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Abstract

In our work, we explore the synergistic capabil-
ities of pre-trained vision-and-language models
(VLMs) and large language models (LLMs) on
visual commonsense reasoning (VCR) prob-
lems. We find that VLMs and LLMs-based
decision pipelines are good at different kinds
of VCR problems. Pre-trained VLMs exhibit
strong performance for problems involving un-
derstanding the literal visual content, which we
noted as visual commonsense understanding
(VCU). For problems where the goal is to infer
conclusions beyond image content, which we
noted as visual commonsense inference (VCI),
VLMs face difficulties, while LLMs, given suf-
ficient visual evidence, can use commonsense
to infer the answer well. We empirically vali-
date this by letting LLMs classify VCR prob-
lems into these two categories and show the
significant difference between VLM and LLM
with image caption decision pipelines on two
subproblems. Moreover, we identify a chal-
lenge with VLMs’ passive perception, which
may miss crucial context information, lead-
ing to incorrect reasoning by LLMs. Based
on these, we suggest a collaborative approach,
named ViCor, where pre-trained LLMs serve
as problem classifiers to analyze the problem
category, then either use VLMs to answer the
question directly or actively instruct VLMs to
concentrate on and gather relevant visual ele-
ments to support potential commonsense infer-
ences. We evaluate our framework on two VCR
benchmark datasets and outperform all other
methods without in-domain fine-tuning.

1 Introduction

The problem of visual commonsense reasoning
(VCR) (Zellers et al., 2019; Hessel et al., 2022;
Schwenk et al., 2022) expands upon the tradi-
tional visual question answering (Antol et al., 2015;
Goyal et al., 2017). VCR requires machines to
understand complex visual scenes, extract crucial
visual content, and utilize commonsense knowl-

edge for drawing novel conclusions that go beyond
the explicit information present in the image. Pre-
vious methods have utilized pre-trained large lan-
guage models and pre-trained or fine-tuned vision-
language models (Hu et al., 2022; Shao et al., 2023;
You et al., 2023) to solve VCR problems in few-
shot or fine-tuned setting.

However, some open questions exist on how
VLMs and LLMs can efficiently and effectively
collaborate to solve these VCR problems. Firstly,
what roles do LLMs and VLMs play in solving
VCR problems with their different capabilities?
Secondly, how do we maximize their capabilities
to solve the VCR problems without in-domain fine-
tuning?

To answer these two questions, as shown in Fig-
ure 1, we first find that VLMs themselves can
solve the problems requiring the model to rec-
ognize various low-level visual patterns and un-
derstand high-level concepts like actions, events,
and relations indicated by those visual patterns.
In the meanwhile, solving problems that require
the model to deduce conclusions or form explana-
tions based on visual observation relies more on
the commonsense reasoning capabilities of LLMs.
This kind of problem requires a broad array of com-
monsense knowledge about the world, including
cause-and-effect relationships, intentions, and men-
tal states (Sap et al., 2020). To validate this finding,
we first note these two kinds of VCR problems
as visual commonsense understanding (VCU) and
visual commonsense inference (VCI). Then, we in-
struct LLMs to classify VCR question into these
two categories. We empirically find that, for VCU
problems, VLMs like BLIP2 can achieve better re-
sults than LLM+caption pipeline (Yang et al., 2022)
with their visual understanding capabilities, and for
VCI problems, the LLM+caption pipeline is better.

In the meanwhile, we observe that image cap-
tions provided by VLMs often lack crucial contex-
tual information necessary for answering questions.
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Figure 1 comparing image-text matching with LLM guided image-text matching in VCR

GPT

Candidate 
Evaluation

Visual Clue 
Reasoning

Adjust 
Reasoning

According to the caption, 
There is no information 
suggesting this, score: 0

Support: the woman looks 
sad.
Contradict: the woman is 
playing a video game.

The woman is not looking 
sad. Adjusted score: 0, 
ranking: 10 / 10

Global caption: a 
woman standing in a 
living room, wearing 
…

Visual ITM 
Verification

Support clue score: 0.01
Contradict clue score: 0.47

BLIP2-ITA

BLIP2-ITA

Q: What is the person in the 
middle standing up to do?
A: A: washing dishes
B: serving someone
…

A: washing dishes.

Q: What does the appearance 
of the grass indicate?
A: A: wind B: rain C: drought
D: still wind

The appearance of 
the grass.

What visual factor 
can help answer 
the question?

A: swaying B: wet
C: dry and yellow D: still

What will be this 
factor to support  
each choice?

