
Findings of the Association for Computational Linguistics ACL 2024, pages 11143–11156
August 11-16, 2024 ©2024 Association for Computational Linguistics

StableToolBench: Towards Stable Large-Scale Benchmarking on
Tool Learning of Large Language Models

Zhicheng Guo1, 2, Sijie Cheng1, 2, 3, Hao Wang4, Shihao Liang5, Yujia Qin1,
Peng Li2, Zhiyuan Liu1, Maosong Sun1, Yang Liu1,2,6

1Dept. of Comp. Sci. & Tech., Institute for AI, Tsinghua University, Beijing, China
2Institute for AI Industry Research (AIR), Tsinghua University, Beijing, China

301.AI 4Google 5The University of Hong Kong
6Jiangsu Collaborative Innovation Center for Language Competence, Jiangsu, China

{guo-zc21, csj23}@mails.tsinghua.edu.cn

Abstract

Large Language Models (LLMs) have wit-
nessed remarkable advancements in recent
years, prompting the exploration of tool learn-
ing, which integrates LLMs with external tools
to address diverse real-world challenges. As-
sessing the capability of LLMs to utilise tools
necessitates large-scale and stable benchmarks.
However, previous works relied on either hand-
crafted online tools with limited scale, or large-
scale real online APIs suffering from instability
of API status. To address this problem, we in-
troduce StableToolBench, a benchmark evolv-
ing from ToolBench, proposing a virtual API
server and stable evaluation system. The virtual
API server contains a caching system and API
simulators which are complementary to allevi-
ate the change in API status. Meanwhile, the
stable evaluation system designs solvable pass
and win rates using GPT-4 as the automatic
evaluator to eliminate the randomness during
evaluation. Experimental results demonstrate
the stability of StableToolBench, and further
discuss the effectiveness of API simulators, the
caching system, and the evaluator system.

1 Introduction

With the rapid developments of Large Language
Models (LLMs; Brown et al., 2020; Gemini Team,
2023; OpenAI, 2023; Touvron et al., 2023), tool
learning which leverage LLMs to schedule a va-
riety of external tools has attracted enormous at-
tention (Nakano et al., 2022; Yao et al., 2022b;
Lu et al., 2023). Previous studies (Hao et al.,
2023; Hsieh et al., 2023; Schick et al., 2023; Tang
et al., 2023) aim to augment LLMs with tools to
enhance performance on conventional natural lan-
guage processing (NLP) downstream tasks, while
recent work (Qin et al., 2023a; Yao et al., 2022a;
Cai et al., 2024) primarily focus on solving real-
world scenarios that require the use of tools. In

Project: zhichengg.github.io/stb.github.io/
GitHub: THUNLP-MT/StableToolBench

general, tool learning complements the capabilities
of vanilla LLMs and bridges the gap to real-world
applications.

To assess the capability of LLMs to use tools, a
series of tool learning benchmarks have been in-
troduced. Several pioneering studies have heavily
relied on human-crafted offline tools (Yang et al.,
2023b; Xu et al., 2023) or hand-selected online
tools (Li et al., 2023b,a; Chen et al., 2023b). While
these tools are high-quality, their scale remains rel-
atively small, thereby limiting their ability to accu-
rately reflect real-world scenarios. To address this
limitation, subsequent studies (Tang et al., 2023;
Ye et al., 2024; Qin et al., 2023b) have advocated
for leveraging extensive collections of online tools
that span across various domains. Owing to the
increased scale, the automatic evaluation of tool
learning has moved closer to real-world scenarios.
However, concerns have been raised regarding the
stability of these online tools, which has implica-
tions for the reproducibility and comparability of
benchmark performance over time1. For instance,
the well-recognised ToolBench2 (Qin et al., 2023c)
has shown performance discrepancies that cannot
be reproduced months after its release, as analysed
in Section 2.1. This is even more important when
faced with a complex environment, where APIs and
tools keep changing while the evaluation should
maintain its consistency across time.

Existing large-scale benchmarks may struggle to
provide stable evaluations for various reasons. We
propose several hypotheses for this issue. Firstly,
the complexity of tasks involving tool usage makes
it challenging for the common automatic evaluator,
gpt-3.5, to function effectively as a discriminator.
As discussed in Section 2.2, the evaluator cannot
reliably determine whether a task is solvable or

1According to its definition, benchmarks should remain
stable, and the model performance assessed on them must be
comparable over time.

2We use ToolEval2 in ToolBench as the benchmark.

1
11143

https://zhichengg.github.io/stb.github.io/
https://github.com/THUNLP-MT/StableToolBench
https://www.oed.com/dictionary/benchmark_n?tab=meaning_and_use

unsolvable, leading to variability in model perfor-
mance due to this capability limitation. Secondly,
the stability of API status for a significant portion
of online tools (55.6% in ToolBench) is inconsis-
tent. Users may be required to authorise the use
of these tools or APIs, and tools provided by de-
velopers may be accessible during the initial con-
struction of the benchmark but become unavailable
later. This fluctuation further undermines the reli-
ability and reproducibility of model performance
assessments over time. This situation results in
a problem where the constructed queries in the
benchmarks may no longer be completed with their
originally referenced tools. Consequently, it is cru-
cial to strike a balance between enhancing the sta-
bility of these benchmarks and maintaining their
diversity and scope.

To address these issues, we propose a new bench-
mark named StableToolBench, which incorporates
a virtual API system and a stable evaluation system.
We first build a virtual API system to replace the
real one. As a start, we build a caching system
to store the outputs of API calls. This approach
ensures the stability and reproducibility of API be-
haviours. Given the limited number of benchmark
questions, our caching system can cover a signifi-
cant number of API call scenarios. However, rely-
ing solely on a cache is insufficient because many
APIs remain unavailable. To resolve this problem,
we use large language models (LLMs) to simulate
the behaviours of these APIs. Specifically, we feed
the documentation and few-shot real API calls if
available in the cache to LLMs and ask LLMs to
mock the behaviour of the APIs given a request.
As a result, users can always get responses from
APIs in an indistinguishable way as long as the
LLMs are accessible. On the whole, our system
first tries to find a hit in the cache. Unless there is
a cache miss and a real API call is not received, the
simulated server will be used.

We then improve the evaluation system to make
it more stable. We design two metrics (i.e., SoPR
and SoWR) after judging solvable tasks and re-
place all the automatic evaluators with GPT-4 to
mitigate the randomness and indistinguishability
during evaluation. Experiments demonstrate that
our virtual API system, when combined with the
improved evaluation system, can provide stable
evaluation against API modifications. Furthermore,
our system exhibits significant reliability in terms
of realism, diversity, and documentation following
accuracy.

