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Abstract

In the current landscape of large language
models (LLMs), the process of instruction
tuning serves as an essential step. Consider-
ing the high computing power overhead, data-
efficient instruction tuning was proposed to
reduce the training data size in this process,
aiming at selecting high-quality instructional
data. Nevertheless, we argue that most current
data-efficient instruction-tuning methods are
highly dependent on the quality of the original
instruction-tuning dataset. When it comes to
datasets synthesized by LLMs, a common sce-
nario in this field, dirty samples will even be se-
lected with a higher probability than other sam-
ples. To address these challenges, we utilized
external knowledge (relevant examples or para-
graphs) to evaluate those samples synthesized
by LLMs with an in-context-based relative pre-
dictive entropy. Based on the new metric, we
proposed a framework, dubbed as RECOST,
which integrates external-knowledge-base re-
ranking and diversity-consistent sampling into
a single pipeline. Through extensive experi-
ments on several synthetic datasets (Alpaca and
Alpaca-gpt4), we demonstrate the effectiveness
of our method and achieve even better results
with only 1% of the full dataset.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020) have demonstrated their remarkable capabili-
ties in numerous fields of natural language process-
ing (NLP) with the advancing of training datasets
and the scale of model parameters. Behind this
phenomenon, instruction tuning serves as an es-
sential step to help pre-trained LLMs align to hu-
man cognition (Ouyang et al., 2022; Peng et al.,
2023; Chung et al., 2022). Instruction tuning refers
to fine-tuning the LLMs on instruction-response
pairs to endow LLMs with instruction-following
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capability and activate the knowledge gained in the
pre-training period.

In the past two years, three types of instruction-
following datasets have emerged (Wang et al.,
2023): those based on traditional NLP tasks
(eg. Flan v2 (Wei et al.; Longpre et al., 2023)),
those based on high-quality manual annotation (eg.
LIMA (Zhou et al., 2023)), and those synthesized
by LLMs (eg. Alpaca (Taori et al., 2023)). Among
these, LIMA asserts that the quality of instruction-
following datasets is far more important than their
quantity. Thus, data-efficient instruction tuning
is proposed to reduce the data size in instruction
tuning without compromising the models’ perfor-
mance (Zhou et al., 2023; Chen et al., 2023a).

Contemporary works in data-efficient instruc-
tion tuning predominantly concentrate on selecting
high-quality data from instruction datasets synthe-
sized by LLMs (Li et al., 2023a; Chen et al., 2023b;
Li et al., 2023c). Most approaches involve eval-
uation based on its proposed metrics, primarily
centered around metrics related to predictive en-
tropy (Kadavath et al., 2022). We simply conclude
these methods to synthetic-knowledge-guided ones
as they select data points by using synthetic data
points as prior knowledge.

However, Duan et al. figured out that predic-
tive entropy is not reliable enough. As shown in
Figure 1, selection based on predictive entropy
still results in the sampling of a non-negligible
proportion of noisy data. What’s even more sur-
prising is that the higher the quality ranking, the
greater the probability that samples contain noise,
which is completely contrary to the original design
intention. We argue that these methods heavily
rely on the quality of the curated datasets which
serve as the pre-experience (Li et al., 2023a) or test
set (Li et al., 2023c) in their processes and are sus-
ceptible to the influence of outlier samples within
the original datasets. Therefore, in data selection
under synthetic datasets scenarios, we argue that
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synthetic-knowledge-free methods are still under-
explored. This issue currently imposes significant
limitations on the development of the field of data-
efficient instruction-tuning.
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Figure 1: The dirty data hit rates according to its predic-
tive entropy calculated by LLaMA-2-7b. The horizontal
axis represents the percentage ranking, while the verti-
cal axis denotes the proportion of corrupted data within
the data preceding that percentage threshold. Given the
number of dirty data in the top i data points as di, the hit
rate at i is calculated by di/i. The dirty data is collected
by comparing Alpaca with Alpaca-cleaned.