A: swayingGPTA: wind

Figure 1: Two examples demonstrating different kinds of visual commonsense reasonings require different model
capabilities. Upper: Visual commonsense understanding (VCU) requires the model to understand high-level
concepts and attributes such as actions, events, relations, etc, which pre-trained VLMs can achieve via image-text
alignment (ITA). Lower: Visual commonsense inference (VCI) requires the model to generate conclusions or
explanations based on input image. Overlooking visual clues can result in erroneous conclusions. LLMs steer
VLMs in discovering vital visual cues for answer support. The LLM employs the top ITA-scored visual clue (e.g.,“It
is cloudy.") to perform commonsense inference.

This poses a particular challenge for commonsense
inference problems, as inferences are often defea-
sible given additional context (Choi, 2022). To
illustrate this issue, consider the example depicted
in Figure 1 (bottom). At first glance, it may appear
that there’s nothing noteworthy beyond horses on a
grassy farm, leading one to select “D: still wind" as
an answer. However, upon closer examination of
the swaying grass, we must revise our conclusion
to “A: wind." Existing perception modules, includ-
ing VLMs, operate in a feed-forward manner and
cannot adjust their perception based on a high-level
understanding or inference. To address this, we
propose instructing LLMs to intervene with VLMs
in cases where they are uncertain about inference,
indicating a lack of sufficient visual evidence. This
intervention would guide VLMs to focus on spe-
cific visual factors, such as weather or emotions, to
support commonsense inferences.

Based on these findings, we propose the Vi-
Cor framework, which employs the following
components: (1) LLMs functioning as problem
type classifiers (VCU and VCI), VLM comman-
ders for directing VLMs based on reasoning, and
visual commonsense reasoners. (2) Pre-trained
VLMs are responsible for visual recognition and
understanding. Communication between LLMs
and VLMs occurs through text, such as image
captions. On VCR (Zellers et al., 2019) and
A-OKVQA (Schwenk et al., 2022), our method
achieves state-of-the-art results among methods
without supervised in-domain fine-tuning.

2 Related Work

Visual Commonsense Reasoning Visual Com-
monsense Reasoning (VCR) (Zellers et al., 2019;
Hessel et al., 2022; Schwenk et al., 2022) is an
emerging research area that aims to endow AI mod-
els with a human-like understanding and reason-
ing of visual scenes. The goal is to understand
high-level concepts such as events, relations, and
actions and infer unobservable aspects such as in-
tents, causal relationships, and future actions. The
VCR task was introduced by Zellers et al. (2019).
Further, more datasets focused on more types of
reasoning were proposed (Park et al., 2020; Hessel
et al., 2022; Schwenk et al., 2022). Most meth-
ods treat VCR as an image-text alignment problem,
where they encode the commonsense inference and
the visual input, then predict the alignment score
of the image-text pair (Zellers et al., 2019; Chen
et al., 2020; Zellers et al., 2022; Hessel et al., 2022).
Although achieving impressive performance, the
generalizability of these methods is limited by su-
pervised training.

Recently, several works have leveraged large
language models for visual commonsense reason-
ing (Hu et al., 2022; Shao et al., 2023; You et al.,
2023). However, (Hu et al., 2022; Shao et al., 2023)
require some VLMs trained on the datasets to pro-
vide visual information. (You et al., 2023) use
LLMs to decompose the main problem and use
VQA models to acquire visual information. Follow-
ing these works, we take one step further and sys-
tematically study the strength of pre-trained VLMs
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and the reasoning abilities of LLMs on visual com-
monsense reasoning problems. We then propose a
framework to efficiently and effectively leverage
the advantages of both models.

Large Language Models for Vision-and-
Language Tasks Benefiting from the rich
knowledge in LLMs, they have been used for
various vision-and-language tasks in a zero-shot
or few-shot manner. Yang et al. (2022); Hu et al.
(2022); Shao et al. (2023) leverage LLMs for
OK-VQA task (Marino et al., 2019) by feeding
the caption, question, candidate answers by VQA
models, etc. to GPT3, and prompt the GPT3 to
answer the question with its pre-trained knowledge.
More recently, with the discovery of LLMs’ tool
using ability (Yao et al., 2023; Schick et al.,
2023), LLMs were equipped with various visual
tools (Gupta and Kembhavi, 2023; Dídac et al.,
2023; Shen et al., 2023; Lu et al., 2023; Wu
et al., 2023) and achieved significant performance
in Compositional Visual Question Answering,
Science Question Answering tasks (Suhr et al.,
2018; Hudson and Manning, 2019; Lu et al., 2022).
Concurrently, (Wu and Xie, 2023) proposes to use
LLM reasoning to help concentrate on the right
part of the image to answer visual questions, which
share a similar spirit with our proposed method.
Our work studies a complex and challenging
problem – visual commonsense reasoning, which
requires different capabilities of LLMs. In our
method, we fully leverage LLM capabilities to
conduct reasoning for problem classification,
visual information query, and commonsense
reasoning.