0 10 20 30 40 50
Pass Rate(%)

ChatGPT

w/ CoT

ChatGPT

w/ DFS

ToolLLaMA v2

w/ CoT

ToolLLaMA v2

w/ DFS

M
et

ho
d

Reported
Reproduced

Figure 1: Comparison of performance (Pass Rate) re-
ported in the paper and reproduced by us on the I1-
Instruction group of ToolBench.

The main contributions of our work are sum-
marised as follows:

• A tool-learning benchmark featured a large
number of cached stable simulated APIs, well-
balancing stability and reality of the APIs and
much more stable evaluation metrics.

• Extensive experiments show that our bench-
mark provides much more stable model perfor-
mance, robust to various types of API failures.

• Besides enhanced stability, our virtual API
system exhibits reality, diversity and reliabil-
ity comparable to that of the real API system.

2 Stability Analysis on ToolBench

In this section, we initiate a comprehensive analysis
to reveal the stability of established tool bench-
marks, using Toolbench (Qin et al., 2023b) as
a case study. We examine the stability of Tool-
Bench by investigating three key dimensions: per-
formance, evaluation, and API status.

2.1 Stability of Performance

Benchmarks are designed to consistently evaluate
the performance of various models over time. To
test this consistency, we reproduce the model per-
formances and record any variations. Our study
employs Chain-of-Thought (CoT; Wei et al., 2023)
and Depth First Search (DFS) strategies, leveraging
ChatGPT and ToolLLaMA for comparative anal-
ysis. We adhere strictly to the configurations de-
tailed in ToolBench, utilising the ChatGPT version
gpt-3.5-turbo-0613 and ToolLLaMA-v2. As de-
picted in Figure 1, we compare the original Pass
Rates for the I1-Instruction group reported by Tool-
Bench with the Pass Rates we reproduced for four
conventional methods. Our findings indicate a no-

2
11144

Task
w/ Tools

w/ Answer

Unsolvable

Pass Answer
Solved?

Task
Solvable?

Solved

Unsolved/UnsureRandom
GuessFail

Unsure

Answer
Solved?

Solvable

Solved

Unsolved
Unsure

Figure 2: Pass Rate evaluation in ToolBench paper.

Method Task Answer Pass WinS US UE S US UE

CoT
168 23 9 19 170 11 33.0 50.0
165 29 6 16 174 10 31.5 46.5
151 40 9 20 167 13 37.5 53.0

DFS
116 68 16 17 167 16 50.5 54.0
122 59 19 20 162 18 46.5 48.0
132 54 14 22 157 21 55.0 56.0

Table 1: Experiments use GPT-3.5-Turbo-0613 with
CoT and DFS. S, US, and UE indicate solvable (solved),
unsolvable (unsolved), and unsure. Pass and Win de-
note pass rate and win rate, respectively. Win rates are
evaluated against the first run of CoT. This experiment
is run on 4 Feb 2024.

table decline in the performance of all methods
over time, which raises concerns about the stability
of ToolBench as a benchmark.

2.2 Stability of Evaluation

In ToolBench, there are two types of metrics, in-
cluding Pass Rate (PR) and Win Rate (WR). PR
is calculated based on using gpt-3.5-turbo-16k
to determine if a task is solvable and whether the
generated answer can solve the corresponding task.
Figure 2 details the computation process of PR.
Specifically, a solvable task results in a pass if the
answer is solved, a failure if unsolved, and is ran-
domly determined if unsure. For tasks deemed
unsure, a pass is assigned only if the answer is
solved; otherwise, a random outcome is chosen. If
a task is unsolvable, the result defaults to a pass
regardless of the answer status. Moreover, WR is
derived from the comparative PR of paired candi-
dates. A candidate’s WR increases by one each
time it passes while the other fails. In all other
situations, WR relies on gpt-3.5-turbo-16k to
automatically evaluate the paired candidates.

To assess the stability of evaluation, we perform
both CoT and DFS using gpt-3.5-turbo-0613

Not Connectable: 14.8%

Not Found: 3.5%
Parameter Change: 3.6%

Parsing Error: 25.9%

Other: 1.4% Not Authorised: 6.4%

Success: 44.4%

Not Available
Not Authorised
Success

Figure 3: Statistics of API changes. Parsing errors are
caused by post-processing errors of local API documen-
tation, which have been solved in our benchmark.

on the I1-Instruction group dataset. These analyses
are conducted using the provided tools and repeat
over three iterations each. The resulting PR and
WR are presented in Table 1, with detailed task and
answer items. Despite PRs of DFS being gener-
ally higher than CoT, the contribution of the task is
larger than the answer. However, it is worth noting
that the tasks are the same in both CoT and DFS,
where their results are expected to be consistent.
On the contrary, the discrimination of answers be-
tween CoT and DFS is weak, where a considerable
proportion are unsolved. Moreover, WR does not
reflect the same trend as PR, where the second run
of WR in DFS (48.0) is even lower than the first
run of CoT. Therefore, all the phenomena reflect
that gpt-3.5-turbo-16k can not assume the role
of the automatic evaluator in tool learning, which
will be discussed in Section 4.6.

2.3 Stability of API Status
We investigate the change of API status in Tool-
Bench. In detail, we scan the original APIs down-
loaded from ToolBench, and use gpt-4-turbo to
automatically write calls via the prompts as shown
in Appendix H. According to the keyword in API
feedback, we classify these APIs into three cate-
gories: success, not availability, and not authori-
sation3. The API status and the detailed errors of
not availability are presented in Figure 3. As can
be seen, only 44.4% of API calls are successful,
while other API calls are mostly not available with
various errors and some are not authorised.

Furthermore, to validate the impact of API call
failures on the stability of model performance, we
manually make some success tools4 down by re-
turning a special failure call. Specifically, we ran-

3Note that we use the toolbench-key provided in Tool-
Bench to simulate the real running process in the benchmark.

4In ToolBench, a tool is composed of several APIs. For
example, a database tool can have two APIs: a writing API
and a reading API.

