
Findings of the Association for Computational Linguistics ACL 2024, pages 11019–11029
August 11-16, 2024 ©2024 Association for Computational Linguistics

Enhancing Distractor Generation for Multiple-Choice Questions with
Retrieval Augmented Pretraining and Knowledge Graph Integration

Han-Cheng Yu, Yu-An Shih, Kin-Man Law, Kai-Yu Hsieh,
Yu-Chen Cheng, Hsin-Chih Ho, Zih-An Lin, Wen-Chuan Hsu,

Yao-Chung Fan∗

Department of Computer Science and Engineering,
National Chung Hsing University, Taiwan

yfan@nchu.edu.tw

Abstract

In this paper, we tackle the task of distractor
generation (DG) for multiple-choice questions.
Our study introduces two key designs. First,
we propose retrieval augmented pretraining,
which involves refining the language model
pretraining to align it more closely with the
downstream task of DG. Second, we explore
the integration of knowledge graphs to enhance
the performance of DG. Through experiments
with benchmarking datasets, we show that our
models significantly outperform the state-of-
the-art results. Our best-performing model ad-
vances the F1@3 score from 14.80 to 16.47 in
MCQ dataset and from 15.92 to 16.50 in Sciq
dataset.

1 Introduction

Multiple-Choice Questions (MCQs) are widely
used to evaluate a learner’s knowledge. How-
ever, creating them manually requires a signifi-
cant amount of time and effort from educators.
Well-designed MCQs help in accurately assessing
learners’ abilities. The most challenging part of
creating MCQs is designing appropriate incorrect
options, commonly called distractors. Therefore,
researchers have focused on the automatic distrac-
tor generation for MCQs in recent years. In this
paper, we explore two directions for improving DG
methods.
Task-Specific Pretraining Current SOTA DG
methods, such as utilizing BERT for DG (Chiang
et al., 2022) or harnessing T5 for Text2Text DG
(Wang et al., 2023), are all based on pre-trained
language models (LMs). Existing LMs undergo
task-agnostic pertaining. However, recently, the
idea of task-specific pretraining has gained promi-
nence. The aim is to refine the pretraining process
to closely align with the downstream task. There-
fore, our first endeavor in this paper is to investigate
Task-Specific Pretraining for the DG task.

In line with this goal, we propose Retrieval Aug-
mented Pretraining (RAP) for task-specific pre-
training. The main idea involves using MCQ an-
swers to retrieve relevant sentences/passages from
a large corpus, such as Wikipedia, to create pseudo
questions, and then use the generated pseudo ques-
tion for task-specific pertaining.

Figure 1 illustrates an example of a create pseudo
question. Assume that we are given a set of MCQ
options, the answer kidneys, and three distractors
lungs, pancreas, liver. The idea is to use the answer
option kidneys to retrieve a sentence, i.e., the kid-
neys are two reddish-brown bean-shaped organs.
and replace the answer with the [Mask] token to
generate a pseudo question, i.e., the [Mask] are two
reddish-brown bean-shaped organs. The pseudo
question and the distractors are then served as train-
ing data for RAP.
Knowledge Augmented Generation Recent re-
search trends show that leveraging knowledge
graphs (KGs) can enhance the performance of LM-
based text generation tasks, as discussed in (Ya-
sunaga et al., 2022) and (Zhang et al., 2022). The
perspective is that LMs and KGs should comple-
ment each other. KGs go beyond text by offer-
ing structural information, representing entities as
nodes and their relationships as edges. This struc-
tured knowledge enhances the ability for multi-step
reasoning. In line with this motivation, we propose
knowledge-augmented generation (KAG), where
we build upon the candidate augmentation strat-
egy proposed by the state-of-the-art DG method
(Wang et al., 2023). The idea is to retrieve knowl-
edge triplets from a knowledge graph to serve as
auxiliary information for the text2text DG model.

The contributions of this paper are

• Our methods achieve a remarkable improve-
ment in state-of-the-art DG results. Our best-
performing model elevates the F1@3 score
from 14.80 to 16.47 in MCQ and from 15.92
to 16.50 in Sciq, showcasing the effectiveness
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Figure 1: Retrieved Augmented Pretraining

of our approach.

• Extensive experimental evaluation with the
benchmarking datasets are conducted and
the insights of incorporating task-pretraining
and knowledge triplet provision are discussed.
Our study unveils promising directions for fur-
ther development in DG by showcasing the
efficacy of knowledge augmentation and task-
specific pretraining.

The rest of this paper is organized as follows.
Section 2 reviews the works of automatic distractor
generation in the literature. In Section 3 we present
the proposed methods. Section 4 reports the per-
formance evaluation and Section 5 concludes this
work and discuss the future work.