To address the challenge posed by the limita-
tions of the predictive entropy in vanilla LLMs as
outlined above, we utilize external information to
evaluate samples synthesized by LLMs. Despite
the suboptimal performance of this dataset in gen-
erative tasks (Wang et al., 2023), its authenticity
is significantly assured. But in the data-efficient
instruction-tuning scenario of LLM, this cost is un-
acceptable. Recognizing the importance of main-
taining efficiency, we instead intuitively leverage
pre-trained LLMs’ intrinsic in-context learning
(ICL) capabilities, treating these truthful samples
as demonstrations. Building on this foundation, we
introduce a concept: in-context-knowledge-based
relative predictive entropy, which serves as another
dimension of uncertainty for vanilla LLMs.

In this paper, we propose RECOST (REtrieval,
RE-rank, COreset sampling, and Supervised fine-
Tuning), a framework that encompasses an in-
context-knowledge-based re-ranking module and
a diversity-consistent sampling module to avoid
an overly homogeneous data distribution after re-
ranking. With extensive experiments on synthetic
datasets including Alpaca and Alpaca-gpt4, RE-
COST demonstrates its superiority over previous
methods and surpasses remarkably the full-trained

model with merely 1% and 10% training data on
three benchmarks including the Alpagasus test
sets (Chen et al., 2023b; Li et al., 2023a), the Open-
LLM benchmark (Gao et al., 2023) and AlpacaE-
val (Li et al., 2023b) benchmark.

All in all, our work explores how to instruct-tune
LLMs under data-efficient scenarios with synthetic
datasets. Our contributions can be summarized as
follows:

• We firstly propose RECOST, a method to
mine high-quality data points from a synthetic
dataset with consideration of the truthful-
knowledge-based uncertainty and diversity.

• We conduct extensive experiments on multiple
synthetic datasets and our method surpasses
the fully trained model by utilizing only 1%
of the full dataset.

2 Related Work

2.1 Instruction Tuning
Instruction tuning has been regarded as an essential
step to align pre-trained LLMs with human cogni-
tion (Ouyang et al., 2022; Chung et al., 2022; Peng
et al., 2023). This methodology refers to the super-
vised fine-tuning of pre-trained LLMs on datasets
designed for instruction following. Each dataset
entry comprises a pair, including an instruction and
its corresponding response.

2.2 Data-efficient Instruction Tuning
As LIMA (Zhou et al., 2023) makes the statement
that less is more for alignment, a new realm called
data-efficient instruction tuning appears to help
work out the bottleneck of data quality in this field.
Recent works on data-efficient instruction tuning
mainly quantify the quality of instruction data in
two folds: the feedback from close-source LLMs
and the score calculated by open-source LLMs
based on a proposed metric.

Alpagasus (Chen et al., 2023b) first dives into
this field by employing ChatGPT to quantify the
quality of instruction data by rating each data point,
selecting those with higher scores, and supervised
fine-tuning the LLMs with the data points with top
scores. This work exploits a feasible way to sample
high-quality data with feedback from close-sourced
LLMs. Upon this, Deita (Liu et al., 2024) utilizes
the feedback from ChatGPT to train scorer models
to quantify the instruction data from the dimension
of complexity and quality.
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Figure 2: Overview of our proposed method. We start by retrieving in-context knowledge for each under-quantified
data point. Two scores are produced by the vanilla LLaMA model on conditions with in-context knowledge or
without that. The under-selected data points will be re-ranked by two ranks according to the produced two types
of scores. Diversity-consistent sampling will be employed to select the qualified data points to finally supervised
fine-tune the language models.

Another type of method, resembling the
paradigm of active learning, tends to select data
points based on the under-tuned model itself and
an initial subset of the full dataset. Instruction
mining (Cao et al., 2023) summarizes the perfor-
mance of several common metrics on data-efficient
instruction tuning and proposes a complex equation
to calculate the instruction data quality explicitly.
Li et al. proposes Instruction-Following Difficulty
(IFD), a self-guided method for mining data points
with higher IFD scores. Nuggets (Li et al., 2023c)
introduces one-shot learning as implicit instruction
tuning to guide the data selection for instruction
tuning. Nuggets show promising results on some
benchmarks while the selection process is compu-
tationally costly. Our method can also be regarded
as one type of this but is more computationally
efficient.