3
11145

0% 10% 20% 50%
Percentage of Failing Tools

20

25

30

35

40

45

50
S

ol
va

bl
e

P
as

s
R

at
e

3.5 Turbo 0613 + CoT
3.5 Turbo 0613 + DFS
4 0613 + CoT
4 0613 + DFS

Figure 4: Solvable Pass Rate (SoPR) change when man-
ually making APIs down on the I1 Instruction group.

domly sample a proportion of success tools con-
taining success APIs found in Figure 3. At test-
ing time, when sampled tools are called, a spe-
cial response will be thrown: {“error”: “”,
“response”: “This API did not return any
useful information...”} to simulate the API
call failures. We conduct baseline models with dif-
ferent proportions (i.e., 0%, 10%, 20%, and 50%)
of sampled APIs on the I1 Instruction set. Due to
the issues in evaluation, we use our stable evalu-
ation system proposed in Section 3.2 as the same
as our main experiments. For each experiment, we
evaluate three times and report the average scores
as shown in Figure 4. It can be seen that the per-
formance degrades a lot when the proportion of
successful APIs is down, thus the impact of API
status on stability is considerable.

3 StableToolBench

Considering that stability is a crucial feature of
benchmarking, in this paper, we specifically design
a virtual API server and stable evaluation system to
improve the stability based on ToolBench, and pro-
pose a new benchmark, named StableToolBench.

3.1 Virtual API Server

With real APIs, many of the failures encountered
when reproducing its experiments are caused by ex-
pired APIs, network issues, or failed authentication.
To address this problem, we specifically propose
a virtual API server with two components as illus-
trated in Figure 5, including a caching system and
API simulator. Moreover, we design API calling
rules to combine these two components to ensure
the virtual API server is stable.

Caching System. We first implement a caching
system that stores responses of all API callings
to ensure consistency. The caching system uses
keys composed of their category, tool, API name,
and arguments. As a start, we populate the initial
cache using the API call history from the training
data and the reproduced test data released in Tool-
Bench5. To ensure the quality of cached APIs, only
valid records following the rule in Appendix D
will be saved. It is worth noting that we will also
reserve some APIs with exceptions to keep the
reality. In this way, most API responses will be
readily available, allowing the benchmark focus on
probing the tool usage ability of designed methods
with minimal impact on tool availability. Further-
more, the API call in new experiments will also be
continuously updated in the cache to ensure scala-
bility. The statistics of cache are shown in Table 2.
Additionally, as an extra benefit, this approach re-

Source Train Set Test Set New Exp Total

Before 58,105 5,921 255,828 352,630
After 25,995 2,393 136,592 164,980

Table 2: Cache components and their sizes before and
after filtration. The cache of new experiments is updated
until 12 Feb 2024.

duces the latency introduced by interacting with
real APIs, and also saves the costs for the API sim-
ulator discussed below.

API Simulator. Due to the limited coverage of
the caching system, we propose to use LLMs to
simulate API responses that are not in the cache
and unavailable. Specifically, we ask gpt-4-turbo
to simulate the API behaviour based on the original
documentation in ToolBench. The API documenta-
tion includes the descriptions of the functions and
their corresponding parameters. To mitigate the dif-
ference between simulated and real APIs, we use
real API calls in the caching system as few-shot
examples (Brown et al., 2020) for the LLM to bet-
ter mock the behaviours. We keep the maximum
number of examples at five. When less than five ex-
amples exist in the cache, all of them will be used.
Detailed prompts can be found in Appendix F.

API Calling Rules. Based on the caching sys-
tem and the API simulator, we create API calling
rules to ensure the stability of the virtual API server.

5https://drive.google.com/drive/folders/
1yBUQ732mPu-KclJnuQELEhtKakdXFc3J

4
11146

https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J
https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J

API Call: GetFlight (from: Beijing, to: Shanghai)

Miss!

Response: DA000

API Simulator

Caching System

Error!

Hit!

Success!

Update

Caching System

Imagine you are an API Server operating within a specialized tool, which
contains a collection of distinct APIs. Your task is to craft a JSON
formatted response that aligns with the expected output of the API. …

System Prompt

Call1: GetFlight (from: Beijing, to: London) Response: CA100
Call2: GetFlight (from: London, to: New York) Response: BA200
Call3: GetFlight (from: Boston, to: Sydney). Response: DA300

Few-shot Examples

Description: This API is to get the flight from one city to another, …
Required Parameters: 1.from: … 2. to: …
Optional Parameters: …

API Documentation

API Simulator

API Call Response

Call: GetFlight (from: Beijing, to: London), Category: … BA888, CA999, …

Call: GetBook (name: XXX),), Category: … The book says ….

Call: BookFlight (Flight No: VA111),), Category: … Success! …

…… ……

Figure 5: The process of calling APIs in our proposed virtual API server.

+1

Task
w/ Tools

Gemini Pro

GPT 4
Turbo

Claude 2

Task
Solvable?

Answer
Solved?

Majority Vote

+0.5

+0

Unsure

Unsolved

Solved

Phase 1

Solvable
Task

w/ Tools
w/ Answer

Phase 2

Figure 6: The process of our SoPR evaluation.

When a call request (e, args), where e is the API
endpoint and args is the arguments for that end-
point, is received, the system will first search the
caching system for (e, args) pair. If a cache hit ex-
ists, the cached response will be directly returned.
When there is a cache miss, then the system will try
to call the real API for a response to maintain the
reality of the whole system. If the real API calling
is successful, the response will be returned. How-
ever, when the caching system does not contain
and the real API is not available, the system will
finally call the simulated API. The final response
whether from the real API or the simulated API
will be saved to update in the caching system.

3.2 Stable Evaluation System
In this section, we propose a two-phase evalua-
tion process, including judging solvable tasks and
evaluating with two metrics, as shown in Figure 6.
Moreover, we replace all the automatic evaluators
with gpt-4-turbo.

Judging Solvable Tasks. Considering that both
unsolvable and unsure tasks would introduce enor-
mous randomness while the results of tasks fluc-
tuate wildly, we try to obtain a fixed collection
of solvable tasks to eliminate the problems. To

I1-I I1-C I1-T I2-I I2-C I3-I Total

Full 200 200 200 200 200 100 1,100
Solvable 163 153 158 106 124 61 765

Table 3: Statistics of original full and solvable tasks
before and after judging. C,I,T stands for the Category,
Instruction and Tool subgroup of the test set. Experi-
ments below follow the denotation.

achieve this, we use three state-of-the-art LLMs,
i.e., gpt-4-turbo, gemini-pro, and claude-2, to
determine whether a task is solvable or unsolv-
able. The prompt is shown in Appendix G. The
task will be judged as solvable when more than
two models evaluate it as solvable. The statistics of
solvable tasks across all test datasets in ToolBench
are shown in Table 3.