2 Related Work

2.1 Distractor Generation
The current DG research can be divided into two
directions:
Generating and Ranking (GR) framework The
framework incorporates a general-purpose knowl-
edge base to effectively create a small distractor
candidate set, and a feature-rich learning-to-rank
model to select distractors. Specifically, the GR
architecture consists of two stages.

First, it generates candidate distractors, and then
it ranks these candidates based on semantic rules
and linguistic features to select the final distractor.
In the GR framework, there are two approaches for
generating distractor candidates: using a knowl-
edge base (Ren and Zhu, 2021) or using a lan-
guage model (LM) (Chiang et al., 2022). These
approaches have significantly improved the quality
and diversity of distractors compared to traditional
rule-based methods (Liang et al., 2017, 2018), mak-
ing them the state-of-the-art in DG.

Text2Text generation architecture The Text2Text
generation architecture differs from the GR archi-
tecture by formulating distractor generation as a
Text2Text task. Specifically, it concatenates the
question stem with the answer and inputs it into
a generative language model (e.g., T5 or GPT) to
train the model to generate a set of distractors. Cur-
rently, research based on the Text2Text architecture
(Wang et al., 2023) represents the state-of-the-art
in distractor generation.

2.2 Task-specific Pretraining

In recent related work, researchers have explored
the integration of task-specific priors into BERT
language model pretraining to enhance perfor-
mance in low-resource finetuning tasks (Wang
et al., 2020). Traditional pretraining methods of-
ten prioritize generic natural language knowledge,
overlooking task-specific information, which can
lead to overfitting in low-resource downstream
tasks. To address this issue, (Wang et al., 2020)
propose integrating task-specific label embeddings
into the self-attention layers during pretraining.
This integration enables the model to filter out task-
irrelevant information and improve task-specific
knowledge during fine-tuning, resulting in reduced
overfitting and improved performance on down-
stream tasks with limited resources.

Another related work, (Zhang et al., 2020),
adopts a task-specific pretraining approach for text
summarization tasks. The authors replace a por-
tion of the original sentences in the text with mask
tokens, allowing the model to learn to generate
masked sentences. Comparing this approach to
traditional masked language modeling (MLM) for
pretraining, they find that closer alignment between
the pretraining task and the downstream task leads
to improved performance. Additionally, they exper-
iment with pretraining on various types of datasets
and observe that utilizing a dataset similar to the
downstream task yields better results. For example,
when pretraining on a news dataset and fine-tuning
on another news dataset, the performance surpasses
that of fine-tuning on a web article dataset.

Building upon these findings, we draw inspi-
ration from the aforementioned studies to design
our proposed approach, known as RAP (Retrieval-
Augmented Pretraining), aimed at enhancing the
performance of distractor generation (DG). RAP
leverages task-specific priors and incorporates
them into the pretraining phase to capture and uti-
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lize relevant information specific to the distractor
generation task. By aligning the pretraining task
with the downstream DG task and considering task-
specific information, we aim to improve the quality
and effectiveness of distractor generation.

2.3 Knowledge Augmented Generation

We have conducted a survey of research that lever-
ages Knowledge Graphs (KGs) to enhance per-
formance in various Natural Language Processing
(NLP) tasks, including Question Answering, Entity
Typing/Relation Classification, Query Answering,
Question Generation, and Distractor Generation
(Yasunaga et al., 2022, 2021; Zhang et al., 2022;
Feng et al., 2020; He et al., 2019; Ren et al., 2020;
Fei et al., 2022; Chen et al., 2023; Ren and Zhu,
2021).

Notably, a significant amount of research has
focused on using Knowledge Graphs to improve
question-answering systems, particularly for tasks
involving multihop reasoning. These studies utilize
Knowledge Graph triplets for inferencing and have
demonstrated the utility of structured background
knowledge in strengthening NLP tasks.

For example, (Yasunaga et al., 2021) proposed
an end-to-end question-answering model that com-
bines language models and Knowledge Graphs
to handle reasoning tasks. (Zhang et al., 2022)
introduced a novel model that incorporates joint
information exchange between language models
and Knowledge Graphs, achieving superior perfor-
mance across multiple domains.

While Knowledge Graph integration has shown
promising results in Question-Answering tasks, its
application to Distractor Generation remains rela-
tively limited (Ren and Zhu, 2021).

Therefore, our goal is to leverage KGs as aux-
iliary tools to enhance distractor generation, im-
proving the relevance of generated options to the
question. This approach not only creates more
challenging options for multiple-choice questions
but also enhances the model’s efficiency in utiliz-
ing Knowledge Graphs, leading to more effective
Knowledge Augmented Generation.