2.3 Synthetic Instruct-following Datasets

Self-instruct (Wang et al., 2022) serves as the
milestone research in utilizing LLMs to synthe-
size instruct-following datasets. It starts from a
small seed dataset and produces a fantastic instruc-
tion dataset with GPT3. Upon this method, Al-
paca (Taori et al., 2023) was proposed by trans-
ferring self-instruct to OpenAI’s text-davinci-003
engine. Alpaca-gpt4 shares the same prompts
with the original Alpaca while using GPT4’s re-
sponse (Peng et al., 2023) as the answer to the

prompts. Evol-instruct provides another paradigm
for data synthesis by using ChatGPT to change
the complexity of instructions and has generalized
to multiple domains (Xu et al., 2023; Luo et al.,
2023b,a). In this paper, we primarily take synthetic
instruct-following datasets into consideration.

3 Methodology

In this section, we will dive into the main method-
ology of RECOST. Figure 2 briefly illustrates the
framework of our method.

3.1 Preliminaries
We start by defining the concept of predictive en-
tropy. Predictive Entropy (PE), described in (Ka-
davath et al., 2022), is a popular metric to measure
the uncertainty of LLMs. It’s defined as the entropy
over the whole response y, which is equivalent to
the accumulation of the token-wise entropy:

PE(x, y) = − log p(y|x)
=

∑

i

− log p(zi|y<i, x)
(1)

where x, y, zi refer to the instruction, the response
and the i-th token in y, respectively.

3.2 Motivation and Methodological Prelude
In this section, we will give an overview to eluci-
date the dilemma of current data-efficient instruc-
tion tuning and the insights of RECOST.
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Most methods in data-efficient instruction tun-
ing rely on building their metrics with predictive
entropy. However, as highlighted by Duan et al.,
predictive entropy fails to adequately characterize
LLMs’ uncertainty. Besides, as shown in Figure 1
and Table 1, after sorting samples with their cor-
responding predictive entropy, the hit rate of dirty
data has consistently maintained at an unacceptable
level.

Rank <100 <200 <300 <400 <500

Hit Rates 12.9% 11.9% 11.3% 11.2% 10.6%

Table 1: The hits rates on dirty data when sorting sam-
ples with predictive entropy.

We hypothesize that this may be attributable
to its excessively high correlation with response
length, coupled with the tendency of LLMs to pro-
duce longer responses due to hallucination while
synthesizing data.

Besides, since methods such as IFD (Li et al.,
2023a) introduce a subset of the synthetic dataset
as the so-called pre-experience, the potential noise
in sampled synthetic data points might further exert
a negative impact on language models.

Thus, we come up with introducing external
knowledge to propose a new metric and guide the
data selection process. Originating from traditional
NLP tasks, despite its poor performance in genera-
tive tasks (Wang et al., 2023), Flan v2 is selected
as an external knowledge source due to its low cost,
vast data volume, and reliability. Considering effi-
ciency, we refrain from fine-tuning the model on
external knowledge; instead, we leverage the in-
context learning capabilities of pre-trained LLMs
to measure their external-knowledge-based condi-
tional predictive entropy. Recall the equation 1,
we here define it as in-context-knowledge-guided
predictive entropy PEic based on the in-context
knowledge:

PEic(s, x, y) = − log p(y|x, s)
=

∑

i

− log p(zi|y<i, x, s)
(2)

where s refers to the in-context knowledge. To
further mitigate the randomness of demonstration
selection, a retrieval technique is introduced for
robustness.

Based on the foregoing, we will elaborate on
the external-knowledge-based re-ranking module

and the diversity-consistent sampling module of
RECOST in the following sections.

3.3 External-knowledge-based Re-ranking

Previous research has shown that retrieved similar
demonstrations can help improve LLMs’ in-context
learning ability (Rubin et al., 2021; Luo et al., 2024;
Wang et al., 2024; Pan et al., 2024; Gao et al., 2024).
Intuitively, when it comes to synthetic samples, re-
liable data points will gain more from retrieved
demonstrations than those less reliable ones. There-
fore, based on predictive entropy and our proposed
in-context-knowledge-guided predictive entropy,
we further define the difference between the two
entropies as the relative predictive entropy (RPE):

PEr(x, y) = PE(x, y)− PEic(s, x, y) (3)

On the one hand, as similar demonstrations can
promote language models’ in-context learning abil-
ity (Luo et al., 2024), those data points with higher
relative uncertainty can also be regarded as the
more reliable ones. On the other hand, it’s ac-
knowledged that in-context learning is conducting
an explicit gradient descent. From this perspective,
a higher relative uncertainty signifies a greater sen-
sitivity to external knowledge, thereby rendering
such samples more amenable to learning.