3 Visual Commonsense Reasoning

3.1 Problem Categorization
We first illustrate our categorization of VCR prob-
lems to distinguish the capabilities of VLMs and
LLMs.

Visual Commonsense Understanding The vi-
sual commonsense understanding (VCU) problem
requires the model to judge if a text T describing a
concept or an attribute aligns with the image I:

e = F (I, T ) (1)

where e stands for evaluation of T by model F . To
answer these questions, the model needs to be able
to map the low-level visual observations, such as
objects and spatial relations to various high-level

visual concepts and attributes, such as landmarks,
actions, events, and relations.

Visual Commonsense Inference The visual
commonsense inference (VCI) problem usually re-
quires the model to evaluate the plausibility of an
inference about the image. Besides understanding
the literal content in the image as in VCU, evalu-
ating the inferences T in VCI problems needs in-
volves drawing novel conclusions or explanations
from these visuals, often using (non-visual) com-
monsense knowledge, based on some visual obser-
vations {oi} derived from the image:

e = F ({oi}, T ) (2)

Here, oi could be some visual observations or high-
level visual commonsense understanding. Exam-
ples of non-visual commonsense knowledge could
be the purpose of an object, people’s opinions about
an object, potential future events, etc. We show
the performance difference between VLMs and
LLMs-based decision models on two sub-problems
in Table 1, which will be illustrated in Sec. 6.1.

3.2 Problem Formulation

Both categories of visual commonsense reasoning
tasks share a common formulation. In visual com-
monsense reasoning, the input consists of two parts:
an image denoted as I and a multiple-choice ques-
tion input represented as q, ci, where q corresponds
to the question, and ci stands for the i-th answer
choice. The model needs to choose the choice ci
that is most likely to be true based on the image I .

4 The ViCor Framework

To enable more effective collaboration between
LLMs and VLMs, as shown in Figure 2, we de-
sign an approach that involves a multi-step process.
First, a pre-trained LLM takes the initial perception
result (i.e., image caption), a question-answer pair,
and instructions as input to evaluate potential an-
swer candidates. Then, if the LLM is not confident
about its reasoning, it will select to use VLMs to di-
rectly answer the question or to guide the VLMs to
collect target visual information for re-evaluation.

4.1 Large Language Models as VCR Reasoner

Evaluating answer choices in VCR requires draw-
ing new conclusions based on commonsense knowl-
edge, which LLMs excels at (Anil et al., 2023). On
the other hand, pre-trained vision-and-language
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Problem 
Classification

VCU

VCI

BLIP2-ITA

Question: What will the 
people face?
Answers: 
A: earthquake B: raining
C: sunburn D: tsunami

Caption: a large body of 
water with a bridge in the 
background …

Output

Text 
Transform

Output

Required 
Visual Factor

Visual Clue 
Reasoning

Final 
Reasoning

BLIP2-ITA

Output

Instruction: What 
visual factor is 
required? …

Instruction: 
Value of the 
visual factor that 
support choice...

What is the 
weather now?

Clear, cloudy, 
sunny, windy

Confident?

Yes

Initial 
Reasoning

LLM modules

BLIP2 modules

Module outputs

No

For revision

BLIP2-VQA

or

Figure 2: Our ViCor framework. Given a visual commonsense reasoning problem and a caption, our framework
will leverage LLM to perform initial reasoning and confidence check. If the reasoning is not confident, the LLM
will perform problem classification and acquire visual information according to the problem type. ∗Note that the
final reasoning takes the question and the caption as input as well.

models have exhibited a capability for visual under-
standing, such as image captioning and image-text
alignment, with a demonstrated ability to general-
ize across various datasets (Li et al., 2023). There-
fore, we decided to harness the strengths of vision-
and-language models for visual understanding and
the capabilities of large language models for eval-
uating answer candidates in the context of visual
commonsense reasoning.