3 Methodology

3.1 Retrieval Augmented Pretraining

Our approach involves generating pseudo questions
to continuously train a pre-trained language model
(e.g., T5 or BART) before fine-tuning it for down-
stream Distractor Generation (DG) tasks.

Here’s how our idea works: Given an MCQ train-
ing instance consisting of a question stem (q), an
answer option (a), and a set of distractors (D), we
utilize a to retrieve a single sentence or a short
passage from a corpus (such as Wikipedia). Sub-
sequently, we mask out a from the retrieved sen-
tence/passage, replacing the answer position with a
mask token ([Mask]). This process results in a mod-
ified sentence/passage known as a pseudo question
(q̃⊗[Mask]).

With q̃⊗[Mask], our goal is to pretrain a LM as
follows.

L(θ) = −
|D|∑

i=1

ti log p(t̂i|t̂<i, q̃⊗[Mask], a; θ)

• ti: the token sequence given by the concatena-
tion of the ground truth distractors d1||d2||d3.

Alternatives for RAP Training Setting There
are two alternatives for RAP training setting.

• Data Augmentation RAP: We can treat RAP
as a data augmentation mechanism by using
the same dataset for RAP and DG.

• Cross-Domain RAP: We can use two different
distractor generation datasets (SciQ and MCQ
datasets in this study). One dataset is used for
RAP and the other for DG fine-tuning.

There are different impacts and implications for
RAP training adoption. We provide experimental
study and discussion for this part in Subsection 4.6.

Boosting RAP with ground-truth distractor
The RAP idea can be extended to using ground-
truth distractors to generate pseudo questions. That
is, we can use ground-truth distractors to retrieve a
sentence/passage and set the rest of options (i.e., a
and other distractors). That is,

L(θ) = −
|D|∑

i=1

ti log p(t̂i|t̂<i, q̃⊗[Mask], d1; θ)

• ti: the token sequence given by the concatena-
tion of the other options a||d2||d3.

3.2 Knowledge Augmented Generation
We extend the idea of the candidate augmenta-
tion strategy proposed by (Wang et al., 2023). We
explore incorporating knowledge triplets for DG.
Specifically, as shown in Figure 2, our KAG pro-
ceeds by (1) a knowledge triplet retrieval stage
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(Subsection 3.2.1) and (2) a triplet re-ranker stage
(Subsection 3.2.2). The retriever stage is to retrieve
triplets with respect to q and a, and the re-ranker
stage aims to rank the triplets by their estimated
relevancy with respect to q and a

3.2.1 Retrieving Triplet from KG
Our process for obtaining knowledge triplets is as
follows. First, for a given q and answer a, we
employ an language model trained for distractor
generation (e.g., (Chiang et al., 2022)) to generate
a set of candidate distractors {d̂1, ..., d̂k}. In addi-
tion, we conduct keyword extraction over q and a
to extract keywords from them. We then union the
two sets of keywords (denoted by W ).

As illustrated in Figure 3, with W and a given
knowledge graph G(V,E), the triplet set is given
by

K = {(u, eu,v, v) | u, v ∈ W and eu,v ∈ E}

3.2.2 Triplet Ranker
The input to triplet ranker is a triplet set T from KG
Retrieval stage and let q||a be the concatenation of
a question q and an answer a. We experiment with
the following two alternatives for ranking triplets.

1. Unsupervised Sentence Embedding Dis-
tance: The ranking process begins by encod-
ing q||a and each knowledge triplet τi into
their respective vector representations. Next,
we compute a relevancy score for each triplet
by comparing its vector representation with
that of q||a. The higher the relevancy score,
the more likely the triplet is deemed relevant
to q||a. Specifically,

scores = [Cos-Similarity(τi, q||a), ∀τi ∈ K]

We select top-k triplets for the later knowledge
augmented generation.

2. Supervised Triplet Classification: As an al-
ternative, we propose a binary classification
formulation to estimate the relevancy of a
knowledge triplet τi with respect to q||a. Dur-
ing the training phase, we label a triplet as
relevant if it contains the answer or ground-
truth distractors, and as irrelevant otherwise.
Specifically, we concatenate q||a and τi, sep-
arated by a special token [SEP] as input and
the relevancy as output. During the inference
phase, we utilize the LM to re-sort the top-k
triplet set based on the confidence scores.

3.2.3 KAG Training
For a given training instance (q, a,D,K), our goal
is to train a generation model conditioned on q, a,
and K by minimizing the negative log-likelihood
of the correct token ti of D given the preceding
tokens and the conditions.