Furthermore, to take both uncertainty and rela-
tive uncertainty into consideration, we define the
mixed rank Rm as the weighted average of the
two ranks corresponding to the two types of uncer-
tainty:

R(i)
m = w ∗R(i)

u + (1− w) ∗R(i)
ru (4)

where R
(i)
u and R

(i)
ru refer to the ranks of the i-th

data point in the degree of uncertainty and relative
uncertainty respectively.

At last, we re-rank all the data points with their
corresponding mixed rank to generate the re-ranked
instruction dataset.

3.4 Diversity-consistent Sampling

To enable the diversity of the sampled subset, we
add an additional stage after re-ranking to increase
the diversity further. Core-set sampling (Sener and
Savarese, 2018) is a technique for selecting a repre-
sentative subset of a dataset, allowing for efficient
approximation of solutions to problems by reduc-
ing computational complexity without significantly
compromising result quality.
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However, integrating greedy core-set sampling
into our framework directly fails to make itself
aware of the mixed ranks in Equation 4. Thus, in
this section, we introduce a sliding window mech-
anism, which is illustrated in Algorithm 1, to con-
sider the diversity of the sampled subset with aware-
ness of its overall uncertainty.

Algorithm 1 Core-set sampling with a sliding win-
dow.
Input: The re-ranked instruction dataset D, the
sampling size s, the initial subset size si, the sliding
window size w, and the tolerance t.
Output: The sampled subset Ds.

1: Ds ← D[: si]
2: W ← D[si : si + w]
3: for j ← 1 to w do
4: T [j]← t
5: end for
6: for k ← 1 to s− si do
7: d← FarthestFirst(Ds,W )
8: Ds ← Ds ∪W [d]
9: W.pop(d);T.pop(d)

10: update(W,T )
11: W.push(d);T.push(t)
12: end for
13: return Ds

We start by sampling the top data points in the
re-ranked instruction as an initial set. Similar to
conventional core-set sampling, our algorithm also
samples data points iteratively. However, within
each iteration, a sliding window mechanism is in-
troduced to enable the algorithm to only sample
from the under-selected data points with higher
uncertainty and relative uncertainty. Moreover, to
further increase the diversity of the sampled subset,
we introduce a tolerance t for each data point in
the sliding window to make sure each of them can
only be considered for t times at most. After every
iteration, data points with zero tolerance will be
erased from the sliding window.

4 Experiments Settings

4.1 Datasets

Self-instruct (Wang et al., 2022) is a milestone
method for constructing instruction-tuning datasets
by distilling from closed-sourced LLMs. The Al-
paca (Taori et al., 2023) dataset employed self-
instruct method to distill instruction data from Chat-
GPT or GPT-4 (Cao et al., 2023) and serves as a

commonly used dataset for instruction tuning. In
this paper, we start with ChatGPT and GPT-4 ver-
sions of Alpaca.

4.2 Benchmarks
For evaluation, we use three benchmarks to evalu-
ate our method.

For the general ability of instruction-tuned
language models, we use the OpenLLM bench-
mark1, which includes four datasets: Arc (Ya-
dav et al., 2019), Hellaswag (Zellers et al., 2019),
MMLU (Hendrycks et al., 2021), and Truth-
fulqa (Lin et al., 2022). Following the general
setting, we use 25-shot for Arc dataset, 10-shot
for the Hellaswag dataset, 5-shot for the MMLU
dataset, and 0-shot for the Truthfulqa dataset.

Another way to evaluate the instruction-tuned
language models is to use LLMs to evaluate the
responses generated by those models. We use the
AlpacaEval2 benchmark (Li et al., 2023b) to eval-
uate the open-end generation ability. To be spe-
cific, we use GPT4-turbo to choose the preferred
response generated by our fine-tuned models and
OpenAI’s text-davinci-003 for a given instruction.
The overall win rate will be devoted to evaluating
the generation ability of language models.