Captioning serves as a fundamental unsuper-
vised pre-training task and the most generalized
capabilities of pre-trained VLMs, which capture
the most salient information from an image. There-
fore, we first prompt the LLMs to take the caption
of the image CI as the initial information and per-
form chain-of-thought reasoning on the question:

r1 = LLM({ci}, q, CI). (3)

The reasoning result r1 includes both intermediate
reasoning steps and the final answer. However, it’s
important to note that the image caption may not
encompass all the relevant information within the
image, potentially omitting critical contextual de-
tails essential for answering the question. In such
cases, it becomes necessary to gather additional rel-
evant visual observations from the image. Before
this, we must first judge whether there is a lack
of supportive visual evidence that would allow us
to make a confident decision. As in Figure 2, we
let the LLM take the initial reasoning r1 and the
history prompt as input to judge if current visual
information adequately supports the decision. If
it does, the model will directly output the result.
Conversely, if there is a lack of sufficient evidence,
the model will progress to the second stage, where

it will actively seek additional visual evidence.

4.2 Large Language Models as VCR Problem
Classifier

As mentioned before, we found the capabilities
of VLMs are suitable for solving VCU problems,
and LLMs are more capable of solving VCI prob-
lems. Therefore, we propose to leverage VLMs
in distinct manners when facing different problem
types. However, we first need to know what given
a visual question, To this end, we first prompt the
LLM to classify the problem into two categories.
To achieve this, we provide the definitions of these
two categories in the prompt. Additionally, we
include a set of manually annotated in-context ex-
amples to aid in problem classification, where the
questions of in-context examples are selected from
the training set. Figure 3 illustrates the prompt.

4.3 Large Language Models as VLM
Commander

The pre-training dataset of vision-and-language
models contains millions to billions of image-text
pairs. Therefore, VLMs have learned the mapping
between visual features and the high-level com-
monsense concept well. In light of this, for visual
commonsense understanding (VCU) problems, we
leverage pre-trained VLM in a zero-shot manner.
Specifically, for each choice ci, we first instruct the
LLM to transfer it and the question to a declarative
sentence with instruction and in-context examples:

si = LLM(q, ci) (4)

For instance, for the question What will the
people face? and the choice earthquake, we
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BLIP2-COCO

Someone just had an accident in front 

of them

Please classify the question into one 
of the following categories.
1. Visual commonsense understanding: 
questions that require understandings 
of the image's current visual status.
2. Visual commonsense reasoning: 
questions require some visual 
understanding of the image, then need 
some commonsense knowledge to reason 
about the answer. 

Examples: 
Question: What animal will most likely 
eat this meal?
Choices: A: elephant B: human ......

Analysis: This question requires 
understanding what is the meal in the 
image, then using commonsense to reason 
which animal likes to eat it.
......

You will be provided with a visual 
commonsense reasoning question about an 
image and four candidate choices.
Your task is to analyze what visual 
factors are needed to evaluate the 
choices. Then, list the factors you 
need in the format of a list of 
questions.

Examples:
Question: Where is the plant on the 
sign usually found?
Choices: A. desert B: tropics ......

Analysis: To answer the question, we 
need to know the category of the plant 
on the sign.
Required visual factors:
What is the category of the plant on 
the sign?
......

You are given 
1. A main question and four choices for 
an image. 
2. A question about a visual factor for 
the image.
Your task is to think about an answer 
for the visual factor question to 
support each choice in the main 
question.

Examples:
Question: Where is the plant on the 
sign usually found?
Choices: A. desert B: tropics ......
Visual factor question: What is the 
category of the plant on the sign?

Reasoned answers:
A: cactus B. rainforest ......

Figure 3: Three simplified prompt examples demonstrating how we define prompts to classify the problem (left),
reason visual factors (middle), and think about visual observations regarding visual factors (right).

will transform them to The people will face
earthquake. Then, we feed si and the image I to
the pre-trained VLM to calculate the image-text
alignment score. Following (Li et al., 2023), we
use the sum of ITM and ITC scores to compare
choices:

Si = ITM(I, si) + ITC(I, si) (5)

We will directly take the choice with the highest
score as the final output.

For the visual commonsense inference (VCI)
problems, the model needs to acquire related visual
observations and use relevant commonsense knowl-
edge to reason about the answer. Some crucial
visual observations are often neglected in the de-
scriptions of the image. Therefore, as in Figures 2
and 3, we first prompt the LLMs to think about
some visual factors fj that influence the answer to
the question, like ‘the action of the person’, ‘the
interaction between people’, etc. Then, we could
acquire the visual observation of the visual factor in
the image with a visual question-answering model
by asking a question about the visual factor:

oj = V QA(I, fj) (6)

where oj is the answer to the question which we
call visual clue. However, the answer of VQA does
not consider the context of the main question and
therefore may lack the most related information.
To better leverage the contextualized reasoning ca-
pabilities of LLMs, we further propose to prompt
the LLM to reason the potential instantiations of
the visual factors that can support the choices as in
Figure 3:

oij = LLM(fj , ci, q) (7)