Metrics. We then report Solvable Pass Rate
(SoPR) and Solvable Win Rate (SoWR) based on
our obtained solvable tasks. Due to the limitation
of gpt-3.5-turbo-16k in tool learning, we uni-
formly adopt gpt-4-turbo as the automatic eval-
uator. SoPR is in essence PR with all tasks solv-
able and only assesses the answers using the same
prompt in ToolBench. The evaluator assigns out-
comes of answers categorised as Solved, Unsolved,
or Unsure, which respectively contribute scores of
1, 0.5, and 0 to the overall SoPR calculation. As
for SoWR, when one is solved and the other is
unsolved, the solved one wins. Under other cir-
cumstances, gpt-4-turbo will be used to make a
win-lose decision.

5
11147

Method I1 Instruction I1 Category I1 Tool I2 Category I2 Instruction I3 Instruction Average

3.5 0613 (C) 52.2±1.1 47.3±0.6 53.6±1.3 42.5±2.1 35.8±2.0 48.1±0.8 46.6±1.3

3.5 0613 (C) 60.3±1.3 66.2±1.2 67.1±0.0 59.1±0.4 51.3±1.2 73.8±2.3 63.0±1.1

4 0613 (C) 45.5±0.4 57.4±0.3 48.8±0.7 43.0±0.7 46.5±0.9 48.1±1.5 48.2±0.8

4 0613 (D) 57.3±0.6 57.3±0.3 60.9±1.0 57.9±1.0 51.3±0.8 66.4±2.4 58.5±1.0

T-LLaMA (C) 32.3±1.0 40.3±0.8 36.7±0.5 34.7±0.7 25.2±0.4 33.9±1.5 33.9±0.8

T-LLaMA (D) 44.5±0.9 49.6±1.3 48.9±2.7 50.8±1.1 31.9±1.9 53.6±2.0 46.6±1.7

3.5 1106 (C) 50.4±0.5 45.1±1.4 50.8±0.3 48.7±0.8 42.1±0.4 55.7±0.0 48.8±0.6

3.5 1106 (D) 62.8±0.3 63.9±1.2 65.6±0.3 56.5±0.7 56.9±1.2 67.2±1.3 62.2±0.8

4 Turbo (C) 52.8±1.3 56.6±0.9 51.9±0.5 51.9±1.0 52.8±0.8 52.5±0.0 53.1±0.8

4 Turbo (D) 59.2±0.5 61.7±0.7 65.7±1.0 55.6±0.6 55.2±0.4 66.1±4.3 60.6±1.3

Table 4: Solvable pass rate scores. We run all models once, evaluate three times and take the average re-
sults. “3.5 0613”, “4 0613”, “3.5 1106”, “4 Turbo”, “T-LLaMA” stands for gpt-3.5-turbo-0613, gpt-4-0613,
gpt-3.5-turbo-1106, gpt-4-turbo-preview, ToolLLaMA v2 respectively. C and D stand for CoT and DFS
respectively. The experiments below follow the denotation. We use gpt-4-turbo-2024-04-09 as the evaluator.
Evaluation done on May 2024.

Method I1-I I1-C I1-T I2-I I2-C I3-I Avg

3.5 0613 (D) 60.7 67.3 59.5 63.2 62.1 75.4 64.7
4 0613 (C) 54.6 58.8 58.2 75.5 60.5 62.3 61.7
4 0613 (D) 62.6 62.7 58.2 74.5 62.9 67.2 64.7
T-LLaMA (C) 31.3 28.1 33.5 35.8 33.9 24.6 31.2
T-LLaMA (D) 44.8 45.8 44.3 59.4 41.1 50.8 47.7

3.5 1106 (C) 47.2 47.7 44.9 50.9 54.0 62.3 51.2
3.5 1106 (D) 55.8 53.6 51.9 68.9 59.7 68.9 59.8
4 Turbo (C) 71.2 77.1 61.4 79.2 71.8 67.2 71.3
4 Turbo (D) 73.0 75.2 68.4 77.4 66.9 60.7 70.2

Table 5: Solvable Win Rate scores. We run all models
once against GPT-3.5-Turbo-0613 + CoT and evalu-
ate three times. We follow the ToolBench implemen-
tation to take the most frequent result for each query
during evaluation. The experiments below follow the
denotation. We use gpt-4-turbo-2024-04-09 as the
evaluator. Evaluation done on May 2024.

4 Experiment

4.1 Performance

Following ToolBench, we run gpt-3.5-0613,
gpt-4-0613, ToolLLaMA-v2 with CoT and DFS,
replenishing with latest models gpt-3.5-1106 and
gpt-4-turbo. The results of SoPR and SoWR are
shown in Tables 4 and 5. Generally, GPT-4 series
models outperform GPT-3.5 models, while Tool-
LLaMA performs worst with the same inference
algorithm. Also, DFS significantly outperforms
CoT whichever LLMs are used. These phenom-
ena are consistent with ToolBench. Furthermore,
probably thanks to the improved function calling
capabilities, newer GPT models performed better.

4.2 Stability of Virtual API Server

Following the same setups as in Section 2.3, we
manually make the same success tools not avail-
able during the running time. In our design, when a

0% 10% 20% 50%
Percentage of Failing Tools

40

50

60

70
S

ol
va

bl
e

P
as

s
R

at
e

3.5 Turbo 0613 + CoT
3.5 Turbo 0613 + DFS

4 0613 + CoT
4 0613 + DFS

Figure 7: Performance change when manually making
APIs down with our virtual online API system. The
results are averaged over all six groups. Solving rates
are reported. We run each experiment one time and
evaluate it three times and take the average score. Unless
otherwise stated, gpt-4-turbo-preview at the time of
testing is used in this section. This experiment was done
in Feb 2024.

call is on an unavailable tool, it will be directed to
the simulated API immediately. Compared to Sec-
tion 2.3, the results as shown in Figure 7 are much
more stable with our virtual API server. Even when
50% of APIs are not available, changes in perfor-
mance are still not significant, which is explainable
within the range of variance.

Considering we use gpt-4-turbo as the back-
bone of the API simulator which may change
even with the same version number, we ablate
different versions and different temperatures of
gpt-4-turbo. The results are shown in Table 6.
Under different settings of the backbone LLMs, the
performance change is still acceptable within the
variance of LLM evaluation, indicating the robust-
ness of our API simulators.

