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Abstract

Recent advancements in large language mod-
els (LLMs) have remarkably enhanced per-
formances on a variety of tasks in multi-
ple languages. However, tokenizers in LLMs
trained primarily on English-centric corpora
often overly fragment a text into character or
Unicode-level tokens in non-Roman alphabetic
languages, leading to inefficient text generation.
We introduce a simple yet effective framework
to accelerate text generation in such languages.
Our approach involves employing a new lan-
guage model head with a vocabulary set tai-
lored to a specific target language for a pre-
trained LLM. This is followed by fine-tuning
the new head while incorporating a verifica-
tion step to ensure the model’s performance
is preserved. We show that this targeted fine-
tuning, while freezing other model parame-
ters, effectively reduces token fragmentation
for the target language. Our extensive exper-
iments demonstrate that the proposed frame-
work increases the generation speed by a fac-
tor of 1.7 while maintaining the performance
of pre-trained multilingual models on target
monolingual tasks.

1 Introduction

Modern large language models (LLMs) (OpenAI,
2023; Touvron et al., 2023a; Antropic, 2023) have
exhibited remarkable capabilities for a variety of
tasks in multiple languages (Eloundou et al., 2023;
Solaiman et al., 2023). Although these models are
predominantly trained on English-centric data, they
have shown a significant degree of multilingual
proficiency (Bandarkar et al., 2023).

However, when applied to non-alphabetic lan-
guages, these models often suffer from slower
text generation due to English-centric tokeniza-
tion (Rust et al., 2021; Ahia et al., 2023; Petrov
et al., 2023). Current tokenization techniques used
in Large Language Models (LLMs) are data-driven
and optimize segmentation based on the frequency
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Figure 1: Analysis of tokenization lengths and lan-
guage distribution in pretraining corpus with per-
centage >=0.04% English script comprises 89.7% of
the corpus and has an average token length of 29.6
in FLoRes-200. The languages using the Chinese,
Japanese, and Korean (CJK) scripts have longer tok-
enization lengths compared to those using Latin and
Cyrillic scripts. Our primary focus is on languages that
are excessively tokenized by English-centric tokenizers.

of characters or bytes within a specific corpus (Sen-
nrich et al., 2016; Kudo, 2018). As a result, the
tokenizers of multilingual models, which are heav-
ily influenced by English-dominant training data,
are predominantly composed of English subwords.
This leads to excessive fragmentation, where non-
English words are overly segmented into a large
number of subword units (Rust et al., 2021; Ahia
et al., 2023; Petrov et al., 2023). The autoregressive
nature of LLMs further amplifies this inefficiency,
as it sequentially requires the generation of text.

To address these challenges, previous stud-
ies (Wang et al., 2019; Rust et al., 2021; Cui
et al., 2023) have proposed replacing or augment-
ing the existing vocabulary of pre-trained multi-
lingual models with language-specific vocabular-
ies to more effectively encode monolingual text
corpora. Specifically, Rust et al. (2021) improved
mBERT (Devlin et al., 2019) by replacing its tok-
enizer with a monolingual one and incorporating an
additional 100,000 pre-training steps. On the other
hand, Cui et al. (2023) enhanced Llama (Touvron
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Figure 2: Overview of the proposed framework. Illustration of (Left) the generation with a pre-trained multilingual
model and (Right) the generation of MuMo Framework. Given the Korean prefix “천왕성은” (Uranus is), the model
generates the consecutive phrase “태양으로부터”(from the Sun) that consisted of 3 morphemes (“태양”, “으로”,
“부터”) in Korean. The generation with the pre-trained multilingual model faces inefficiency due to excessive
fragmentation, requiring 12 steps to generate only 3 Korean morphemes. However, the MuMo framework empowers
the multilingual language model to generate multiple tokens in a single iteration by extracting a word from the
Korean Vocabulary, requiring 3 steps.

et al., 2023a) by expanding the Chinese vocabu-
lary and further pre-training it on a 120GB text
corpus that includes Chinese texts. However, this
approach requires an extensive pre-training phase
with a substantial amount of data.

Another approach to address the challenges is
the use of small draft models (Leviathan et al.,
2023; Chen et al., 2023a). These models gener-
ate draft output tokens, which are then verified by
the original language model. However, a significant
challenge arises when trying to identify or train a
suitable small model that can handle multiple lan-
guages with reliable performance (Conneau et al.,
2020; Bandarkar et al., 2023).

In response to these challenges, our research
introduces MuMo, accelerating Multilingual lan-
guage models for a targeted Monolingual text gen-
eration, particularly in non-alphabetic languages.
MuMo incorporates a new vocabulary of a tar-
get language into the output layer, also known as
the Language Model (LM) head, and predicts the
next token from this expanded vocabulary. This
approach requires training only the extended por-
tion of the output layer and specific layers of the
feed-forward network. Importantly, MuMo elimi-
nates the need for extensive text corpora or a draft
model, requiring only a modest corpus of the tar-
get language, approximately 44M tokens in size.
Empirical results across summarization, and trans-
lation tasks in Korean and Japanese demonstrate
that MuMo significantly accelerates text genera-
tion, achieving over a 1.7-fold increase in speed
without significantly compromising output quality.

Lang Word Multilingual Tokens
KO 서울 (“서”, “\0xec”, “\0xb8”, “\0x9a”)
JA 発売 (“発”, “\0xe5”, “\0xa3”, “\0xb2”)

Table 1: Examples of the tokenization results. These
examples are preprocessed by the Llama tokenizer (Tou-
vron et al., 2023b). The target monolingual word are
excessively segmented into byte units, when a suitable
match is not found in the multilingual vocabulary.

2 Related Work

Tokenization Disparity Subword tokenization,
a common approach in LMs, is typically data-
driven. Most of pre-trained tokenizers, which are
often trained on predominantly English corpora,
frequently result in excessive fragmentation of non-
English scripts (Rust et al., 2021; Zhang et al.,
2022). Ahia et al. (2023); Petrov et al. (2023) have
found significant tokenization disparities across lan-
guages in popular LLMs (Xue et al., 2021, 2022;
Scao et al., 2022; OpenAI, 2023). Our work endeav-
ors to address the slowdown in inference that arises
due to tokenization disparity in non-alphabetic lan-
guages.