For instance, when fj is “category of the plant,"
the potential values for oij may include specific
plant names like “cactus." Then, we could lever-
age the image-text matching (ITM) and image-text
contrastive (ITC) functions of pre-trained VLMs
to select the observation that most align with the
image among the observations for each choice i:

oj = okj (8)

where k = argmaxi{ITM(oij , I) + ITC(oij , I)}
(9)

Finally, we append the visual clues {oj} after the
caption as extra information for LLM to perform
final reasoning:

r2 = LLM({ci}, q, CI , {oj}) (10)

5 Experiments

5.1 Datasets

We mainly evaluate our approach on two
datasets focused on visual commonsense rea-
soning: VCR (Zellers et al., 2019) and
AOKVQA (Schwenk et al., 2022).1 Both datasets
formulate visual commonsense reasoning as 4-
choice QA problems about an image, containing
various visual commonsense understanding and in-
ference problems. VCR dataset focuses on human-
centric visual commonsense reasoning problems.
In contrast, A-OKVQA dataset requires various
commonsense knowledge about common objects
and events in daily life. For A-OKVQA, we use
the validation set with 1145 examples. For VCR

1We provide the result on two direct-answer VCR datasets
– OKVQA and the direct-answer version of AOKVQA in
Appendix. A.2.
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Table 1: Ablations on the effect of LLMs and VLMs on VCR (Zellers et al., 2019) and A-OKVQA (Schwenk et al.,
2022) datasets. We use GPT-3.5-turbo-0613 for LLM-based methods. *Orig means using the declarative sentences
transformed by LLM (Eq.5). *Clue means using the clues generated by LLM for image-text alignment (Eq.11). All
numbers indicate accuracy (%). “Conf" indicates the samples where the LLM-Caption baseline shows confidence in
its initial reasoning, while “!Conf" indicates cases where it lacks confidence.

Decision Model Visual Info
AOKVQA VCR

VCU VCI VCU VCI
Conf !Conf Conf !Conf Conf !Conf Conf !Conf

BLIP2-Pretrain
Orig* 76.5 66.3 56.5 50.9 70.0 56.3 59.2 47.4

LLM Clue* 74.4 63.0 60.2 56.1 70.6 56.7 63.3 49.2

LLM
Caption 78.9 55.1 85.2 50.9 75.3 46.6 65.3 41.9

Caption + VQA Clue 77.5 56.2 82.4 54.9 75.9 51.9 65.3 47.3
Caption + LLM Clue 79.2 65.6 81.5 64.2 72.9 58.1 57.1 52.9

Num. of Examples 289 575 108 173 170 1779 49 1002

dataset, we randomly sample 3000 / 26534 exam-
ples from the validation set for the ablation study,
and sample 500 examples to compare with other
methods due to the GPT4 API cost. We divide the
image from left to right into three bins and name
the person depending on which bin they are located
in when feeding text to VLMs and LLMs, similar
to (You et al., 2023). The performance of both
datasets is evaluated by accuracy.

5.2 Implementation Details and Baselines

In our experiments, we use GPT-3.5-turbo-0613
and GPT-4-0613 as the LLMs for reasoning. To
ensure reproducibility, we set the temperature of
the LLMs to 0. For image captioning, we employ
LLAVA-7B-v1.1. Furthermore, we use the pre-
trained BLIP2 model for image-text alignment and
BLIP2-FlanT5 XL for visual question answering.
The number of in-context examples used in the
prompts shown in Figure 3 is 6, 1, and 3, respec-
tively. All the questions in the in-context examples
are from the training set.

We implement the following training-free base-
lines for comparison: (1) BLIP2-Pretrain (Li
et al., 2023): We use the pre-trained BLIP-2 model
directly to perform image-text alignment on both
datasets. On both datasets, we utilize GPT-3.5-
turbo-0613 to transform the questions and choices
into declarative sentences and feed them to the
BLIP-2 model to calculate the image-text align-
ment score. We select the choice with the highest
alignment score as the answer. (2) IdealGPT (You
et al., 2023): It prompts LLMs to break down the
question and iteratively query a VQA model to an-
swer sub-questions for visual reasoning. In our

experiments, we employ the original source code
of IdealGPT while utilizing the same version of
LLM and VLMs for caption, VQA, and reasoning
as our method.