Moreover, we follow previous research with sim-
ilar settings and evaluate our proposed method with
fully trained models Alpagasus test sets (Vicuna,
Koala, WizardLM, and Self-Instruct) and IFD’s ad-
ditional test set (LIMA). In detail, we use GPT4 to
rate two responses from two models on a scale of
1 to 10, which implies accuracy and relevance. To
dismiss the potential positional bias, we also follow
the ’Win-Tie-Lose‘ rule to judge the two responses
both obversely and reversely:

• Wins: RECOST wins twice, or wins once and
draws once.

• Ties: RECOST draws twice, or wins once and
loses once.

• Loses: RECOST loses twice, or loses once
and draws once.

4.3 Implementation Details
For the retrieving period, we use a subset of Flan
v23 as the knowledge source considering time ef-

1https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

2https://github.com/tatsu-lab/alpaca_eval
3https://huggingface.co/datasets/sordonia/

flan-10k-flat
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Method Data size OpenLLM Benchmark AlpacaEval
Arc Hellaswag MMLU Truthfulqa Avg

LIMA (Zhou et al., 2023) 1000 55.55 81.55 47.74 47.23 58.02 26.58

Alpaca Results

Full Alpaca 52002 (100%) 54.18 78.21 45.80 42.05 55.06 27.75
IFD (Li et al., 2023a) 3111 (6%) 57.94 80.37 44.19 40.62 55.78 36.78

Random* 520 (1%) 54.10 78.22 47.52 39.77 54.90 26.52
Predictive Entropy* 520 (1%) 55.03 77.20 45.18 43.84 55.31 35.59

RECOST (ours) 520 (1%) 56.48 77.73 45.80 44.27 56.07 39.19

Alpaca-gpt4 Results

Full Alpaca-gpt4 52002 (100%) 56.57 80.72 49.06 54.51 60.21 61.80
Random* 5200 (10%) 55.63 80.87 48.52 51.27 59.07 55.92

Predictive Entropy* 5200 (10%) 57.59 81.19 47.95 52.13 59.72 60.39
RECOST (ours) 5200 (10%) 57.68 80.63 48.53 52.11 59.74 63.35

Table 2: Performance of RECOST on the OpenLLM Benchmark and AlpacaEval. The methods marked with *
are the data-efficient instruction-tuning results we implemented based on the corresponding metrics, for better
comparison with our metric. RECOST outperforms all previous methods on AlpacaEval and is comparable on
OpenLLM Benchmark with a fraction of training data of them.

ficiency, which includes 10 million samples. Fol-
lowing the settings of Zhang et al., we use llm-
embedder as our retriever and retrieve 5 related
demonstrations for each data point.

We choose LLaMa-2-7b as the base model to
validate our proposed method. All the models are
trained with the Adam optimizer with a batch size
of 64 and a 2e-5 learning rate for 3 epochs as offi-
cial Alpaca.

5 Experiments Results and Analysis

In this section, we present the main results of our
method on the three benchmarks mentioned in Sec-
tion 4.2. Moreover, we conduct extensive ablation
studies based on several possible factors.

5.1 OpenLLM Benchmark and AlpacaEval
Benchmark

The experimental results of OpenLLM Benchmark
and AlpacaEval Benchmark are presented in Ta-
ble 2.

Concerning the OpenLLM Benchmark, at-
tributable to its constrained output domain, abbrevi-
ated output duration, and the assurance of a stochas-
tic interval, our methodology realizes a marginal
enhancement. In the context of AlpacaEval, as it
constitutes an open-ended generation endeavor, our
strategy markedly surpasses alternative methodolo-
gies by supplying data of superior quality.

Specifically, for the Alpaca dataset, RECOST
outperforms remarkably the fully trained Alpaca

model and random selection on both benchmarks.
Besides, it surpasses the previous method with even
less data. As for the Alpaca-gpt4 dataset, which is
of superior quality, RECOST still achieves compa-
rable outcomes to those of full training while only
utilizing 10% of the dataset volume, significantly
surpassing the results of random sampling.

