@inproceedings{joshi-etal-2024-isign,
title = "i{S}ign: A Benchmark for {I}ndian {S}ign {L}anguage Processing",
author = "Joshi, Abhinav and
Mohanty, Romit and
Kanakanti, Mounika and
Mangla, Andesha and
Choudhary, Sudeep and
Barbate, Monali and
Modi, Ashutosh",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.643/",
doi = "10.18653/v1/2024.findings-acl.643",
pages = "10827--10844",
abstract = "Indian Sign Language has limited resources for developing machine learning and data-driven approaches for automated language processing. Though text/audio-based language processing techniques have shown colossal research interest and tremendous improvements in the last few years, Sign Languages still need to catch up due to the need for more resources. To bridge this gap, in this work, we propose \textbf{iSign}: a benchmark for Indian Sign Language (ISL) Processing. We make three primary contributions to this work. First, we release one of the largest ISL-English datasets with more than video-sentence/phrase pairs. To the best of our knowledge, it is the largest sign language dataset available for ISL. Second, we propose multiple NLP-specific tasks (including SignVideo2Text, SignPose2Text, Text2Pose, Word Prediction, and Sign Semantics) and benchmark them with the baseline models for easier access to the research community. Third, we provide detailed insights into the proposed benchmarks with a few linguistic insights into the working of ISL. We streamline the evaluation of Sign Language processing, addressing the gaps in the NLP research community for Sign Languages. We release the dataset, tasks and models via the following website: https://exploration-lab.github.io/iSign/"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="joshi-etal-2024-isign">
<titleInfo>
<title>iSign: A Benchmark for Indian Sign Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhinav</namePart>
<namePart type="family">Joshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Romit</namePart>
<namePart type="family">Mohanty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mounika</namePart>
<namePart type="family">Kanakanti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andesha</namePart>
<namePart type="family">Mangla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudeep</namePart>
<namePart type="family">Choudhary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Monali</namePart>
<namePart type="family">Barbate</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashutosh</namePart>
<namePart type="family">Modi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Indian Sign Language has limited resources for developing machine learning and data-driven approaches for automated language processing. Though text/audio-based language processing techniques have shown colossal research interest and tremendous improvements in the last few years, Sign Languages still need to catch up due to the need for more resources. To bridge this gap, in this work, we propose iSign: a benchmark for Indian Sign Language (ISL) Processing. We make three primary contributions to this work. First, we release one of the largest ISL-English datasets with more than video-sentence/phrase pairs. To the best of our knowledge, it is the largest sign language dataset available for ISL. Second, we propose multiple NLP-specific tasks (including SignVideo2Text, SignPose2Text, Text2Pose, Word Prediction, and Sign Semantics) and benchmark them with the baseline models for easier access to the research community. Third, we provide detailed insights into the proposed benchmarks with a few linguistic insights into the working of ISL. We streamline the evaluation of Sign Language processing, addressing the gaps in the NLP research community for Sign Languages. We release the dataset, tasks and models via the following website: https://exploration-lab.github.io/iSign/</abstract>
<identifier type="citekey">joshi-etal-2024-isign</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.643</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.643/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>10827</start>
<end>10844</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T iSign: A Benchmark for Indian Sign Language Processing
%A Joshi, Abhinav
%A Mohanty, Romit
%A Kanakanti, Mounika
%A Mangla, Andesha
%A Choudhary, Sudeep
%A Barbate, Monali
%A Modi, Ashutosh
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F joshi-etal-2024-isign
%X Indian Sign Language has limited resources for developing machine learning and data-driven approaches for automated language processing. Though text/audio-based language processing techniques have shown colossal research interest and tremendous improvements in the last few years, Sign Languages still need to catch up due to the need for more resources. To bridge this gap, in this work, we propose iSign: a benchmark for Indian Sign Language (ISL) Processing. We make three primary contributions to this work. First, we release one of the largest ISL-English datasets with more than video-sentence/phrase pairs. To the best of our knowledge, it is the largest sign language dataset available for ISL. Second, we propose multiple NLP-specific tasks (including SignVideo2Text, SignPose2Text, Text2Pose, Word Prediction, and Sign Semantics) and benchmark them with the baseline models for easier access to the research community. Third, we provide detailed insights into the proposed benchmarks with a few linguistic insights into the working of ISL. We streamline the evaluation of Sign Language processing, addressing the gaps in the NLP research community for Sign Languages. We release the dataset, tasks and models via the following website: https://exploration-lab.github.io/iSign/
%R 10.18653/v1/2024.findings-acl.643
%U https://aclanthology.org/2024.findings-acl.643/
%U https://doi.org/10.18653/v1/2024.findings-acl.643
%P 10827-10844
Markdown (Informal)
[iSign: A Benchmark for Indian Sign Language Processing](https://aclanthology.org/2024.findings-acl.643/) (Joshi et al., Findings 2024)
ACL
- Abhinav Joshi, Romit Mohanty, Mounika Kanakanti, Andesha Mangla, Sudeep Choudhary, Monali Barbate, and Ashutosh Modi. 2024. iSign: A Benchmark for Indian Sign Language Processing. In Findings of the Association for Computational Linguistics: ACL 2024, pages 10827–10844, Bangkok, Thailand. Association for Computational Linguistics.