6
11148

GPT-4 Config 1106-preview 0125
T=1 T=0.1 T=1 T=0.1

3.5 0613 (C) 49.1±1.0 49.0±0.8 52.1±0.5 50.2±0.8

3.5 0613 (D) 68.1±1.4 67.4±0.9 69.3±1.0 67.9±1.2

4 0613 (C) 55.4±0.6 56.3±0.7 57.7±0.5 54.5±0.6

4 0613 (D) 69.7±1.4 70.3±1.0 71.4±0.7 70.4±1.3

3.5 1106 (C) 52.1±0.7 51.1±0.5 54.5±0.9 52.7±0.6

3.5 1106 (D) 69.9±0.7 71.2±0.9 70.0±0.9 71.0±0.9

4 Turbo (C) 60.8±0.7 62.4±0.8 63.6±0.4 64.0±1.1

4 Turbo (D) 73.2±1.1 76.2±0.9 75.0±0.7 77.3±0.9

Table 6: Performance of baselines with different settings
of the LLM server. Results are averaged over all groups
and reported in SoPR. We run each experiment one time
and evaluate three times and take the average score.

4.3 Turing Test of API Simulator

To test the effectiveness of API simulators, we de-
sign a “Turing Test” (Turing, 2009) between the
real APIs and the simulated ones. Note that we
believe it is not required for API simulators to ex-
actly output the same answers as those of real APIs,
where rationality is more important. For example,
when a query asks about the weather today, the
API simulator does not need to retrieve the “real”
temperature. Instead, the API simulator needs to
generate a reasonable temperature number.

To do the test, we first sample 70 available
real APIs and their corresponding simulated APIs.
Given the API callings and their real and simu-
lated response pairs, we ask three human anno-
tators to determine which response more closely
resembles an actual API response overall, based on
the given descriptions of the API functions. We ask
human annotators to evaluate along three dimen-
sions: Overall, Format Accuracy and Answer Rel-
evance. The annotator first need to answer which
response is overall more like a real response. When
assessing format accuracy, annotators must deter-
mine which response more accurately adheres to
the format specifications outlined in the documen-
tation. In evaluating answer relevance, they are
tasked with identifying which response more effec-
tively fulfills the instruction in accordance with the
documentation’s guidelines. The results are shown
in Figure 8. Surprisingly, human annotators can-
not distinguish simulated and real APIs very well,
where the simulated APIs are judged to act more
like real situations. Moreover, the proportion of tie
is much larger, indicating that simulated APIs can
work very similarly to real APIs.

In addition to the Turing Test mentioned above,
we assess the quality of LLM simulations by eval-
uating the adherence of simulated outputs to their

Overall Format Accuracy Answer Relevance
0

25

50

75

100

P
er

ce
nt

ag
es

12.9

0.0
10.0

20.0

5.7

20.0

67.1

94.3

70.0

Real
Simulated
Tie

Figure 8: Results of the “Turing Test” for the real and
simulated APIs. Results are win-lose-tie percentages.

corresponding documentation. To conduct this eval-
uation, we randomly sample 50 simulated outputs
along with their documentation from the Turing
Test dataset. A human evaluator is then tasked
with determining whether the LLM simulations rea-
sonably follow the provided documentation. The
results indicate that 90% of the simulations are
deemed reasonable, 6% are considered unreason-
able, and 4% are uncertain. These findings suggest
that the LLM is highly capable of generating simu-
lated responses that adhere closely to the provided
documentation.

4.4 Diversity of API Simulator
With the LLM simulation, API simulators will not
exactly feedback the same as real APIs. Hence,
a natural concern is whether the simulated APIs
will degrade in diversity in API functionalities. To
study the problem, firstly, we explore the distribu-
tion of real and simulated API responses. We first
use all 246 APIs in the Tool API category from the
successful APIs mentioned in Section 2.3. Then,
we use the same call arguments to call these real
and simulated APIs. All the responses are encoded
using S-BERT (Reimers and Gurevych, 2019) and
their corresponding embeddings are visualised by
UMAP (McInnes et al., 2018). Detailed configura-
tion is shown in Appendix E. The result is shown in
Figure 9. As can be seen from the figure, real and
simulated APIs occupied similar embedding space,
indicating that the diversity of simulated APIs is
similar to the real APIs.

Secondly, we try to explore the behaviour when
a simulated API is given several calls with differ-
ent input arguments. We sample 60 APIs from
all successful APIs and make 5 different calls to
each API, using the same prompt as in Appendix H.
We then count the number of APIs that give ex-
actly the same responses in any 2 of the 5 calls.
Results show that only 2 of 60 APIs contain such

7
11149

0 5 10 15

0

5

10 real
simulated

Figure 9: Visualisation of the embeddings of responses
from real and simulated APIs.

responses, which supports the sufficient diversity
of our simulated APIs.

4.5 Effectiveness of Caching System

To show the effectiveness of our caching system
in maintaining the stability of the virtual API
server, we run several methods and record the
cache hit rates. In detail, we run four meth-
ods used in ToolBench, gpt-3.5-turbo-0613 and
gpt-4-0613 with CoT and DFS. Reproduction
data in ToolBench of these methods has been used
in the cache. Results are recorded in Table 7, which
shows that rerunning these in-domain methods has
a very high cache hit rate. This means that most
of the call responses are fixed and instability from
the API system are much smaller. Nevertheless,
models and methods may change over time, and
therefore, we further run gpt-3.5-turbo-1106
and gpt-4-turbo-preview with CoT and DFS.
As can be seen in the table, although the cache hit
rates are smaller with these out-of-domain meth-
ods, the scores are still high enough to mitigate the
instability significantly.

4.6 Human Evaluation of Evaluator

Considering that GPT-3.5 is limited to evaluating
the performance in tool learning, we replace the
automatic evaluators with stronger LLMs. In this
section, we manually assess the correctness of dif-
ferent automatic evaluators. Here, we sample 100
task-solvable questions, 50 answer-solving ques-
tions in the PR / SoPR evaluation, and 50 compari-
son questions in the WR / SoWR evaluation from
the experiments running.