5.2 Alpagasus Test Set
Following Alpagasus (Chen et al., 2023b) and
IFD (Li et al., 2023a), we further compare our
method with fully trained models on Alpagasus test
sets (Vicuna, Koala, WizardLM, and Self-Instruct)
and IFD’s additional test set (LIMA). Figure 3a
gives

As shown in Figure 3, RECOST shows promis-
ing results over the fully trained models on both
datasets and only lags on one of the test sets on the
Alpaca dataset.

5.3 Ablation Study
To evaluate the robustness of our method, we con-
duct extensive ablation experiments based on the
following factors.

5.3.1 Ablation on Knowledge Source
Different External Knowledge Sources Besides
Flan v2, inspired by retrieval-based generation
(RAG), we also explore our method with knowl-
edge from raw text. Following the settings of Self-
RAG, we retrieve related paragraphs with the under-
selected instruction data. To be specific, we also
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Figure 3: Results on Alpagasus Test Set. Figure 3a and
Figure 3b demonstrate RECOST’s performance com-
pared to models fully trained on Alpaca and Alpaca-gpt4
respectively.

retrieve five paragraphs as in-context knowledge
for every data point. As shown in Table 3, RE-
COST with Wikipedia as external knowledge also
achieves promising results on both datasets. How-
ever, due to the lack of RAG capability for vanilla
LLMs, RECOST (Wiki) is slightly inferior to RE-
COST (Flan v2) but still comparable with previous
work.

Different External Knowledge Types To find
out how external knowledge affects the final perfor-
mance within our RECOST, we further explore this
by conducting two experiments: one for random
truthful demonstrations and another for synthetic
demonstrations.

Specifically, synthetic in-context knowledge
refers to retrieving similar demonstrations from
the Alpaca dataset itself, while random in-context
knowledge refers to utilizing random demonstra-
tions as in-context knowledge. Table 4 shows the
effects in dimensions of both truthfulness and sim-
ilarity of in-context knowledge. The original RE-
COST outperforms the two mentioned in-context
knowledge types on all subsets and the overall

Method Data size OpenLLM AlpacaEval

Alpaca Results

Full Alpaca 52002 55.06 27.75
RECOST (Wiki) 520 55.51 37.76

RECOST (Flan v2) 520 56.07 39.19

Alpaca-gpt4 Results

Full Alpaca-gpt4 52002 60.21 61.80
RECOST (Wiki) 5200 59.78 61.61

RECOST (Flan v2) 5200 59.74 63.35

Table 3: Performance of RECOST based on different
knowledge sources. RECOST (Wiki) and RECOST
(Flan v2) refer to RECOST with Wikipedia and Flan v2
as the external knowledge source respectively.

AlpacaEval
In-context Knowledge Type

Synthetic Random Retrieved

helpful_base 41.86 44.19 48.06
koala 31.41 37.18 41.03
oasst 38.30 40.96 41.49

selfinstruct 28.29 19.52 28.57
vicuna 41.25 46.25 47.50

Overall 34.76 34.70 39.19

Table 4: Performance of RECOST with different in-
context knowledge types on AlpacaEval benchmark.

score of AlpacaEval benchmark.
Besides, we further explore the robustness of rel-

ative uncertainty as the number of retrieved demon-
strations changes. In Section A.1, we use the Jac-
card similarity coefficient to compare the similarity
of the top 10% examples sorted by our proposed
relative uncertainty with 1 to 5 demonstrations re-
trieved.

5.3.2 Ablation on Diversity Sampling
The effectiveness of diversity-consistent sam-
pling. To further evaluate the effectiveness of the
diversity-consistent sampling module of RECOST,
we compare RECOST under different settings. As
presented in Table 5, with diversity-consistent sam-
pling, RECOST achieves slight improvement on
both benchmarks.

Weigh between uncertainty and diversity. Our
experimental results also imply that the balance
between uncertainty and diversity should not be
neglected. Table 6 gives results of RECOST un-
der variant diversity. By appropriately adjusting
tolerance, we can enhance performance. However,
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Dataset Setup OpenLLM AlpacaEval

Alpaca
w/o. diversity sampling 56.05 37.80
w/. diversity sampling 56.07 39.19

Alpaca-gpt4
w/o. diversity sampling 59.38 62.80
w/. diversity sampling 59.60 63.50

Table 5: Ablation study on diversity sampling.

excessively high diversity can detrimentally im-
pact efficiency. Here we simply use the mean
cosine similarity as the diversity of the selected
datasets, where lower mean cosine similarity leads
to datasets with higher diversity.