Modifying Pre-trained Vocabulary Previous
works have explored the adaptation of pre-trained
vocabularies or the addition of new tokens (Artetxe
et al., 2020; Rust et al., 2021; Hong et al., 2021;
Liu et al., 2023), these methods often necessitate
extensive pre-training to integrate the new tokens
effectively (Wang et al., 2019; Chau et al., 2020;
Cui et al., 2023; Liu et al., 2023). In contrast,
our MuMo framework sidesteps the need for fine-
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tuning the parameters of pre-trained models to pre-
serve the original capabilities of the pre-trained lan-
guage model. Efforts to select items of pre-trained
embedding matrix have been made (Abdaoui et al.,
2020; Domhan et al., 2022; Ushio et al., 2023), but
these have not yielded significant speed up where
the size of the embedding layer is relatively small
(Bogoychev et al., 2023).

Accelerating LLM Inference The quest to ac-
celerate inference in auto-regressive large language
models (LLMs) has led to a variety of approaches.
There has been a proliferation of systems specif-
ically engineered for LLM inference (Yu et al.,
2022; Sheng et al., 2023; Xiao et al., 2023). Our
proposed methodology can be harmonically inte-
grated with the aforementioned techniques. Specu-
lative decoding (Leviathan et al., 2023; Chen et al.,
2023a) have also been explored to increase infer-
ence velocity. However, the approach often relies
on the assumption that a small model can maintain
high fidelity when generating a series of multiple
tokens. Moreover, acquiring a small yet competi-
tive model may be tricky, especially in a multilin-
gual setup (Conneau et al., 2020; Bandarkar et al.,
2023). Our work distinguishes itself by specifically
solving the inference inefficiency that arises from
excessive fragmentation in the non-alphabetic con-
text.

Parameter Efficient Cross-lingual Transfer
Learning The curse of multilinguality, which
refers a trade-off between the language cover-
age and model capacity (Conneau et al., 2020),
is a significant issue even in massively multi-
lingual models, such as mBERT, XLM-R, and
mT5 (Devlin et al., 2019; Conneau et al., 2020;
Xue et al., 2021; Ansell et al., 2021). The problem
has been mitigated through modular parameter-
efficient adaptations of the multilingual models
through lightweight adapters (Houlsby et al., 2019):
additional trainable parameters inserted into the
transformer layers of model (Pfeiffer et al., 2020;
Üstün et al., 2020; Vidoni et al., 2020; Parović et al.,
2022) for a target language. These techniques bear
a resemblance to ours, in that they involve train-
ing partial parameters of a language model with
a small amount of target language corpus. How-
ever, our goal is fundamentally different: we aim to
accelerate the inference, whereas previous studies
focus on improving the representational capability
in target languages for multilingual models.

3 Proposed Framework

We propose a framework named MuMo to acceler-
ate the inference speed of a pre-trained multilingual
LM for a non-alphabetic monolingual language via
a given small monolingual dataset. In the section,
we introduce 1) the model architecture, 2) the fine-
tuning process on a small targeted language dataset,
and 3) the inference process of the proposed frame-
work.

3.1 Model Architecture

We illustrate the model architecture of MuMo in
Fig. 3.

Pre-trained Multilingual Model We consider a
setting in which a pre-trained multilingual model
fmulti is given. The model consists of 1) Trans-
former layers that consist of attention and feed-
forward network, and 2) an output embedding
layer called language model (LM) head. We de-
note Vmulti as the multilingual vocabulary set
of the model objective, as LMLE(pmulti,x) =∑|x|

t=1 log pmulti(xt|x<t),

Target Monolingual LM Head The primary
concept involves modifying pre-trained represen-
tations to predict a singular token unit within a
target monolingual vocabulary Vmono. The Target
Monolingual LM head fmono projects the hidden
representation h, which is composed of two main
components: a feed-forward network (FFN) and an
output linear layer, represented as gmono : Rdmono →
R|Vmono|:

FFN(h) = q(W⊤
1 h)W2 ∈ Rdmono , (1)

where W1 ∈ Rdmulti×dffn and W2 ∈ Rdffn×dmono are
the weight matrices, q is non-linearity function, and
dmono represents the dimension of the target lan-
guage representaiton. We set dffn as dmulti/4, and
the non-linearity function q as SwiGLU (Shazeer,
2020). The output linear layer gmono then generates
a subword token:

fmono(h) = gmono(FFN(h)) ∈ R|Vmono|. (2)

MuMo LM Head Note that the output space
of fmono is restricted to tokens in the Vmono. In-
spired by Lan et al. (2023), we simply extend the
fmono by concatenating the output linear layer of
pre-trained multilingual model. This is particularly
useful when there is no suitable token in Vmono to
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Figure 3: Illustration of a single-step prediction with MuMo. Initially, the MuMo LM Head fmumo selects the top
6 candidates. Then, the pre-trained multilingual model verifies the feasibility of the candidates. Among the modules
in MuMo, the Target Monolingual LM head (the Korean LM Head in the figure) is only trained.

predict, such as special symbols or alphabet-based
tokens for non-alphabet languages.

Formally, given context representation ht−1, the
output of the MuMo LM head is computed as:

fmumo(ht−1) =

[fmulti(ht−1); fmono(ht−1)] ∈ R|Vmulti|+|Vmono| (3)

where the symbol ; indicates the concatenation of
two vectors, and the fmumo indicates the output of
the MuMo LM head. Thus, the MuMo LM head
is composed of a combination of the pre-trained
language model head and Target Monolingual LM
head.

3.2 Fine-tuning

In the proposed framework, we only fine-tune
the target monolingual LM head fmono leverag-
ing a small given target monolingual dataset. Note
that the parameters of the pre-trained multilingual
model remain frozen during the process. The model
is fine-tuned by maximizing the log-likelihood of a
sequence:

max
fmono

LMLE(pmumo,x) =
∑T

t=1 log pmumo(xt|x<t) ,

(4)
where pmumo(xt|x<t) = Softmax(fmumo(ht−1)).

3.3 Inference

Despite the availability of direct generation based
on the pmumo, the newly initialized Target Mono-
lingual LM head, which is trained on limited data,
may be constrained by generalization capabilities
beyond the training dataset. The key concept is to
leverage the probabilistic knowledge acquired by
the pre-trained model pmulti, which has been exten-
sively trained on large text corpora.