• K: the set of knowledge triplet {τ1, ..., τk}
retrieved from a KG.

The idea is to retrieve a set of knowledge triplet
{τ1, ..., τk} from a KG and concatenate the knowl-
edge triplet with the original input text as an aug-
mented text input for generation. Specifically, the
loss function is

L(θ) = −
|D|∑

i=1

ti log p(t̂i|t̂<i, q, a, {τi}; θ)

The observation behind the knowledge triplet
augmentation strategy is to inject more informa-
tion for generation through the knowledge graph in
hope to boost the DG performance.

4 Experiment

4.1 Dataset
We use SciQ (Welbl et al., 2017) and MCQ dataset
(the dataset releated by Ren and Zhu, 2021) for
performance evaluation. For the details about the
two benchmark datasets and our dataset setting.

Sciq dataset The Sciq dataset is a multi-domain
multiple-choice question dataset consisting of
13,000 questions in the fields of physics, chem-
istry, biology, and other natural sciences. These
questions are open-ended and require reading and
understanding relevant scientific knowledge, fol-
lowed by reasoning and answering the questions.
The questions are presented in a multiple-choice
format, with each question accompanied by an an-
swer and three incorrect options. According to the
Sciq dataset configuration, the 13,000 data points
are split into train/dev/test datasets with a ratio of
11,700/1,000/1,000.

Since the Sciq question sentences do not contain
**blanks**, in the candidate generation method,
we utilize generative LM, specifically ChatGPT, to
generate the candidate set.

MCQ dataset MCQ dataset is a cross-domain
cloze-style dataset, that includes the domains of
science, vocabulary, common sense, and trivia.
Each data is composed of a sentence containing
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Figure 2: Knowledge Augmented Generation

Figure 3: Retrieve Triplet from KG: we extract keyword from a given question, answer and candidate set as a entity
set W and retrieve relevant triplet set from KG with keyword entities

Dataset MCQ Sciq
Train Dev Test All Train Dev Test All

# of Questions 2088 233 258 2580 11700 1000 1000 13700

Table 1: The statistics of the training, development and
test sets of MCQ, Sciq.

**blank** of cloze stem, answer, and distractors.
According to the setting reported by (Ren and
Q. Zhu, 2021), MCQ contains 2880 questions and
is randomly divided into train/dev/test with a ratio
of 8:1:1.

We obtain the MCQ dataset from GitHub link
shared by (Ren and Q. Zhu, 2021). However, we
find there is a slight difference between the num-
bers in the shared dataset and reported in the paper.
In the shared dataset, it only contains train and test
data (with 2321/258). Thus, we use this data set-
ting in our experiments. For dev data, we use 9:1
split from train as dev data.

4.2 Evaluation Metrics

Automatic Metric Following the SOTA DG by
(Wang et al., 2023), we evaluate the DG quality
by F1 score (F1@3), precision (P@1, P@3), and
recall (R@1, R@3). P@k represents the ratio of
correctly labeled top-k generated distractors, while
R@k indicates the ratio of correctly predicted la-
bels among the ground truth. F1@k is the harmonic
mean of P@k and R@k. Notably, when the label
size is 3, P@3 and R@3 will be the same, resulting
in the same F1@3 score. Since both the Sciq test
data and MCQ test data contain 3 distractors, we
report the scores of P@1 and F1@3 in the experi-
ments.

Human Evaluation Metric In addition to Auto-
matic Metrics, we also consider human evaluation
to assess the performance of the model on various
aspects. During the evaluation process, we ran-
domly select 14 questions and generate distractor
sets using various models, which are then assessed
by five human labelers. For the evaluation of the
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Distractor Generation models, we consider the fol-
lowing criteria for human evaluation:

1. Relevance: This metric assesses the relevance
of the generated distractors to the question.
This means that the distractors should be re-
lated to the theme, content, or context of the
question.

2. Distractiveness: This metric evaluates the
level of distraction that the generated distrac-
tors bring to the correct answer. The distrac-
tors should be able to divert the answer away
from the correct answer, increasing the diffi-
culty of the question.

3. Utility: This is an overall quality assessment
of the generated distractors, considering as-
pects such as fluency, relevance, duplication,
and distractiveness. This is a comprehensive
metric that takes into account all facets of per-
formance.

We employ a five-point rating system, where
each score interval represents different levels of rel-
evance, ranging from "totally irrelevant" (1 point)
to "completely relevant" (5 points). These evalu-
ation metrics will help us assess the quality and
performance of the distractors generated by the
models in a comprehensive manner.