Tolerance - 468 104 52 26

Mean CosSim 0.6852 0.6840 0.6815 0.6805 0.6794

AlpacaEval 37.80 39.19 38.14 38.57 36.34

Table 6: Performance of RECOST with increasing diver-
sity. Tolerance ‘-’ refers to RECOST without diversity
sampling.

5.4 Analysis

5.4.1 Effectiveness of RECOST

Moreover, we make a comparison of dirty data
hit rates on RECOST, predictive entropy, and IFD.
Similar to Figure 1, we calculate the hit rates of
three metrics. As presented in Figure 4, our pro-
posed RECOST outperforms both metrics remark-
ably on top 20% samples. Besides, we further com-
pare the performance of the three metrics above in
Section A.3.

5.4.2 The Effects of Mixed Weight

To find the optimal mixed weight w, we conduct
extensive experiments with different weights on
both datasets. We set the mixed weight w to 0,
0.25, 0.5, 0.75, and 1. In particular, w = 1 refers
to vanilla predictive entropy while w = 0 refers to
our proposed relative predictive entropy.

As presented in Figure 5, the performance of
the models on AlpacaEval demonstrates an initial
increase followed by a decline, peaking at values
of w = 0.5 and w = 0.75, respectively. Specifi-
cally, due to the overall inferior quality of the Al-
paca dataset in comparison to Alpaca-gpt4, coupled
with its shorter average response length, a greater
emphasis on weighting is inclined towards select-
ing longer samples, which in turn yields superior
outcomes.
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6 Conclusion

In this paper, we demonstrate RECOST, an ef-
fective method to select high-quality instruction
data from synthetic instruction datasets with the
help of external knowledge. Our method outper-
forms the fully-trained models with only 1% train-
ing data, which surpasses the previous methods
under the same settings. Overall, our approach
underscores the significance and efficacy of inte-
grating our proposed relative uncertainty into data-
efficient instruction tuning for synthetic datasets,
providing a viable avenue for this field.
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7 Limitations

The primary limitation of our work lies in the neces-
sity of incorporating additional external knowledge.
However, thanks to the development of traditional
NLP tasks during the pre-LLM era and the current
advancements in retrieval-based ICL, we can easily
obtain a vast amount of authentic and reliable exter-
nal knowledge to meet our requirements. Overall,
our research empirically validates the feasibility of
integrating exogenous knowledge in the data filter-
ing process based on synthetic data. Although this
introduces a minor overhead in data preprocess-
ing, it significantly outperforms previous methods
within an acceptable cost margin, offering new per-
spectives in the realm of data efficiency.
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A Appendix

A.1 Robustness Analysis of Relative
Uncertainty

As presented in 6, with the increase in the number
of demonstrations, RECOST with retrieved demon-
strations tends to be more stable than that with
random demonstrations.
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Figure 6: The robustness of relative uncertainty as the
number of demonstrations changed when we used ran-
dom samples as demonstrations. In Figure 6a, we use
retrieved demonstrations, while we use random demon-
strations in Figure 6b.

A.2 Performance with Different Numbers of
Retrieved Demonstrations

Furthermore, with different numbers of retrieved
demonstrations, the performance of RECOST
varies slightly as shown in Table 7:

Numbers of Retrieved Demonstrations OpenLLM AlpacaEval

3 56.13 37.36
4 56.02 39.25
5 56.07 39.19

Table 7: Performance with different numbers of re-
trieved demonstrations.

A.3 Effectiveness of RECOST
We present the comparison between the aforemen-
tioned metrics in Table 8. RECOST outperforms
all baselines in both benchmarks.

Method Data size OpenLLM AlpacaEval

Full Alpaca 52002 55.06 27.75
IFD 3111 55.78 36.78
PE 520 55.31 35.59

RECOST 520 56.07 39.19

Table 8: Comparison of benchmark scores under differ-
ent metrics on the Alpaca dataset.
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