6 Results and Analysis

6.1 Ablation Study

We conduct ablation studies about VLMs and
LLMs collaboration on VCR and AOKVQA
datasets. Results are shown in Table 1.

How do VLM and LLM compare on visual com-
monsense reasoning? By comparing the first row
and the third row in Table 1, we can validate our
hypothesis that VLMs perform well at VCU prob-
lems and LLMs help VCI problems better. We
observe that, in VCU problems, the VLMs perform
significantly better than LLM reasoning based on
the caption on both datasets, with an average accu-
racy of 63.6% vs. 56.0%. While on VCI problems,
LLM+caption performs better on average at 53.6%
vs. 50.5%. We could also observe that BLIP2 has a
significant performance gap between the two kinds
of problems while LLM performs similarly.

How do visual factors and LLM clue reasoning
help visual commonsense reasoning? We vali-
date the effectiveness of visual factors reasoning
and LLM clue reasoning on both BLIP2-Pretrain
and LLM-based decision paradigms. Here, we de-
scribe how we adapt the clue generation method
(as in Eq. 7) for BLIP2-Pretrain decision paradigm:
we first prompt the LLM to generate the required
visual factors fj , then generate visual clues oij of
these factors that can support each choice i. When
applying the clues to BLIP2-Pretrain, we take the
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Table 2: Comparison between ViCor and other meth-
ods on VCR Q→A task. * Results on full valida-
tion set. † CoT indicates the same setting as ‘Cap-
tion’ baseline in Table. 1: given caption and perform
chain-of-thought reasoning.

Method Acc.(%)

Su
p. R2C (Zellers et al., 2019) 67.3

*MERLOT (Zellers et al., 2021) 79.4

IC
L

BLIP2-Pretrain (Li et al., 2023) 51.2
GPT-3.5
†CoT 43.8
IdealGPT (You et al., 2023) 47.9
ViCor (ours) 55.4
GPT-4
CoT 57.8
ViCor (ours) 59.8

Table 3: Comparison between ViCor and other meth-
ods on A-OKVQA dataset. *Both PromptCap and
Prophet trained VLMs on A-OKVQA dataset as part
of the module. Sup. indicates supervised methods,
and ICL means methods using in-context learning.

Method Acc.(%)

Su
p.

GPV-2 (Kamath et al., 2022) 60.3
*PromptCap (Hu et al., 2022) 73.2
*Prophet (Shao et al., 2023) 76.4
InstructBLIP (Dai et al., 2023) 81.0

IC
L

BLIP2-Pretrain (Li et al., 2023) 65.6
GPT-3.5
CoT 63.3
ViCor (ours) 70.9
GPT-4
CoT 70.3
AssistGPT (Gao et al., 2023) 74.7
ViCor (ours) 75.6

average of the image-text alignment scores within
the same choice as the image-text alignment score
for the choice i:

Si =
1

n

∑

j

(ITM(I, oij) + ITC(I, oij)) (11)

where n is the number of required visual factors
determined by LLM. The choice with the highest
score will be selected.

From Table 1, we can first find that visual factors
and visual clues are less helpful in VCU problems.
On VCU problems, besides directly taking the con-
cept being asked by the original question as the vi-
sual factor. The model will also consider low-level
visual features as visual factors for the question.
For example, for the question What is the event
in the image, and the choice dinner, the visual
factor could be objects in the image, and the
reasoned visual clues could be plates with food
on the table.

On BLIP2-Pretrain, using clues for image-text
alignment is not better than using directly trans-
ferred declarative sentences. This validates that
BLIP2 can already align visual features with dif-
ferent concepts well. However, introducing visual
factors and observations as extra context improves
performance on LLM reasoning, especially when
the LLM is not confident about its initial judgment
with only caption as context. In this case, the perfor-
mance of LLM reasoning (‘Cap + Clue’ in Table 1)
is comparable with pre-trained BLIP2.

For VCI problems, visual factors and visual clue

generations help both reasoning paradigms. First,
the improvement in the BLIP2-Pretrain paradigm
validates that (1) pre-trained BLIP2 cannot well-
align statements that go beyond literal visual con-
tent, requiring commonsense inference; (2) LLM
can reason about the visual factors that may con-
tribute to supporting candidate commonsense infer-
ences, and guide the VLM to focus on relevant fac-
tors accordingly. Second, the improvement in the
LLM reasoning paradigm shows that LLM clues
successfully provide subtle details of the scene that
are crucial for solving the problem. Third, visual
clues reasoned by LLM are better than VQA as
the visual information provider. There are mainly
two reasons. First, the pre-trained VLM sometimes
could not understand or correctly answer the ques-
tion due to the lack of language alignment. Second,
the VQA model lacks the main question as the
context and may not get the intention of the vi-
sual factor. Therefore, it may produce irrelevant
answers. We provide examples to further illustrate
these in Section 6.3.