4.3 Implementation Details

See Appendix.

4.4 Evaluation Results

Table 2 presents the results of the compared meth-
ods on the two benchmarking datasets. We have
the following notes for the results.
RAP indeed improve performance By comparing
the performance difference between Text2Text (T5)
and Text2Text (RAP-T5), we can see that the intro-
duction of RAP elevates the performance of MCQ
experiments from 11.45 to 14.80 (F1@3). In the
case of Sciq, it increases from 15.92 to 16.06.
RAP more effective in low resource settings Fur-
thermore, continuing the above observations, we
found that the improvement brought by RAP in the
Sciq experiment is not as significant as in the MCQ
experiment. We attribute this result to the much
smaller size of the MCQ dataset compared to Sciq.
When the training data is abundant, the gains from
pretraining naturally become limited. Therefore, in

the MCQ setting with only 2088 training examples,
the introduction of RAP has a noticeable impact.

KG also boosts the performance By comparing
T5 candidate augmentation with KAG (T5), we
observe that the introduction of KG indeed brings
a significant improvement. In Sciq, we observe an
increase in F1@3 from 12.83 to 15.38. In MCQ, it
increases from 14.80 to 16.47.

Our methods outperform ChatGPT We also com-
pare the performance of ChatGPT (in a zero-shot
manner) on both datasets. From the experimen-
tal results, it is evident that our best-performing
models consistently outperform ChatGPT. In the
comparison with Sciq, KAG (RAP-T5) achieves an
F1@3 score of 15+ compared to ChatGPT’s 10.61.
An interesting observation is that while ChatGPT
still lags behind the KAG+RAP-based approach
in the MCQ comparison, the performance gap is
smaller. We attribute this to the fact that some
questions in Sciq require common-sense reasoning
in addition to knowledge-based answering. Since
ChatGPT generates responses in a zero-shot learn-
ing manner during testing, it does not fully capture
the characteristics of the Sciq dataset. In the case
of the MCQ dataset, due to the limited training
data, the differences between various methods and
ChatGPT are not as substantial as in the Sciq com-
parison.

Combining KAG with RAP did not yield additive
effects We also observed that combining KAG with
RAP did not yield additive effects. Taking the
comparison of the T5 model on the Sciq dataset
as an example, we found that the performance did
not improve when using both KAG and RAP to-
gether (KAG(RAP-T5): 15.15) compared to using
RAP alone (Text2Text(RAP-T5): 16.06) or KAG
alone (KAG(T5): 15.38). Similar observations
were made in other settings. We speculate that
the additional noise introduced by KAG during the
incorporation of knowledge triplets may be the rea-
son behind this. Although we designed a reranker
to select triplets, the results were not consistently
stable. To validate this hypothesis, we attempted a
variation of KAG (RAP-T5) (denote by with-only-
answer triplet) where, instead of using a reranker,
we selected triplets containing the answer to input
into the Text2Text generator. We observed signif-
icant improvement with this approach in the Sciq
dataset, but no improvement in the MCQ dataset.
This suggests that there is considerable room for
improvement in the design of the triplet ranker. Se-
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Dataset Method P@1 R@1 F1@3 MRR NDCG@3

MCQ

(Ren and Zhu, 2021) 10.58 - 9.19 17.51 -
(Chiang et al., 2022) 10.81 3.60 7.72 18.15 15.39
(Wang et al., 2023) (BART) 14.28 4.76 11.45 21.49 23.70
Text2text (RAP-BART) 18.14 6.04 12.35 24.06 25.78
(Wang et al., 2023) (BART w/ c.a.) 19.69 6.56 13.12 25.03 26.26
KAG (BART) 20.07 6.69 14.41 27.02 29.37
KAG (RAP-BART) 16.60 5.75 12.22 22.65 24.50
KAG (BART) (with only answer triplet) 14.28 4.76 12.74 21.55 24.13
KAG (RAP-BART)(with only answer triplet) 13.12 4.37 11.84 20.01 22.35
(Wang et al., 2023) (T5) 18.53 6.17 11.45 23.61 25.08
Text2text (RAP-T5) 22.39 7.46 14.80 29.02 30.72
(Wang et al., 2023) (T5 w/ c.a.) 16.60 5.53 14.80 24.90 27.61
KAG (T5) 20.07 6.69 16.47 28.57 30.99
KAG (RAP-T5) 20.07 6.69 14.92 26.44 28.23
KAG (T5)(with only answer triplet) 22.00 7.35 15.18 28.70 30.61
KAG (RAP-T5)(with only answer triplet) 21.62 7.20 14.41 27.22 28.60
ChatGPT 18.91 6.30 13.38 25.86 27.97