3.3.1 Step 1: Top-k Selection
Initially, we select top-k candidates based on the
probability pmumo(xt|x<t). We set k as 10 for all
experiments. Given the fact that we do not modify
the input embedding of the pre-trained model, we
are unable to feed the predicted word if a word
does not belong in Vmulti during the subsequent
iteration. Instead, we input the predicted word as
the tokenization units of the pre-trained vocabulary.
For example, let’s consider the Korean word “수
소”, which corresponds to a sequence of two tokens
(“수”, “소”) in Vmulti. If the Korean word “수소” is
selected among the Top-k candidates, we employ
these two multilingual tokens.

3.3.2 Step 2: Verification
Then, the feasibility of these potential completions
is measured using the log-joint probability distribu-
tion over pmulti. To account for shorter sequences

11098



naturally having higher scores (Jean et al., 2015;
Murray and Chiang, 2018), we normalize each can-
didate’s score by its token length.

We measure the feasiblity for a candidate se-
quence as follows:

σ(ci) =
1

li

li∑

k=1

log pmulti(c
i
t+k|ci<t+k,x<t), (5)

where ci symbolizes a predicted token within the
top-k candidates, pmulti represents the probabil-
ity as determined by the pre-trained multilingual
model, and li corresponds to the sequence length
of the candidate ci.

From the k candidates, the ultimate prediction
can be derived from both deterministic and stochas-
tic manners, depending on decoding strategies.

4 Experiments

4.1 Setup
Languages As a case study, we focus on two
non-roman alphabetical languages: Korean and
Japanese. Since we aimed to utilize a pre-trained
model with a reasonable level of effectiveness in
the target language, it is essential that the language
is explicitly mentioned as being trained within the
pre-training corpus. In this context, we considered
languages included in the Llama-2 (Touvron et al.,
2023b) pre-training corpus. Moreover, the chosen
language needed to exhibit the excessive fragmenta-
tion problem (Ahia et al., 2023; Petrov et al., 2023)
by the English-centric pre-trained tokenizer. (See
the Figure 1) This criterion led to the exclusion
of most European languages such as French, Ger-
man, and Portuguese. Finally, we conduct a study
on multiple tasks, necessitating the existence of an
instruction dataset for the target language. Due to
these considerations, we only implement the exper-
iment in Korean and Japanese.

Model We utilize the Llama-2 13B model (Tou-
vron et al., 2023b) for all experiments. We observed
some language alignment discrepancies between
instructions and responses when using the Llama-2
13B chat model.1 To address the issue, we con-
duct multilingual instruction tuning (Muennighoff
et al., 2022) for English, Korean, and Japanese
languages using the ShareGPT and Alpaca (Chen
et al., 2023c). This process improve the model’s
fluency in each language (Muennighoff et al., 2022;

1meta-llama/Llama-2-13b-chat

Language Language Family Pre-trained Tokenizer
Korean Koreanic EleutherAI/polyglot-ko-12.8b
Japanese Japonic rinna/japanese-gpt-neox

Table 2: Selected languages and tokenizers. We utilize
the tokenizers to construct Vmono in each language.

Chen et al., 2023b). We also report our results test
on Llama-1 13B (Touvron et al., 2023a) in Ap-
pendix.

Implementation of MuMo To construct targeted
monolingual vocabularies in MuMo Framework,
we levergage the tokenizers from the off-the-shelf
model, as shown in Table 2. We selected mono-
lingual tokens by filtering vocabulary items based
on the Unicode range of each monolingual script.
Additionally, we excluded items from the selection
if they were already present in the pre-trained vo-
cabulary. In terms of the preprocessing algorithm,
we employ a forward maximum matching strategy
to identify words in a target language vocabulary.
This strategy identifies the longest sequence of to-
kens that aligns with a word in the target language
vocabulary.

Regarding the initialization of gmono, we utilize
the LM head of the pre-trained multilingual model.
For example, when the Korean word "태양" is to-
kenized into subword units (“\0xed”, ..., “\0x91”)
using the pre-trained vocabulary, we initialize the
Korean LM head of "태양" by taking the mean
of the corresponding subword embeddings of the
multilingual LM head. This process ensures that
the initialized embeddings of Target Monolingual
head represent the original word in the multilingual
context.

Fine-tuning We only train the Target Monolin-
gual LM head gmono with the translated ShareGPT
and Alpaca datasets (Chen et al., 2023c) in Korean,
and Japanese. The training is done with 1500 steps
with one batch consisting of 128 examples. We use
the AdamW (Loshchilov and Hutter, 2019) opti-
mizer with a learning rate of 0.001, weight decay
of 0.01, and 150 steps of warm-up.

Evaluation We choose two representative gen-
eration tasks: summarization and translation. For
summarization, we use 500 examples from XL-
Sum (Hasan et al., 2021), and for translation, we
use 500 examples from the FLoRes-200 (Goyal
et al., 2022) dataset. We translate English sentences
to each target language sentence.
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Summarization (0-shot) Translation (3-shot)
Lang Method ROUGE-2 ROUGE-L Tokens/sec Speed Up BLEU Tokens/sec Speed Up

KO

Vanilla Decoding 20.7 36.1 28.9 1.00x 21.2 29.8 1.00x
Spec. (w/o Rejection) 18.7 33.5 35.2 1.21x 18.6 36.5 1.22x

Spec. 20.3 35.2 27.5 0.95x 21.5 29.2 0.98x
Shortlisting 20.5 36.3 30.6 1.06x 19.5 32.7 1.03x

MuMo (Ours) 20.3 35.9 55.3 1.92x 21.7 50.9 1.70x

JA

Vanilla Decoding 11.3 26.6 29.3 1.00x 26.3 33.4 1.00x
Spec. (w/o Rejection) 10.8 24.2 35.4 1.21x 22.7 39.9 1.21x

Spec. 11.6 26.5 28.5 0.97x 26.0 29.7 1.03x
Shortlisting 11.4 26.3 30.3 1.03x 25.2 34.9 1.04x

MuMo (Ours) 11.6 26.3 59.2 2.02x 24.3 58.3 1.75x

Table 3: Comparative study of Language Model (LM) inference speed. The column labeled “Speed Up”
represents the relative performance improvement in inference speed compared to the vanilla decoding method. The
highest performance in each category is highlighted in Boldface, and the second highest score is underlined. All
models use sampling-based decoding. MuMo outperforms the compared baselines in the inference speed. Detailed
information about the generation hyperparameters, including those used for sampling-based decoding, can be found
in Appendix D.