We then collect all the corresponding answers of
different LLMs during previous evaluations. These
questions are further manually labeled by three
human annotators to obtain the ground truth. With
the ground truth, we calculate the accuracy scores

Methods Final Mid Start

GPT 3.5 Turbo 0613 + CoT 96.7 36.2 11.7
GPT 3.5 Turbo 0613 + DFS 97.0 34.5 11.6
GPT 4 0613 + CoT 96.5 36.2 11.7
GPT 4 0613 + DFS 97.0 35.0 11.7

GPT 3.5 Turbo 1106 + CoT 91.4 35.1 11.8
GPT 3.5 Turbo 1106 + DFS 75.8 34.5 11.4
GPT 4 Turbo + CoT 88.2 35.0 11.6
GPT 4 Turbo + DFS 77.8 34.5 11.8

Table 7: Cache hit rate (%) with various models and
methods. Final, Mid, and Start represent the final
version of the cache, the mid-way version containing
151,152 (91.6%) items of the final version, and the start-
ing version containing only the train and test set. Exper-
iments are independent runs of Section 4.1 with fixed
cache, run on 13 Feb 2024.

of these models and show the results in Table 8.
It can be seen that our used LLMs (i.e., Claude
2, Gemini, and GPT-4) are much better than GPT-
3.5 in ToolBench to determine the solvability of
tasks, where the Gemini and GPT-4 outperform by
a large margin. In both the evaluation of answers
and comparison, GPT-4 significantly outperforms
GPT-3.5, especially in the comparison to compute
WR. It is worth noting that all the accuracies of
GPT-3.5 are lower than 70%, indicating that GPT-
3.5 cannot assess the performance in tool learning.

5 Related Work

Tool Learning Benchmarks. Recent studies
have shed light on the burgeoning capabilities of
LLMs in understanding and mastering tools (Li
et al., 2023a; Patil et al., 2023; Yang et al., 2023b;
Song et al., 2023; Tang et al., 2023; Ye et al.,
2024; Xu et al., 2023). Gaining access to external
tools endows LLMs with real-time factual knowl-
edge (Yang et al., 2023a), multimodal functionali-
ties (Gupta and Kembhavi, 2023), and specialised
skills in vertical domains (Jin et al., 2024). How-
ever, few work has been done to explore the stabil-
ity of the tool environment in specific benchmarks
and how it affects the LLMs’ performance in tool-
augmented tasks.

Tool Inference Methods. Recent literature has
begun to explore various methodologies for inte-
grating tool functionalities within LLMs. Notably,
the robust in-context learning prowess of LLMs,
as demonstrated in (Brown et al., 2020), has facili-
tated the augmentation of LLMs with external tools
via in-context tool descriptions and demonstrations
(Hsieh et al., 2023; Ruan et al., 2023; Mialon et al.,

8
11150

Methods Solvability Solving Comparison

Claude 2 71.0 - -
Gemini Pro 82.0 - -
GPT 3.5 Turbo 65.0 68.0 56.0
GPT 4 Turbo 80.0 74.0 78.0

Table 8: Human evaluation on task solvability, answer
solving (for pass rate) and comparison (for win rate).

2023). An alternative approach involves the ex-
plicit training of LLMs (Patil et al., 2023; Tang
et al., 2023; Chen et al., 2023a; Qin et al., 2023c;
Huang et al., 2023) using datasets enriched with
tool interactions, thereby familiarising models with
the nuances of tool usage.

Evaluation in Tool Learning. Evaluating the
performance of LLMs in tool-augmented tasks
presents unique challenges and opportunities. Nu-
merous works have been developed for the assess-
ment of tool utilisation, primarily emphasising re-
sponse comparison (Zhuang et al., 2023), tool
call accuracy (Patil et al., 2023), or a synthesis
of these aspects (Li et al., 2023a). Distinguishing
itself, (Qin et al., 2023c) introduces an innovative
methodology by integrating a large language model
(LLM) as a judge to evaluate the comprehensive
solution path. Subsequent research (Wang et al.,
2023) focuses on the multi-turn interaction capabil-
ities of LLMs with both tools and user feedback. In
a departure from the aforementioned approaches,
(Chen et al., 2023b) presents itself as the inaugural
benchmark specifically tailored for the fine-grained
assessment of tool utilisation capabilities. However,
there exists a gap in the literature concerning the
exploration of evaluation stability when evaluating
the tool usage capabilities of LLMs.

6 Conclusion

In this paper, we propose StableToolBench, a
benchmark developed to enhance the stability of
ToolBench. Our analysis identified instability is-
sues in the evaluation processes of ToolBench and
API status, causing variability in model perfor-
mance assessments. To address this, we imple-
ment a caching system for consistent data avail-
ability. We also replace the real API server with
an LLM-simulated virtual server for reliable API
behaviour simulation. Experiments show that Sta-
bleToolBench significantly improves the stability
of model performance evaluations, with the simu-
lated APIs offering realism and the caching system

contributing greatly to the enhanced stability of the
benchmark.

Acknowledgement

This work is supported by the National Natural
Science Foundation of China (No. 62276152,
61925601). We also extend our gratitude to Jing-
wen Wu and Yao Li for their assistance with human
evaluation and additional suggestions.

Limitations

In this work, we propose StableToolBench, a new
tool learning benchmark with increased stability
but non-declining reality. However, our work faces
the following limitations. Firstly, we used GPT-4
as the automatic evaluator in the evaluation process
and as the backbone server, which increase the cost
of using our benchmark. Secondly, the GPT-4 back-
boned server demonstrate strong performance in
simulating API behaviours. Nevertheless, the back-
bone LLM may experience significant upgrades,
which may affect the performance. Therefore, we
believe that the ultimate solution is to solve the
problem with a trained open-source LLM. How-
ever, current open-source LLMs are not performant
enough to simulate API behaviours well. As a re-
sult, closed-source LLMs are the only options. We
believe that when open-source LLMs are strong
enough to be well suited for this task, In the fu-
ture, we may turn to open-source LLMs when they
are strong enough to be well suited for this task.
Thirdly, although the cache hit rates are high with
our explored methods, new methods will be devel-
oped in the future. Whether this cache will still be
effective is unsure. In this regard, we aim to con-
tinuously update the cache in the future in a slow
pace for both balanced stability and effectiveness.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners. In
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Pro-

9
11151

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

cessing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2024. Large Language Models
as Tool Makers. In Proc. of The Twelfth Inter-
national Conference on Learning Representations
(ICLR 2024).

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Col-
lier, Karthik Narasimhan, and Shunyu Yao. 2023a.
FireAct: Toward language agent fine-tuning. ArXiv
preprint, abs/2310.05915.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, et al. 2023b.
T-Eval: Evaluating the Tool Utilization Capability
Step by Step. ArXiv preprint, abs/2312.14033.

Gemini Team. 2023. Gemini: A Family of Highly
Capable Multimodal Models.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reasoning
without training. In In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR 2023), pages 14953–14962.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2023. ToolkenGPT: Augmenting Frozen Language
Models with Massive Tools via Tool Embeddings.
ArXiv preprint, abs/2305.11554.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models. ArXiv preprint, abs/2308.00675.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, et al. 2023. MetaTool bench-
mark for large language models: Deciding whether
to use tools and which to use. ArXiv preprint,
abs/2310.03128.