Sciq

(Wang et al., 2023) (BART) 19.30 6.46 14.94 26.40 28.36
Text2text (RAP-BART) 20.10 6.73 16.32 27.56 29.68
(Wang et al., 2023) (BART w/ c.a.) 21.26 7.08 14.98 27.63 29.28
KAG (BART) 16.24 5.41 13.99 23.62 25.93
KAG (RAP-BART) 19.70 6.58 15.42 26.61 28.69
KAG (BART) (with only answer triplet) 17.15 5.57 14.87 25.00 27.27
KAG (RAP-BART)(with only answer triplet) 18.35 6.15 15.52 25.81 28.22
(Wang et al., 2023) Text2text (T5) 24.27 8.09 15.92 30.32 31.99
Text2text (RAP-T5) 24.30 8.09 16.06 29.98 31.49
(Wang et al., 2023) (T5 w/ c.a.) 22.06 7.35 12.83 25.54 26.47
KAG (T5) 22.50 7.51 15.38 29.10 31.04
KAG (RAP-T5) 18.50 6.18 15.15 26.00 28.40
KAG (T5)(with only answer triplet) 23.70 7.91 16.50 30.41 32.39
KAG (RAP-T5)(with only answer triplet) 23.00 7.68 16.46 29.51 31.41
ChatGPT 15.17 5.16 10.61 19.39 20.68

Table 2: DG Results on the Compared Datasets: In this set of experiment, we mainly compare our designs with
the SOTA method (Wang et al., 2023). c.a. represents candidate augmentation strategy introduced by (Wang et al.,
2023).

Dataset Method # of masked Sentences/Passages

MCQ-train
RAP-S 17,225
RAP-P 17,362
RAP-P w/ GTD 69,356

MCQ-all
RAP-S 10,894
RAP-P 10,995
RAP-P w/ GTD 44,294

Sciq-train
RAP-S 85,463
RAP-P 86,269
RAP-P w/ GTD 307,915

Sciq-all
RAP-S 91,798
RAP-P 92,731
RAP-P w/ GTD 327,546

Table 3: The statistics of the RAP training. Note that
our RAP has the following variations. First, in RAP, we
can choose to retrieve a single sentence or a passage,
giving rise to different RAP strategies. Thus, we denote
RAP-S as retrieving sentence for pseudo question gen-
eration and RAP-P for retrieving passage. Second, we
have the option to use the answer or the distractor as the
starting point for retrieving the sentence/passage. We
denote the method using distractor as starting point as
RAP-S w/GTD or RAP-S/RAP-P (as using answer as
starting point)

lecting relevant triplets for generation is an area
that warrants further exploration in future research.

Human Evaluation Results Table 5 presents the
results of various methods in generating distractor
sets for the MCQ cloze tasks. Upon analysis, we
observe that in terms of Relevance, Distractiveness,
and Utility, both RAP and KAG scored relatively
high and exceeded the previous soft method, T5
Candidate Augmentation.

Table 5 presents the results of various methods
in generating distractor sets for the MCQ cloze
tasks. Upon analysis, we observe that in terms of
Relevance, Distractiveness, and Utility, both RAP
and KAG scored high and surpassed or comparable
to the prior SOTA method.

These results suggest that we have successfully
guided our model to leverage additional knowledge
to generate higher quality distractors. The reason
why RAP outperforms KAG might be that the KG
(ConceptNet) cannot encompass knowledge from
all natural domains, whereas RAP, having access to
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DataSet for
Traing and

Testing DG model
Method Pretrain Dataset P@1 R@1 F1@3 MRR NDCG@3

MCQ

BART off-shelf None 14.28 4.76 11.45 21.49 23.70
RAP-SBART MCQ-Train 16.21 5.4 11.96 22.2 23.99
RAP-PBART MCQ-Train 18.14 6.04 12.35 24.06 25.78
RAP-PBART /w GTD MCQ-Train 15.05 5.01 11.58 20.65 22.33
RAP-SBART Sciq-all 15.05 5.01 13.25 22.77 25.44
RAP-PBART Sciq-all 20.84 6.94 15.57 28.57 30.85
RAP-PBART /w GTD Sciq-all 22.77 7.59 17.88 31.33 33.97
T5 off-shelf None 18.53 6.17 11.45 23.61 25.08
RAP-ST5 MCQ-Train 23.93 7.97 14.15 29.27 30.67
RAP-PT5 MCQ-Train 22.39 7.46 14.8 29.02 30.72
RAP-PT5 /w GTD MCQ-Train 21.62 7.2 13.77 27.15 28.70
RAP-ST5 Sciq-all 25.86 8.62 15.57 31.46 33.12
RAP-PT5 Sciq-all 31.66 10.55 18.91 37.7 39.43
RAP-PT5 /w GTD Sciq-all 27.79 9.26 18.66 34.42 36.31