For each task, we report 0-shot results for sum-
marization, and 3-shot results for translation. We
set the maximum sequence length as 512. We uti-
lize flash-attention 2 (Dao, 2023) and bfloat16
types for text generation.

Metrics In the summarization task, we gauge the
reliability of the generated content by calculating
the ROUGE-2 and ROUGE-L (Lin, 2004) scores,
averaging the results across 5 different generated
summaries. Likewise, for the translation task, we
measure the quality of the translations by comput-
ing the BLEU (Papineni et al., 2002) score, again
averaging over 5 translation results.2 We report
Tokens/sec to measure the inference speed of the
models.

4.2 Baselines

We consider the following several baselines for the
comparison with the proposed method. Note that
all the baselines are implemented instruction-tuned
model with multilingual instruction dataset (Chen
et al., 2023c).

Vanilla Decoding The autoregressive generation
is to sequentially sample the subsequent word
based on the probability distribution over the pre-
trained vocabulary. This approach serves as the
standard against which improvements are mea-
sured. Accounting for the nature of task, all the
baselines and our framework utilizes sampling-
based decoding strategy with temperature as 0.1, k

2We utilize SacreBLEU scores with the signature BLEU
|nrefs:1 |case:mixed |eff:no |tok:ko,ja-mecab|smooth:exp |ver-
sion:2.2.0.

as 10 for top-k sampling (Fan et al., 2018) and p as
0.7 for nucleus sampling (Holtzman et al., 2020).

Speculative Decoding Speculative decoding ap-
proach (Chen et al., 2023a; Leviathan et al., 2023)
employs a preliminary "draft" model to rapidly
generate a set of token candidates at each decod-
ing step. Subsequently, these candidates undergo a
validation process by the original language model
to ascertain their likelihood as plausible continua-
tions of the text. We implement two variants of this
method: one with the capability to reject unsuitable
candidates (Spec.) and another without its rejection
module (Spec. w/o Rejection). For the draft model,
we utilize Llama-2 7B (Touvron et al., 2023b). Fol-
lowing the implementation of Chen et al. (2023a),
we generate 5 draft tokens at each iteration.

Lexical Shortlisting Lexical Shortlisting (Short-
listing) (Abdaoui et al., 2020; Ushio et al., 2023),
or vocabulary selection, is the approach that opti-
mizes the decoding process by allowing it to gen-
erate a word within a set of tokens during the in-
ference stage (Ushio et al., 2023). We implement
to filter out tokens that are not present within the
corresponding target language subset of the mC4
corpus (Xue et al., 2021), as Ushio et al. (2023).

4.3 Results
Table 3 shows the generation results in both summa-
rization and translation tasks. For the summariza-
tion task in Korean, MuMo outperforms all base-
lines in terms of speed, achieving a 1.92x speed-
up over the Vanilla Decoding while maintaining
competitive ROUGE scores. In translation, MuMo
again demonstrates superior efficiency with a 1.70x
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Summarization (0-shot) Translation (3-shot)
Method Update Param. Dataset size (Tokens) ROUGE-2 ROUGE-L Morphemes/sec Speed Up BLEU Morphemes/sec Speed Up

Vanilla Fine-tuning 13.0B 44M 21.0 36.0 9.8 1.00x 21.4 10.1 1.00x
Vocabulary Expansion 13.1B 44M 13.7 23.1 17.1 1.92x 12.3 20.2 2.00x
Vocabulary Expansion† 13.1B 60B + 44M 20.3 37.3 20.5 2.12x 20.3 23.1 2.29x

MuMo (Ours) 70M 44M 20.5 36.3 15.3 1.73x 21.7 17.2 1.71x

Table 4: Comparsion with the fine-tuning strategies. The column labeled “Speed Up” represents the relative
performance improvement in inference speed compared to Vanilla Fine-tuning. Vocabulary Expansion† was pre-
trained on over 60B tokens, comprised of both Korean and English text corpora. Other methods are only trained
with the instruction dataset (44M tokens) (Chen et al., 2023c), ShareGPT and Alpaca translated in Korean. The
Boldface signifies the superior performances, and the second highest score is underlined.

speed-up and even shows an improvement in BLEU
score compared to Vanilla Decoding.

In the case of Japanese, the results are similar,
with MuMo achieving a 2.02x speed-up in summa-
rization and a 1.75x speed-up in translation. The
ROUGE and BLEU scores for MuMo are on par
with or slightly below Vanilla Decoding, indicat-
ing that the increase in speed does not significantly
compromise the quality of the output.

Shortlisting shows only marginal gains in speed
across both languages and every tasks, while pre-
serving the generation capability. This is likely be-
cause the relative computational cost of processing
the embedding matrix is reduced in larger models,
making vocabulary reduction less impactful (Be-
rard et al., 2021; Ushio et al., 2023). On the other
hand, the Spec. heavily relies on the capacity of
the draft model, as shown as the comparison with
(Spec. w/o Rejection). If the draft model lacks of
sufficient multilingual capacity, it may not generate
high-quality candidates, leading to a lower accep-
tance rate by the original model and thus reduced
efficiency.

The superior performance of MuMo in terms of
inference speed can be primarily attributed to its ca-
pability to predict larger linguistic units compared
to those in the pre-trained vocabulary. We found
that the target language tokens in Vmono are typi-
cally tokenized into 3-4 separate tokens in Vmulti,
suggesting that the decoding step could potentially
be reduced by 3-4 times. It is hypothesized that
the inference speed is significantly influenced by
the disparity between the pre-trained multilingual
vocabulary and the target language.

5 Further Analysis

5.1 Comparative Analysis of Fine-Tuning
Strategies

In the section, we provide a comparative analysis
of three distinct fine-tuning strategies for multilin-
gual models. This analysis aims to highlight the

advantages and disadvantages of each strategy, par-
ticularly in terms of dataset requirements. and the
number of parameters to train.