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu.
2024. GeneGPT: augmenting large language models
with domain tools for improved access to biomedical
information. Bioinformatics, 40(2):btae075.

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu,
Zhoujun Li, Fei Huang, and Yongbin Li. 2023a. API-
Bank: A Benchmark for Tool-Augmented LLMs.

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu,
Zhoujun Li, Fei Huang, and Yongbin Li. 2023b.
API-Bank: A Comprehensive Benchmark for Tool-
Augmented LLMs. ArXiv preprint, abs/2304.08244.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jian-
feng Gao. 2023. Chameleon: Plug-and-Play Com-
positional Reasoning with Large Language Models.
ArXiv preprint, abs/2304.09842.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Grossberger. 2018. UMAP: Uniform Manifold Ap-
proximation and Projection. The Journal of Open
Source Software, 3(29):861.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, et al. 2023. Augmented Language
Models: A Survey. ArXiv preprint, abs/2302.07842.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff
Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William
Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight,
Benjamin Chess, and John Schulman. 2022. We-
bGPT: Browser-assisted question-answering with hu-
man feedback.

OpenAI. 2023. GPT-4 Technical Report.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large Lan-
guage Model Connected with Massive APIs. ArXiv
preprint, abs/2305.15334.

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao
Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning Ding,
Huadong Wang, et al. 2023a. WebCPM: Interac-
tive Web Search for Chinese Long-form Question
Answering. ArXiv preprint, abs/2305.06849.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, et al. 2023b. Tool
learning with foundation models. ArXiv preprint,
abs/2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2023c. ToolLLM: Facilitating
Large Language Models to Master 16000+ Real-
world APIs.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Guoqing Du, Shiwei Shi, Hangyu
Mao, Xingyu Zeng, and Rui Zhao. 2023. TPTU: Task
planning and tool usage of large language model-
based AI agents. ArXiv preprint, abs/2308.03427.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language Models Can Teach Themselves to Use
Tools. ArXiv preprint, abs/2302.04761.

10
11152

https://openreview.net/forum?id=qV83K9d5WB
https://openreview.net/forum?id=qV83K9d5WB
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2312.14033
https://arxiv.org/abs/2312.14033
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2305.11554
https://arxiv.org/abs/2305.11554
https://arxiv.org/abs/2308.00675
https://arxiv.org/abs/2308.00675
https://arxiv.org/abs/2308.00675
https://arxiv.org/abs/2310.03128
https://arxiv.org/abs/2310.03128
https://arxiv.org/abs/2310.03128
https://doi.org/10.1093/bioinformatics/btae075
https://doi.org/10.1093/bioinformatics/btae075
https://doi.org/10.1093/bioinformatics/btae075
http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/2304.08244
https://arxiv.org/abs/2304.08244
https://arxiv.org/abs/2304.08244
https://arxiv.org/abs/2304.09842
https://arxiv.org/abs/2304.09842
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2302.07842
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.06849
https://arxiv.org/abs/2305.06849
https://arxiv.org/abs/2305.06849
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://arxiv.org/abs/2308.03427
https://arxiv.org/abs/2308.03427
https://arxiv.org/abs/2308.03427
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li,
Ke Wang, Ye Tian, and Sujian Li. 2023. Rest-
GPT: Connecting Large Language Models with
Real-World Applications via RESTful APIs. ArXiv
preprint, abs/2306.06624.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. ToolAlpaca: General-
ized Tool Learning for Language Models with 3000
Simulated Cases.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMA: Open
and Efficient Foundation Language Models.

Alan M. Turing. 2009. Computing Machinery and In-
telligence, pages 23–65. Springer Netherlands, Dor-
drecht.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi
Chen, Lifan Yuan, Hao Peng, and Heng Ji. 2023.
MINT: Evaluating LLMs in multi-turn interaction
with tools and language feedback. ArXiv preprint,
abs/2309.10691.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023. On the Tool
Manipulation Capability of Open-source Large Lan-
guage Models.

Linyao Yang, Hongyang Chen, Zhao Li, Xiao Ding,
and Xindong Wu. 2023a. ChatGPT is not Enough:
Enhancing Large Language Models with Knowledge
Graphs for Fact-aware Language Modeling. ArXiv
preprint, abs/2306.11489.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao
Ge, Xiu Li, and Ying Shan. 2023b. GPT4Tools:
Teaching Large Language Model to Use Tools via
Self-instruction.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022a. WebShop: Towards Scalable
Real-World Web Interaction with Grounded Lan-
guage Agents. In In Proceedings of the Advances
in Neural Information Processing Systems (NeurIPS
2022), volume 35, pages 20744–20757. Curran Asso-
ciates, Inc.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b.
ReAct: Synergizing reasoning and acting in language
models. volume abs/2210.03629.

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang,
Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou,
Qi Zhang, Tao Gui, and Xuanjing Huang. 2024.

ToolEyes: Fine-Grained Evaluation for Tool Learn-
ing Capabilities of Large Language Models in Real-
world Scenarios.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and
Chao Zhang. 2023. ToolQA: A Dataset for LLM
Question Answering with External Tools. ArXiv
preprint, abs/2306.13304.

11
11153

https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.1007/978-1-4020-6710-5_3
https://doi.org/10.1007/978-1-4020-6710-5_3
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
https://arxiv.org/abs/2306.11489
https://arxiv.org/abs/2306.11489
https://arxiv.org/abs/2306.11489
http://arxiv.org/abs/2305.18752
http://arxiv.org/abs/2305.18752
http://arxiv.org/abs/2305.18752
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2401.00741
http://arxiv.org/abs/2401.00741
http://arxiv.org/abs/2401.00741
https://arxiv.org/abs/2306.13304
https://arxiv.org/abs/2306.13304

A Comparison of Reported and
Reproduced Performance

Detailed comparison scores of reported and repro-
duced performance are shown in Table 9.

Method Reported Reproduced

GPT 3.5 Turbo 0613 + CoT 41.5 35.2 -32.5%

GPT 3.5 Turbo 0613 + DFS 54.5 53.2 -2.4%

ToolLLaMA v2 + CoT 25.0 15.0 -40%

ToolLLaMA v2 + DFS 57.0 34.0 -40.4%

Table 9: Comparison of performance (Pass Rate) re-
ported in the paper and reproduced by us of ChatGPT
and ToolLLaMA v2 on the I1-Instruction group of Tool-
Bench.

