingots

image：

Quetsion：

Action candidates：

Answer：

Reason：

Key Concept：

To harvest beef using an iron sword, based on 
the image, which is your next action? 

(A) find planks 

(A) find planks (B) craft crafting table (C) place 
crafting table

To place a crafting table in front of you, your 
inventory must have a crafting table. To get a 
crafting table in your inventory, you need to 
make one. You need 4 planks to make a crafting 
table. Since you have 3, find one more first.

No crafting table, 3 planks

image：

Quetsion：

Action candidates：

Answer：

Reason：

Key Concept：

To place a crafting table in front of you, based on 
the image, which is your next action? 

(B) milk cow

(A) find cow (B) milk cow (C) craft bucket (D) 
find iron ore (E) craft iron ingot

To get milk, you need to find a cow, and milk it 
with a bucket. There is a cow nearby, and you 
have a bucket, so you can milk the cow.

Cow nearby, Have bucket

image：

Quetsion：

Action candidates：

Answer：

Reason：

Key Concept：

To harvest milk, which is your next action? 

Figure 12: Three examples of PCA-Bench in the open-world game domain.
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[Question]: {question}
[Action Choices]: {actions}
[Agent Answer]: {model_output}
[Correct Action]: {true_action}
[Key Concepts]: {key_concept}
[Reference Reasoning Process]: {reason}
[System]
We would like you to access the agent’s performance in the multimodal reasoning task about
domain. In this task, the agent is given an image, a [Question], and several candidate [Action
Choices], and is asked to give an [Agent Answer] for the [Question]. The [Agent Answer]
encapsulates the agent’s perception of the image’s [Key Concepts], the agent’s cognition reasoning
process and the final selected action.
We request you to give three types of scores for the agent’s [Agent Answer] in comparison to the
given [Key Concepts], [Reference Reasoning Process] and [Correct Action]:
1. action score: If the selected action in the [Agent Answer] matches that of the [Correct Action],
the action score is 1; otherwise, it is 0.
2. perception score: This score evaluates the model’s capability to perceive and interpret observa-
tions. It is contingent on whether the [Agent Answer] includes any of the [Key Concepts] of the
instance. If it accurately describes any one of the [Key Concepts], the score is 1; otherwise, it is 0.
3. cognition score: This score gauges the model’s ability to reason, comprehend, and make
informed decisions based on perceived input data and world knowledge. If the reasoning process
in the [Agent Answer] aligns with the [Reference Reasoning Process], the score is 1; otherwise, it
is 0.
Please note that there are only scores of 0 and 1.
You should carefully compare the [Agent Answer] with the [Correct Action], [Key Concepts] and
[Reference Reasoning Process] to give your assessment.
You need first to give your assessment evidence and then the scores.
Your output MUST contain 6 lines with the following format:
action assessment evidence: (assessment evidence here)
action score: (score here)
perception assessment evidence: (assessment evidence here)
perception score: (score here)
cognition assessment evidence: (assessment evidence here)
cognition score: (score here)

Table 5: The template of querying GPT-4.

E Training Details

Table 6 shows the specific parameters used for fine-
tuning in different models. The PCA results on
the three domains of PCA bench before and after
fine-tuning different models are shown in Figure
13.
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Figure 13: Performance comparsion between models’ zero-shot results and models’ finetuned results with the data
generated by Embodied-Instruct-Evolution (EIE) method. EIE improves the performance on all domains for both
LLaVA1.5-13b and MMICL models.

Model Parameter Value

Learning Rate 2e-4
Use Lora Finetuning? Yes

Lora Rank 8
Lora Alpha 32

Qwen-VL-Chat/LLaVA1.5-7/13b Global Batchsize 20
Weight Decay 0
Train Epochs 5

Lr Scheduler Type Cosine
Warmup Ratio 0.03

Learning Rate 5e-4
Use Lora Finetuning? No

Global Batchsize 20
MMICL Weight Decay 5e-4

Train Epochs 5
Lr Scheduler Type Linear

Warmup Ratio 0.2

Table 6: Training details for different models with EIE.
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F Does Chain-of-Thought Finetuning
Improve Cross-modal Reasoning?

Unlike vanilla finetuning, which solely focuses on
delivering direct answers, Chain-of-Thought Fine-
tuning necessitates the model to first articulate its
reasoning before presenting the answer. This ap-
proach has been demonstrated to be a highly effec-
tive instruction tuning paradigm for LLMs (Chung
et al., 2022; Kim et al., 2023). We have incorpo-
rated this methodology in our previous finetuning
experiments.

To further evaluate its impact, we conducted an
ablation study where the reasoning process was
omitted from the target output during the training
of MLLMs. We then assessed the variations in
action scores on the test set. As depicted in Fig-
ure 14, to our surprise, the figures suggest that
Chain-of-Thought finetuning exerts a relatively mi-
nor influence when compared to conventional label
finetuning. We have noticed that similar phenom-
ena has been identified by Zhang et al. (2023) that
standard CoT finetuning does not work for MLLMs
in their explorations.

We think there are three potential explanations:
1) Task Variation: Contrary to mathematics datasets
like GSM8K, the current task doesn’t require multi-
step complex reasoning to arrive at the final answer
and the automatic generated CoTs have noise. 2)
Modality Discrepancy: The CoT capability, inher-
ent in LLMs, is only moderately adjusted for vi-
sual input for current open-source MLLMs. This
adaptation process could potentially impair the rea-
soning ability. 3) Short Cut in Pretraining: We
think a deeper reason might lie in the short-cut
during pretraining period of current open-source
MLLMs, which are pretrained on simple image
caption task in a large scale. Those captions are
usually short and lose a lot of information about the
original image. What’s more important is that the
reasoning ability of LLM is not utilized during the
pretraining stage, which might hurt the reasoning
ability of LLM during the SFT period. We defer
to future research how to effectively harness the
CoT capabilities of LLMs to enhance embodied
decision-making processes.

Figure 14: Action scores changes when training without
reasoning process for different models. The benefit of
CoT finetuning is not consistent among models. Blue
means difference of action score for LLaVA1.5-7b, Or-
ange means difference of action score for LLaVA1.5-
13b and green means difference of action score for
Qwen-VL-Chat.
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