5.1.1 Setup
The two strategies compared in the analysis are:

1. Vanilla Fine-tuning: This strategy, which
serves as a baseline, involves fine-tuning a stan-
dard multilingual model on a target monolingual
instruction dataset (44M tokens) without any modi-
fications to the pre-trained vocabulary.

2. Vocabulary Expansion: Inspired by prior
work (Chau et al., 2020; Cui et al., 2023), this
strategy involves expanding the vocabulary of the
pre-trained multilingual model and fine-tuning on
the instruction dataset. This method, unlike MuMo,
expands not only the LM head but also the token
embedding in the input layer. Two implementations
of this strategy are considered. The first involves
pre-training on large-scale text corpora (60B to-
kens)3 before fine-tuning on the instruction dataset.
This strategy is marked with a dagger in Table 4.
The second only undergoes the fine-tuning phase
on the instruction dataset.

To account for the variability of token unit be-
tween the different strategies, we report the infer-
ence speed with the morphemes per second (Mor-
phemes/sec), providing a standardized measure-
ment.4 We only compare the baselines in Korean,
because of the availability of model.

5.1.2 Discussion
Table 4 reveals a consistent trend across both sum-
marization and translation tasks. The vocabulary
expansion strategies, which expand the dimension
of both the token embeddings and LM head, ex-
hibit significant increases in inference speed, but
this is accompanied by a substantial decrease in the
quality of the generated output when not trained on

3We use the off-the-shelf checkpoint from beomi/llama-2-
koen-13b

4python-mecab-ko
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Summarization (0-shot) Translation (3-shot)
LM HEAD INITIALIZATION ROUGE-2 ROUGE-L BLEU

MONO-INIT 20.7 36.2 21.5
RANDOM-INIT 19.2 35.5 17.2

MULTI-INIT 20.3 36.3 21.7

Table 5: Comparative analysis for the initialization strategy. MONO-INIT signifies to leverage the pre-existing
embedding representation. We use the language model head of the monolingual model from EleutherAI/polyglot-
ko-12.8b. In the case of RANDOM-INIT, we randomly initialize with Gaussian distribution. MULTI-INIT indicates
to leverage multilingual model representation by averaging its subword embedding as the main experiment. The
Boldface signifies the superior performances.

Summarization (0-shot) Translation (3-shot)
Lang Method ROUGE-2 ROUGE-L Tokens/sec BLEU Tokens/sec

KO
MuMo 20.3 35.9 55.3 21.7 50.9
w/o Verification 11.0(-9.3) 26.4(-9.5) 60.8(+5.5) 16.3(-5.4) 62.3(+11.4)

JA
MuMo 11.6 26.3 59.2 24.3 58.3
w/o Verification 6.7(-4.9) 20.4(-5.9) 69.1(+9.9) 10.8(-13.5) 73.6(+15.3)

Table 6: Ablation Study. While the exclusion of the verification accelerates approximately 1.2 times in inference
speed, it significantly compromises the quality of the generation.

large-scale text corpora. This indicates that merely
fine-tuning with an expanded vocabulary on a lim-
ited downstream dataset may not suffice to main-
tain high-quality text generation, as suggested by
(Conneau et al., 2020). Furthermore, while vocabu-
lary expansion with pre-training achieves notable
speed improvements, it does not exhibit significant
enhancements in generation quality.

In contrast, our proposed method exhibits a mod-
est increase in speed while also slightly improving
BLEU scores relative to vanilla fine-tuning. The
principal advantage of our method lies in its ca-
pacity to attain these results without necessitating
vast monolingual text corpora. This approach not
only reduces the number of parameters that need to
be fine-tuned, making it more parameter-efficient
but also lessens the dependency on large-scale data
for pre-training, making it a more data-efficient
solution.

5.2 Initialization of Target Monolingual LM
Head

We investigate the impact of three different initial-
ization strategies on the target monolingual LM
head gmono in the Target Monolingual LM head.
The first strategy involves leveraging embeddings
that correspond to the pre-trained representation
of a targeted monolingual LM head, termed as
MONO-INIT. The second strategy is initializing
the parameters with random value using Gaussian
distribution (RANDOM-INIT). Lastly, we utilize
the embeddings from the pre-trained multilingual

LM head (MULTI-INIT), as the main experiment.
This is achieved by averaging the output embed-
dings of the multilingual model.

Table 17 shows that MULTI-INIT achieves a
ROUGE-L score of 36.3 and a BLEU score of 21.7,
which are close to the 36.2 ROUGE-L and 20.9
BLEU scores of MONO-INIT. On the other hand,
RANDOM-INIT shows a decrease in performance,
with a ROUGE-L score of 35.5 and a BLEU score
of 17.2.

The result demonstrates that the MULTI-INIT

approach is almost equally effective with MONO-
INIT. This suggests that our framework can be uti-
lized some languages that have an off-the-shelf
vocabulary set but lack suitable pre-trained repre-
sentations.

5.3 Effectiveness of Verification Step

We design an ablation study to investigate the role
of the verification step in the inference process (
Sec. 3.3.2). To assess the impact of the verification
step, we generated sequences without employing
the verification step.

From the results in Table 6, conducted in both
Korean and Japanese, we notice that the overall
generation speed is approximately 1.2 times faster
when the verification is excluded. However, it is
crucial to highlight that the exclusion of the veri-
fication step in the inference phase leads to a sig-
nificant reduction in the generation quality. This is
evident in the decrease in ROUGE-2, ROUGE-L,
and BLEU scores for both languages when the ver-
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ification module is not used, as shown in the table.
This suggests that while the verification step may
slightly slow down the generation process, it plays
a vital role in preserving the model’s generation
capability.

5.4 Comparative Study in Single-Task
Training

In the experiment, our primary objective is to in-
vestigate whether the inherent capabilities of the
instruction-tuned multilingual model, which han-
dles a variety of tasks, could be compromised when
trained exclusively on single tasks using either Vo-
cabulary Expansion or MuMo. Both methods in-
troduce newly initialized parameters, raising con-
cerns about potential impacts on the model’s ver-
satility. To address these concerns, we separately
trained the model on each task - Question Answer-
ing (QA) (Lim et al., 2019; Kurihara et al., 2022)
and Summarization (Hasan et al., 2021) - and subse-
quently conducted a comparative analysis between
Vocabulary Expansion and MuMo.