B Statistics of API change information

Detailed statistics of API change categories and
information are shown in Table 10 and Table 11.

Status Type Number Percentage (%)

Not Available 8095 49.2
Not Authorised 1058 6.4
Success 7311 44.4

Table 10: APIs changed in ToolBench.

Status Type Number Percentage (%)

Not Connectable 2426 30.0
Not Found 583 7.2
Parameter Change 591 7.3
Parsing Error 4247 52.6
Other 248 3.1

Total 8095 100

Table 11: Categories of Not Availability in ToolBench.

C Stability Test Scores with Virtual API
Systems

Detailed scores of stability tests of various models
are shown in Table 12. Note that in addition to
GPT 3.5 Turbo 0613 and GPT 4 0613, we report
the performance of newer versions, namely GPT
3.5 Turbo 1106 and GPT 4 Turbo Preview.

D Call Error Identification and Cache
Filtering Rule

We identify call errors and filter out invalid call to
RapidAPI based on keyword occurences. In detail,
we identify the following error:

Method Real API Failure Rate

0% 10% 20% 50%

GPT 3.5 Turbo 0613 + CoT 49.1±1.0 48.7±0.9 51.2±1.3 49.0±0.7

GPT 3.5 Turbo 0613 + DFS 68.1±1.4 70.9±1.3 67.5±1.8 67.3±1.3

GPT 4 0613 + CoT 55.4±0.6 55.5±1.0 58.0±0.5 55.2±0.6

GPT 4 0613 + DFS 69.7±1.4 71.4±1.4 71.2±0.9 69.9±0.9

GPT 3.5 Turbo 1106 + CoT 52.1±0.7 52.4±0.8 53.9±0.6 50.2±0.6

GPT 3.5 Turbo 1106 + DFS 69.9±0.7 71.7±0.7 69.4±0.8 71.6±0.9

GPT 4 Turbo preview + CoT 60.8±0.7 62.8±0.5 64.2±0.7 62.4±0.5

GPT 4 Turbo preview + DFS 73.2±1.1 76.7±1.0 76.0±0.8 74.2±1.3

Table 12: Performance change when manually make
APIs down with our virtual online API system. The
results are averaged over all six groups. Solving rates
are reported. We run each experiment one time and
evaluate three times and take the average score.

• Not Connected Error: when error informa-
tion contains HTTP or the response infomation
contains HTTP error, connection, rate
limit, time(d) out;

• Not Found Error: when the error infor-
mation or response contains not found,
not available, API doesn’t exists,
Service Not Found, internal error or
404 error message;

• Parameter Change: when the error informa-
tion or response contains parameter, parse,
is not defined;

• Parsing Error: when the error information
starts with Function executing from;

• Not Authorised: when the error informa-
tion or response contains authoriz(s),
unauthoriz(s), blocked user,
unsubscribe, credential, disabled
for your subscription, ACCESS_DENIED
or 401, 403 error message;

• Other Errors: messages with non-empty error
messages;

• Success: Other calls.

We consider all types of errors when identifying
errors. However, when filtering the cache, we do
not conside the“Other Errors”.

E Configurations of API Diversity
Analysis

The configurations of diversity analysis are as fol-
lows:

• Embedding model: all-mpnet-base-v2;

12
11154

API Simulation Prompt

System

Imagine you are an API Server operating within a specialized tool, which contains a
collection of distinct APIs. Your role is to deeply understand the function of each
API based on their descriptions in the API documentation. As you receive specific
inputs for individual API calls within this tool, analyze these inputs to determine
their intended purpose. Your task is to craft a JSON formatted response that aligns
with the expected output of the API, guided by the provided examples.
Your responses must adhere to a specific JSON structure, which is as follows:
{ “error”: “”, “response”: “Your_Response” }
The error field should remain empty, indicating no errors in processing. The response
field should contain the content you formulate based on the API’s functionality and
the input provided. Ensure that your responses are meaningful, directly addressing the
API’s intended functionality. If the provided examples are mostly error messages or
lack substantial content, use your judgment to create relevant and accurate responses.
The key is to maintain the JSON format’s integrity while ensuring that your response
is an accurate reflection of the API’s intended output within the tool.
Please note that your answer should not contain anything other than a json format
object, which should be parsable directly to json.
Note that:
- your response should be around 100 to 200 words, containing rich information
given the api input parameters. Keep Your answer short and simple.
- your response must be effective and have practical content.
- if the api response example if null or ineffective, ignore the example and give your
independent response.

User

API Documentation:
Documentation JSON file
API Examples:
Example input 1: Example response 1
Example input 2: Example response 2
Example input 3: Example response 3
API input:
Argument JSON string, e.g:
{“category”:“Logistics”,“tool_name”: “SQUAKE”,
“api_name”: “Checkhealth”,“tool_input”: “{}”,
“strip”: “filter”}

Table 13: Prompt used to simulate APIs.

• UMAP metric (distance metric): correlation;

• Num of neighbours: 15;

• Min distance: 0.5.

F Prompts of API simulation

The prompt used to simulate API behaviours is
shown in Table 13.

G Prompt to Filter Solvable Task

The prompt used to filter solvable tasks is shown
in Table 14.

H Prompt Used to Make API Calls

The prompt used to construct API calls to scan
availables is shown in Table 15.

13
11155

Solvable Task Filtration Prompt

Please check whether the given task solvable with following rules:
1. If the query provide invalid information (e.g. invalid email address or phone number), return
Unsolvable
2. If the query needs more information to solve (e.g. the target restaurant name in a navigation task),
return Unsolvable
3. If the current available_tools are enough to solve the query, return Solvable
4. Return only Solvable or Unsolvable

Task:{task}
Now please give your answer (only Solvable or Unsolvable):

Table 14: Prompt used to filter solvable tasks.

API Call Writing Prompt

System

Imagine you are an API requester, Your role is to deeply understand the function of
each API based on their descriptions in the API documentation. Your task is to craft
a JSON formatted input that aligns with the expected input of the API, guided by the
provided examples.
Your responses must adhere to a specific JSON structure, which is as follows:
Please note that your answer should not contain anything other than a json format
object, which should be parsable directly to json.
Note that:
- your response should be around 100 to 500 words, containing rich information
given the api input parameters.
- your response must be effective and have practical content.
- if the api response example if null or ineffective, ignore the example and give your
independent response.

User

API Documentation:
Documentation JSON file
API Examples (if available):
Example input 1: Example response 1
Example input 2: Example response 2
Example input 3: Example response 3
one more API Input example:

Table 15: Prompt used to write API calls.

14
11156