Sciq

BART off-shelf None 19.3 6.46 14.94 26.40 28.36
RAP-SBART Sciq-train 19.3 6.45 14.66 25.61 27.45
RAP-PBART Sciq-train 20.1 6.73 16.32 27.56 29.68
RAP-PBART /w GTD Sciq-train 22.4 7.48 16.39 28.9 30.81
RAP-SBART MCQ-all 20.4 6.83 15.65 27.19 29.09
RAP-PBART MCQ-all 20.2 6.75 15.58 27.41 29.5
RAP-PBART /w GTD MCQ-all 20.7 6.91 16.06 28.16 30.32
T5 off-shelf None 24.27 8.09 15.92 30.32 31.99
RAP-ST5 Sciq-train 23.6 7.86 15.62 29.13 30.69
RAP-PT5 Sciq-train 24.3 8.09 16.06 29.98 31.49
RAP-PT5 /w GTD Sciq-train 25.0 8.34 16.46 30.18 31.54
RAP-ST5 MCQ-all 24.1 8.04 15.26 29.63 31.12
RAP-PT5 MCQ-all 23.1 7.71 16.31 29.56 31.49
RAP-PT5 /w GTD MCQ-all 23.7 7.89 16.36 29.73 31.25

Table 4: RAP Performance Overview with In-Domain and Cross-Domain Study.

Method Relevance Distractiveness Utility
(Wang et al., 2023) 3.81 3.35 3.55
KAG(T5) 4.05 3.25 3.77
Text2text(RAP-T5) 4.45 3.87 4.07
ChatGPT 3.14 2.67 3
ground truth 3.52 3.02 3.4

Table 5: The human evaluation for MCQ dataset.

an extensive external corpus (Wikipedia), includes
a vast array of facts across various domains. This
vastness could potentially explain why KAG scored
slightly lower than RAP.

Furthermore, we noted that the ground truth qual-
ity for MCQ questions was not consistently high.
The lowest performance was found in Distractive-
ness. This could likely be attributed to the fact that
some of MCQ questions are generally designed for
elementary and middle school grade levels, which
could impact the complexity and misdirection qual-
ity of the distractors.

4.5 Ablation Study on KAG

We conducted ablation experiments on the MCQ
dataset to assess the impact of different compo-

Method F1@3
T5 KAG 16.47
w/o c.a 13.64
w/o c.a (Masked LM) 15.18
w/o c.a. (Generative LM) 13.89
w/o reranker 14.15

Table 6: Ablation-study of our KAG model compo-
nents using the MCQ Test Dataset

nents in our system. The results are summarized in
Table 6, providing insights into the importance and
contributions of each component.

Candidate Generation Generating candidate
sets using Masked LM or Generative LM is a key
component in our system, enhancing KG retrieval.
Removing these sets and relying solely on sentence
and answer-based triplet retrieval significantly re-
duced the number of retrievable triplets, potentially
introducing irrelevant noise and resulting in a per-
formance drop (F1@3: 16.47 to 13.64). Using
Masked LM or Generative LM alone also affected
F1@3. This emphasizes the value of incorporating
candidate sets, as they provide crucial information
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for identifying important triplets in the knowledge
graph.

Reranker The Reranker, our second key com-
ponent, sorts triplets to select those more rele-
vant to distractors/answers. Without sorting by
the Reranker, randomly selecting triplets for triplet
augmentation led to a decrease in F1@3 (16.47
to 14.15). This highlights the Reranker’s impor-
tance in identifying important triplets and improv-
ing downstream task performance.

4.6 Study on Cross-Domain for RAP

In this subsection, we report our studies on cross-
domain and in-domain for RAP. The experiment
results are summarized in Table 4.

We have the following observations: Firstly, in
terms of cross-domain effects (using the MCQ
dataset for pretraining and fine-tuning the DG
model with the Sciq dataset, or vice versa), we
found that using Sciq-all for pretraining the lan-
guage model resulted in a significant improvement
in the downstream MCQ dataset for distractor gen-
eration. Specifically, using the T5 model, the RAP-
based approach increased the F1@3 score from
11.45 to 18.91 (almost a 1.5-fold improvement).
This notable improvement was expected, consider-
ing that Sciq is a larger dataset compared to MCQ.
However, when we reversed the process and used
MCQ for pretraining, followed by testing with the
Sciq dataset, the improvement in performance was
not as significant. Taking the BART model as an
example, the direct use of BART off-shelf achieved
a score of 14.94, while RAP-SBART) only improved
it to 16.06. Although there was some improvement,
it was not as substantial as the effects observed
when using Sciq pretraining.