For evaluation, we utilize multiple-task datasets,
specifically Korean5 and Japanese6, which consist
solely of questions. For the measurement, We adopt
the single-answer grading setup from LLM-as-a-
judge (Zheng et al., 2023). This involves presenting
a question along with model-generated answers to
GPT-4 (acting as the judge) for assessment. The
answers are graded on a scale from 1 to 10.

As depicted in Figure 4, the instruction-tuned
model initially achieves an average grading of 7.2
in the Korean experiment. However, when fine-
tuned using only the QA task, Vocabulary Expan-
sion receives a grading of 1.8, while MuMo re-
ceives a grading of 5.9. When trained solely on
the summarization task, Vocabulary Expansion re-
ceives a grading of 1.6, while MuMo receives a
grading of 4.7. Similar trends are observed in the
Japanese experiment. The original model receives
an average grading of 6.8. When fine-tuned with
only the QA task, Vocabulary Expansion receives a
grading of 2.1, while MuMo receives a grading of
5.2. When trained exclusively on the summariza-
tion task, Vocabulary Expansion receives a grading
of 1.2, while MuMo receives a grading of 4.4.

These results suggest that while the grading
of the model decreases when trained on single
tasks using either method, the decrease is less pro-

5Korean-MT-bench
6Japanese-MT-Bench

  

Ko
re

an

Vocabulary Expansion MuMo

5.9

1.8 1.6

4.7

Ja
pa

ne
se

QA Summarization

5.2

2.1

4.4

1.2

Figure 4: Evaluation on multiple-task after training
on QA and Summarization task. The red dotted lines
represent the average grading of single answers derived
from the instruction-tuned multilingual language model.
The decline is less pronounced with MuMo, suggesting
its relative effectiveness in preserving the model’s multi-
task proficiency.

nounced with MuMo. This indicates that MuMo
is more effective at preserving the model’s multi-
task proficiency compared to Vocabulary Expan-
sion. However, it is also clear that neither method
can fully maintain the model’s original instruction-
following abilities on multiple tasks when trained
solely on single tasks. These findings suggest that
the instruction dataset, which the model was origi-
nally trained on, is crucial for preserving the pre-
trained model’s capabilities.

6 Conclusion

Our study has successfully tackled the challenges
in generating text for non-alphabet languages, par-
ticularly those associated with excessive fragmen-
tation issues. The approach not only speeds up text
generation but also paves the way for more effi-
cient multilingual language applications. Our fu-
ture work will broaden our experimental scope to
languages that were not sufficiently represented in
the pre-trained multilingual language model.
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Limitations

Our proposed framework has not been evaluated
with languages that exhibit excessive fragmentation
issues, such as Tamil, Hebrew, and Arabic (Ahia
et al., 2023; Petrov et al., 2023). These languages
were not explicitly mentioned in the pre-training
corpus of Llama-2 (Touvron et al., 2023b). Addi-
tionally, our framework requires off-the-shelf tok-
enizers for target languages to make Target mono-
lingual LM Head. Our method does not alter the
input sequence length, as we focus solely on im-
proving the unit of prediction. This approach This
approach differs from the the previous studies (Rust
et al., 2021; Cui et al., 2023) which efficiently en-
code text at the input-level sequence length for ex-
cessively tokenized languages. Furthermore, the
language models evaluated in the study are re-
stricted to a maximum size of 13B. Larger mod-
els, such as Llama-2 30B or 70B, were not imple-
mented due to constraints on available computa-
tional resources.
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Appendix

A Dataset Details

Training Data Our study employed a multilin-
gual instruction dataset from Chen et al. (2023c),
encompassing Korean and Japanese, for multilin-
gual instruction tuning. Specifically, we utilized
ShareGPT and Alpaca-GPT4 for each respective
language. The dataset comprises 56k, 55k, and
168k examples for Korean, Japanese and English
respectively. To train MuMo LM head, we use
ShareGPT and Alpaca-GPT4 (Chen et al., 2023c)
in Korean and Japanese for each language.

Evaluation Data In summarization task, we use
validation and test split of XLSum (Hasan et al.,
2021), which consist of 1100 examples. We found
that more than half of the samples within the valida-
tion and test split surpassed the maximum sequence
length of Llama-2. Consequently, we filtered out
examples exceeding 1536 tokens. From the remain-
ing examples, we randomly selected 300 for our
experiments.

Regarding translation task, the dev-test set of
FLoRes-200 (Goyal et al., 2022) is employed, con-
sisting of 1012 parallel examples across both lan-
guages. We randomly use 3 examples as 3-shot
prompts from training set for individual run.

When evaluating multiple-task benchmark
dataset 6, we exclude examples in coding and math
categories.

B Additional Results

Experiment on other Language Model Ta-
ble 13, and Table 13 present the comparative study
in Llama-1 13B (Touvron et al., 2023a) and Mistral
7B (Jiang et al., 2023) respectively.

Generation Results Table 15 and Table 16
present generated texts in summarization and trans-
lation tasks.

C Environment Details

All experiments are implemented using an A100-
40GB GPU. The library versions utilized across all
experiments include Python 3.9.10, Pytorch 2.1.0,
and Transformers 4.34.0.

D Hyperparameter Details

Hyperparameter Value
Learning rate 2e-5
Epoch 3
Dropout 0.1
Tensor Type bfloat16
Batch size 128
Optimizer AdamW
Weight decay 0.01
Warmup ratio 0.04
Maximum sequence length 2048
Learning rate scheduler cosine

Table 7: Hyperparameters settings for multilingual in-
struction tuning. We follow the script from FastChat
Library.

Hyperparameter Value
Learning rate 1e-3
Epoch 3
Dropout 0.1
Tensor Type bfloat16
Batch size 128
optimizer 1.05
Weight decay AdamW
Warmup ratio 0.04
Maximum sequence length 2048
Learning rate scheduler cosine
dffn 1280
non-linearity function q SwiGLU

Table 8: Hyperparameters settings for training MuMo
framework.