How to determine the reasoning process based
on confidence and problem category for better
LLM and VLM collaboration? When deciding
the reasoning process, we need to consider both the
performance and efficiency, evaluating by the num-
ber of LLM calls. From Table. 1, we can observe
that when the LLM is confident about its initial
reasoning, the performance is the best or almost
the best on both VCU and VCI problems. There-
fore, using LLM+caption is the best choice. When
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Someone just had an accident in front 

of them

Question What is person in the 
middle standing up to do?

Why is woman holding 
umbrella?

What is the appearance of 
the grass indicating?

Choices A: washing dishes B: serve 
someone 

A: block sun B: repelling 
rain C: to dance

A: wind  B: rain C: drought
D: still wind 

LLAVA Caption A man and a woman 
sitting at a table in a 
restaurant. The man is 
holding a bottle.

A group of people sitting 
at a table outside, with a 
woman sitting at the end 
under an umbrella.

A field with a tractor, a 
horse, and a cow. The 
tractor is parked in the 
grass. 

Initial Evaluation Given it’s in a restaurant 
and the man is holding a 
bottle, it is likely that he is 
serving someone. 

Since the caption does not 
mention any bad weather 
such as rain, the umbrella 
is to block sun.

The animals may not stand 
in rain or drought. The grass 
seems not moving – no 
strong wind.

Category VCU  VCI  VCI

BLIP2-ITA results A A D

Visual factors N/A The weather Appearance of the grass

LLM clues N/A A: sunny B: rainy C: sunny A: sway B: wet C: wither D: 
motionless

VQA result N/A rainy It is a grassy field

Final result A: washing dishes B: repelling rain A: wind

Ground truth A B A

1. VCU, no info, ITM correct
2. VCI, ITM wrong, init wrong
3. VCI, no info, VQA worse (grass)

Figure 4: Qualitative examples. All the examples are in the case of initial reasonings are not confident. Left: An
example in the VCR dataset, where the ITA corrects the initial reasoning. Middle: An example in the A-OKVQA
dataset, where the LLM corrects the initial reasoning after giving the observation of the visual factor. Right: An
example in the A-OKVQA dataset, where the reasoned clue provides more useful information than VQA.

the LLM is not confident about its initial reason-
ing on VCI problems, LLM+Caption+LLM clue
significantly outperforms other decision paradigms.
On VCU problems, we can observe that the perfor-
mance of BLIP2 is similar to LLM+Caption+LLM
clue. However, the LLM+Caption+LLM clue re-
quires five LLM calls, which is three times more
than using BLIP2. Therefore, using BLIP2-ITA is
the best choice in this case.

6.2 Main Results

VCR The results on VCR dataset are in Table 2.
Our method achieves the best result compared
with other training-free methods. Specifically, our
method outperforms IdealGPT (You et al., 2023)
since it is able to leverage the visual understanding
abilities of VLMs more effectively by considering
the types and definitions of problems. However, we
notice that there is still a significant gap between
ICL methods and methods with supervised train-
ing. This could be due to the loss of information
in approximating the naming and labeling of the
persons mentioned in Section 5.1.

A-OKVQA On A-OKVQA dataset, on both GPT
models, our method can improve on chain-of-
thought baseline by a significant margin. Com-
pared with concurrent method AssistGPT (Gao
et al., 2023), which utilizes GPT4 to call more vi-
sual tools such as object detection (Liu et al., 2023),
text detection, and region grounding (Wang et al.,
2022), our method with only BLIP2 and LLAVA
can achieve better results. Meanwhile, we can ob-
serve that our method ViCor, without any training
on the dataset, can achieve results close to the best
supervised methods. This shows that our analysis
and modeling for visual commonsense reasoning
makes our framework tackle the VCR problems
more efficiently.

6.3 Qualitative Examples

In Fig. 4, we demonstrate several qualitative exam-
ples. The left example shows a case where the prob-
lem is classified as VCU, and the BLIP2-Pretrain
selects the correct answer. The middle example
presents a case where the initial evaluation is incor-
rect, and both the VQA and clue reasoning methods
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give the correct observation for the visual factor
‘weather’, based on which the LLM selects the
correct answer. The BLIP2-Pretrain here selects
‘block sun’ due to the lighting condition of the im-
age. The example on the right demonstrates a case
when the LLM reasoned answer is better than the
answer generated by the VQA model. Here, the
VQA does not understand the intention of the vi-
sual factor without the context of the main question.
The LLM reasoned answer, however, can provide
the most relevant information to the question and
help the final reasoning. The BLIP2-Pretrain fails
here due to the textual similarity between ‘wind’
and ‘still wind’.