Regarding in-domain effects (using the same
dataset for both pretraining and fine-tuning), we
found consistent improvements in the generated re-
sults. For example, using the T5 model on the Sciq
test dataset, the T5 off-shell score was 15.92, while
RAP-PT5) improved it to 16.46. We also observed
similar improvements in the MCQ dataset.

In conclusion, our proposed RAP approach has
shown improved generation performance from both
data augmentation and task-specific pretraining per-
spectives. The experiments demonstrate that incor-
porating RAP into the training process leads to
significant enhancements in distractor generation.

5 Conclusion

In this paper, we introduce the utilization of task-
specific pretraining and knowledge base. Our ex-
perimental results highlight a significant perfor-
mance improvement achieved through the integra-
tion. our work represents a novel contribution to the
field of distractor generation for MCQs, showcas-
ing the potential of combining retrieval augmented
pretraining and KGs to achieve superior results.

6 Limitations

We report the following limitations for the KAG
method:

• Combining KAG with RAP did not yield ad-
ditive effects. We believe that the key factor
lies in that the knowledge triplets may intro-
duces additional noise that interferes with the
Text2Text model’s generation process. Thus,
there is significant room for improvement in
the current design of the triplet ranker. Se-
lecting relevant triplets for generation is an
aspect that requires further strengthening in
this research.

• The current evaluation and training heavily
rely on token scores, which can only reflect
the similarity to the ground truth but cannot
fully represent the quality of the generated
output. The research conclusions thus far have
also been established solely based on token
scores.

• During the pretraining stage of RAP, when
retrieving sentences/passages, if the answer is
a rare or specialized term, the external corpus
may fail to find matching sentences/passages.
Therefore, when applying the RAP framework
to other knowledge domains, having an abun-
dant knowledge corpus becomes crucial.
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A Implementation Details

Our models are implemented based on models from
Hugging Face (Wolf et al., 2019). For generating
candidate set, we use an language model trained for
distractor generation from (Chiang et al., 2022) and
gpt3.5 turbo through ChatGPT API with zero-shot
prompting. For triplet reranker, we use Sentence-
BERT (Reimers and Gurevych, 2019) to estimate
the initial sentence embedding distance. For triplet
classification, we use Sentence-BERT and BERT
(Devlin et al., 2018) as the default PLM. For the
triplet augmented generator, we experiment with
BART (Lewis et al., 2019) and T5 (Raffel et al.,
2020) as base generation models.

During training, we use AdamW as the optimizer
and an initial learning rate of 2e-5 for BERT, BART
and 1e-4 for T5 models. All experiments are con-
ducted using two NVIDIA TITAN RTX GPUs.

BART-based generator With MCQ data, the
maximum number of epochs is set to 40 with a
batch size of on two NVIDIA TITAN RTX GPUs
for the distraction generation with triplet augmenta-
tion with a batch size of 32 and a maximum number
of triplets is set to 50. With Sciq data, the maxi-
mum number of epochs is set to 50 with a batch
size of 32 on two NVIDIA TITAN RTX GPUs for
the distraction generation with triplet augmentation
with a batch size of 32 and a maximum number of
triplets is set to 50. The average running time for
BART-based generators is 30 minutes (1.5 hours)
on MCQ (Sciq).

T5-based generator With MCQ data, the max-
imum number of epochs is set to 40 with a batch
size of on two NVIDIA TITAN RTX GPUs for
the distraction generation with triplet augmentation
with a batch size of 32 and a maximum number
of triplets is set to 50. With Sciq data, the maxi-
mum number of epochs is set to 50 with a batch
size of 32 on two NVIDIA TITAN RTX GPUs for
the distraction generation with triplet augmentation
with a batch size of 32 and a maximum number of
triplets is set to 50. The average running time for
BART-based generators is 40 minutes (3 hours) on
MCQ (Sciq).

Knowledge Graph We utilize ConceptNet
(Speer et al., 2017) as our KG, which is a graph that
encompasses a wide range of knowledge domains.
The KG consists of a total of 800k nodes and 2M
edges. For each question’s KG retrieval set, we pre-

process the retrieval subgraph using the approach
described in (Feng et al., 2020). Specifically, we
process the textual corpus of each question, includ-
ing the question text, answer options, and entities
in the candidate set.
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