Hyperparameter Value
temperature 0.1
sampling True
p for top-p sampling 0.7
repetition penalty 1.05
exponential decay length penalty (256, 1.03)
max sequence length 512
k for top-k sampling 20

Table 9: Hyperparameter settings for inference.
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Task Evaluation Prompt
Summarization A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful,

detailed, and polite answers to the human’s questions.
# Document
{{sourceDocument}}
## HUMAN: Summarize the document into a {{targetLang}} sentence.
## ASSISTANT:

Translation A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the human’s questions.
Translate the following text into {{targetLang}}.
## HUMAN: {{sourceString1}}
## ASSISTANT: {{targetString1}}
## HUMAN: {{sourceString2}}
## ASSISTANT: {{targetString2}}
## HUMAN: {{sourceString3}}
## ASSISTANT: {{targetString3}}
## HUMAN: {{sourceString}}
## ASSISTANT:

Table 10: The evaluation prompt for the main experiment (Sec. 4). We report on 0-shot results on summarization
task, and 3-shot results on translation task respectively.

Task Training Prompt
QA A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful,

detailed, and polite answers to the human’s questions.
# Document
{{context}}
## HUMAN: {{question}}
## ASSISTANT: {{answer}}

Summarization A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the human’s questions.
# Document
{{sourceDocument}}
## HUMAN: Summarize the document into a {{targetLang}} sentence.
## ASSISTANT: {{summary}}

Table 11: The training prompt for the analysis on single-task prompt finetuning (Sec. 5.4).

Summarization (0-shot) Translation (3-shot)
Lang Method ROUGE-2 ROUGE-L Tokens/sec Speed Up BLEU Tokens/sec Speed Up

KO
Vanilla Decoding 14.7 31.2 29.0 1.00x 18.6 29.7 1.00x

MuMo (Ours) 12.8 30.7 45.0 1.51x 18.1 43.0 1.49x

JA
Vanilla Decoding 10.4 21.0 28.6 1.00x 20.7 32.6 1.00x

MuMo (Ours) 9.6 20.2 54.3 1.89x 20.0 53.8 1.64x

Table 12: Comparative study of the inference speed in Llama-1 13B (Touvron et al., 2023a). The column labeled
“Speed Up” represents the relative performance improvement in inference speed compared to the vanilla decoding
method.

Summarization (0-shot) Translation (3-shot)
Lang Method ROUGE-2 ROUGE-L Tokens/sec Speed Up BLEU Tokens/sec Speed Up

KO
Vanilla Decoding 23.0 36.5 34.2 1.00x 18.5 37.3 1.00x

MuMo (Ours) 22.8 36.9 56.4 1.65x 18.3 63.2 1.69x

JA
Vanilla Decoding 12.9 26.4 33.5 1.00x 27.2 36.8 1.00x

MuMo (Ours) 13.2 26.3 64.8 1.93x 26.9 66.3 1.80x

Table 13: Comparative study of the inference speed in Mistral 7B (Jiang et al., 2023). The column labeled
“Speed Up” represents the relative performance improvement in inference speed compared to the vanilla decoding
method.
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Texts (ko) Tokens/sec ROUGE-L
Document 환경부는 22일사회관계장관회의에서 ’1회용품함께줄이기계획’을추

진한다고 발표했다. 2022년까지 일회용품 사용량을 35% 이상 줄이는
것이정부의목표다.종이일회용컵사용금지현재카페나빵집등에서
일회용 플라스틱 컵은 사용이 금지되지만, 종이컵은 사용이 가능했다.
하지만 2021년부터 종이컵 제공 또한 전면 금지된다. 식당, 카페, 급식
소에서플라스틱빨대,젓는막대등도 2022년부터금지된다.매장에서
머그잔에음료를받아마시다포장해서가져가려는경우에도일회용컵
사용에 따른 추가 비용을 내야 한다. 환경부는 ’컵 보증금제’ 재도입을
검토중이다.소비자가커피등음료를구매할때일정금액의보증금을
내고,컵을반환하면그돈을돌려받는방식이다. ’컵보증금제’는과거
한 차례 도입됐다가 2008년 폐지됐다. 포장과 음식 배달에서 제공되는
일회용식기류무상제공도 2021년부터금지된다.정부는배달음식용
기 또한 친환경 소재 또는 다회용기로 전환을 유도하겠다고 발표했다.
장례식장에서도 2021년부터일회용식기용품사용이금지된다.비닐봉
지도금지현재비닐봉지는백화점이나슈퍼마켓등대규모점포에서는
사용이금지되어있다.편의점같은종합소매업이나빵집등에서는유
상으로구매가가능하다.하지만 2022년부터는제과점이나가게에서도
일괄금지된다.호텔등숙박업소의경우, 50실이상의시설에서는 2022
년부터샴푸,린스,칫솔등일회용위생용품무상제공이금지된다. 2024
년부터는모든숙박업소에일괄적용된다.택배포장재줄이기최근택
배와 신선식품 배송이 급격히 늘면서, 환경부는 배송용 포장재 사용량
증가해소를위한사업도추진한다고발표했다.과대포장문제가제기된
배송 상품의 경우 포장기준을 강화하고, 업계와 협의해 종이 완충재와
테이프없는상자등친환경포장재를마련할계획이다. 2020년부터이
미포장된제품을다시포장해서묶어판매하는소위이중포장행위가
금지된다.올해 13살인라니엘은 8살때부터강물에떠내려온쓰레기를
줍기시작했다다른나라는 2018년 10월,유럽연합은바다오염을막기
위해 일련의 일회용 플라스틱 제품 사용을 완전히 금하는 법안을 통과
시켰다. 유럽연합은 2021년부터 법안이 발효할 것으로 기대하고 있다.
금지 품목에는 플라스틱 식기류, 빨대, 면봉 등이 있으며 식품과 음료
에사용되는플라스틱컵등일회용플라스틱사용역시줄이도록하는
내용을 담았다. 인도의 경우 2022년부터 일회용 플라스틱 사용이 전면
금지된다.

GT 2021년부터 카페에서 음료를 포장할 경우, 일회용 컵을 무상으로 사용
하지못한다.

Vanila Decoding 환경부는 2022년까지일회용품사용량을 35%이상줄이는것을목표로
’일회용품함께줄이기계획’을추진한다고발표했다.