7 Conclusion

In this work, we study the collaboration of pre-
trained vision-language models and large-language
models on a complex problem – visual common-
sense reasoning (VCR). We analyze and validate
the distinct advantages of LLMs and VLMs by test-
ing them on two different types of VCR problems.
Based on this, we propose the ViCor framework
that efficiently uses the visual understanding ca-
pabilities of VLMs and commonsense reasoning
capabilities of LLMs to overcome the challenges
in VCR. The experiment results validate the effec-
tiveness of our framework. We believe our study
can provide insights into the roles and the collabo-
ration of LLMs and VLMs in vision and language
problems.

8 Limitation and Potential Risk

In our framework, we use text as the communica-
tion medium between LLMs and VLMs. The loss
of visual details caused by captions may be hin-
dering certain scenarios, and thus, our method lags
behind supervised best-performing methods. Fu-
ture work could explore incorporating our designs
into an end-to-end fine-tuning approach. Large lan-
guage models (LLMs) are a core component of our
framework. Therefore, our method may inherit the
potential risks from LLMs, such as hallucination
and potentially offensive language.
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A Additional Results

A.1 Results on More LLM Decoding
Configurations

To validate the robustness of our method, we ran
the experiments on the VCR dataset with more
decoding configurations using LLM + Caption +
LLM Clue decision branch. Specifically, we ran
on two more LLM decoding temperatures 0.1 and
0.2, and used different in-context examples for the
prompt in Fig.3 (right) to guide the LLM to think
about observations for visual factors based on can-
didate choices. From the results in Table. 4, we
can observe that different decoding configurations
influence the results by a small margin and do not
affect the main conclusions.

A.2 Results on Open-Ended VCR

We adapt our method and baselines to two open-
ended VCR datasets, the OKVQA (Marino et al.,
2019) dataset and the open-ended version of A-
OKVQA. For OKVQA, we use the full validation
set, which contains 5046 examples. The results
are in Table. 5. In these experiments, We use GPT-
3.5-Turbo for LLM modules. We use the Cap-
tion+VQA clue version of our method in Figure
1 to tackle unconfident VCI problems. As shown
above, our framework can still leverage the advan-
tage of both VLMs and LLMs to achieve better
results thanks to the better collaboration between
them, e.g., VLMs utilization based on problem clas-
sification and active visual information acquisition.

A.3 Alternative Visual Information Source

Besides the general caption, there are other alterna-
tive visual information sources for LLMs. To better
demonstrate the effectiveness of our active visual
information acquisition approach, we use dense
captions to provide visual information instead of
general captions on AOKVQA dataset. For dense
captions, we use a state-of-the-art dense caption
model GRiT (Wu et al., 2022). The results are
shown in Table. 6.

We find that dense captions have a significant
negative impact on performance. We identify sev-
eral disadvantages of using dense captions as vi-
sual information, which could potentially lead to
a decline in performance. (1) They usually lack
a high-level understanding of the image content,
which is essential to answer many questions. (2)
Although they provide a caption for each object,
these captions are general and still lack the key in-

formation about an object to answer the question,
e.g. action of a human, or the color of the cloth.
(3) Since dense captions are focused solely on ob-
jects, they neglect broader contextual information
such as weather conditions. (4) The captions for
most objects are not useful and could mislead or
confuse LLMs due to overwhelming information.
This further shows that acquiring important visual
information based on the question context is effec-
tive.
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Table 4: Ablations on VCR with more decoding configurations.

Decision Model Decoding Config VCU VCI
Conf !Conf Conf !Conf

LLM + Caption + LLM Clue

Orig 72.9 58.1 57.1 52.9
Temp 0.1 72.4 58.8 57.1 53.9
Temp 0.2 72.4 58.5 61.2 52.2

ICL examples 74.7 56.7 59.2 54.2

Num. of Examples 170 1779 49 1002

Table 5: The result of ViCor on open-ended VCR datasets.

Method OKVQA AOKVQA

LLM+Caption 34.6 44.1
BLIP2-T5XL 36.2 49.7
ViCor (ours) 38.7 50.9

Table 6: The result of ViCor on OKVQA dataset.

Method Accuracy

LLM+Caption 63.3
LLM+Dense Caption 40.5

ViCor (ours) 70.9
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