27.7 33.4

MuMo 환경부에 따르면 2022년까지 일회용품 사용량에서 35% 이상 줄이기
를목표로하며,현재는일회용플라스틱컵사용이금지되었으며 2021
년부터는종이컵제공도금지될예정입니다.

47.2 38.1

Table 14: Generated texts on summarization task in Korean. The sample is extracted from the validation set of
XLSum (Hasan et al., 2021). GT indicates the ground truth summary of the example.
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Texts (ja) Tokens/sec ROUGE-L
Document 犬のマックスは16時間、女の子に寄り添った 女の子のオーロ

ラちゃんは前の日から行方が分からなくなり、家族や警察など
約100人が捜索に当たっていた。クイーンズランド・サザンダウ
ンズの自宅を出て原野に迷い込んだオーロラちゃんの後を、犬の
マックスが追い、16時間近くずっと寄り添っていたとみられてい
る。高齢のマックスは、目と耳が部分的に不自由。1人と1匹が丘の
斜面で一緒にいるのを、親族が21日朝に発見した。オーロラちゃ
んの祖母、レイサ・マリー・ベネットさんは、自宅から約2キロ離
れた場所で、オーロラちゃんの叫び声を聞いたと豪ABCに話した。
「大急ぎで山を駆け上がって上までたどりつくと、犬がこちらに
向かってきて、オーロラのところへ一直線に連れて行ってくれた」
親類によると、気温が15度まで下がるなか、オーロラちゃんは犬の
マックスと岩の下に避難していたという。警察車両の横に立つ
マックス。動物の専門家によると、高齢な犬ほど人間とのつなが
りを特に重視するというクイーンズランド警察は、マックスの行
動を称え、名誉警察犬の地位を与えた。「3歳の子供なら、夜間とて
も怖かっただろうし、とても寒かったはずだ。犬が寄り添っていた
おかげで、女の子は心強かっただろうし、寒くならなかったのだろ
う。明るい結末でよかった」とクレイグ・ベリー警部は話した。ツ
イッターでは大勢が、マックスをほめちぎり、おやつをたくさんあ
げてほしいと書き込んだ。なぜずっとそばになぜマックスがずっ
とオーロラちゃんのそばを離れなかったのかについて、シドニー
大学のポール・クリービー教授 （動物行動学）は、高齢な犬ほど人
間とのつながりを大事にするので、女の子の動揺を察知したのだ
ろうと話す。「もし女の子が泣いていたなら、犬は元気付ける行動
をとった可能性が高い」とクリービー教授はBBCに話した。「女の
子のそばにずっといて、支えてあげるのが、なにより大事な行動
だったはずだ」

GT 豪クイーンズランドの警察は21日午前、原野に迷い出て行方不明
になった3歳少女を発見したと発表すると共に、家族の17歳になる
牧牛犬が女の子に約16時間寄り添っていたと明らかにした。

Vanila Decoding クイーンズランド州のサザンダウンズに住む小さな女の子オーロ
ラが、家族や警察など約100人が捜索に当たっていたが、16時間前
に行方不明になった。

29.2 27.8

MuMo オーストラリアのクイーンズランド州サバーンダウンズ地域で行
方不明になった子供を見つけ、オーストラリア警察の名誉警察犬
になった高齢の犬マックス （Max）についてのジャーナル記事とと
もに、オーストラリア警察の名誉警察犬になったという内容です。

57.3 31.9

Table 15: Generated texts on summarization task in Japanese. The sample is extracted from the validation set of
XLSum (Hasan et al., 2021). GT indicates the ground truth summary of the example.
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Texts (en→ko) Tokens/sec BLEU
Source Since moving to the Catalan-capital, Vidal had played 49 games for the club.

GT 바르셀로나로이적한후비달은클럽을위해 49경기를뛰었습니다.
Vanila Decoding 바르셀로나로이적한이후로비달은이클럽에서 49경기에출전했습니다. 27.2 22.8

MuMo 바르셀로나로이적했던비달은클럽에서총 49경기를출전했습니다. 45.7 26.9

Texts (en→ko) Tokens/sec BLEU
Source Just after 11:00, protesters blocked traffic on the northbound carriage in White-

hall.
GT 11시가 막 지난 후, 시위대는 화이트홀에 있는 북쪽으로 향하는 마차들의

교통을막았다.
Vanila Decoding 백알화이트홀에서오전 11시 15분경,시위자들이북쪽차선을차단하여교

통을방해했습니다.
27.6 5.1

MuMo 백알화이트홀에서오후 11시이후,시위대가북쪽선행차량을차단했습니
다.

44.3 4.3

Texts (en→ja) Tokens/sec BLEU
Source Since moving to the Catalan-capital, Vidal had played 49 games for the club.

GT カタルーニャの州都に移って以来、ビダルはクラブで49試合に出場し
ました。

Vanila Decoding バルセロナに移動してから、ビダルさんは約49試合でプレーしていま
す。

27.5 6.8

MuMo バルセロナに移動してから、ビダルさんは約49試合でプレーしていま
す。

52.2 6.8

Texts (en→ja) Tokens/sec BLEU
Source Just after 11:00, protesters blocked traffic on the northbound carriage in White-

hall.
GT 11時すぎちょうどに抗議者たちはホワイトホールの北行き車両の交通

を遮断しました。
Vanila Decoding 11時過ぎに、ホワイトホールの北行線上で抗議者が交通を妨害しまし

た。
28.3 26.7

MuMo 午前11時過ぎ、デモ隊はホワイトホールの北へ向かう馬車の交通を阻
止した。

50.3 25.0

Table 16: Generated texts on translation task. The samples are extracted from the dev-test set of FLoRes-200 (Goyal
et al., 2022). GT indicates the ground truth sentence of the example.

Summarization (0-shot) Translation (3-shot)
LM HEAD INITIALIZATION ROUGE-2 ROUGE-L BLEU

MONO-INIT 20.7 36.2 21.5
RANDOM-INIT 19.2 35.5 17.2

MULTI-INIT 20.3 36.3 21.7
FOCUS-INIT 20.8 36.5 21.9

Table 17: Comparative analysis for the initialization strategy We exploit FOCUS (Dobler and de Melo, 2023)
embedding to initialize the Target monolingual LM Head. Our framework can be harmonically integrated with the
initialization strategy of multilingual token embedding.
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