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Abstract

Large Language Models (LLMs) have been
found to have difficulty knowing they do not
possess certain knowledge and tend to provide
specious answers in such cases. Retrieval Aug-
mentation (RA) has been extensively studied
to mitigate LLMs’ hallucinations. However,
due to the extra overhead and unassured qual-
ity of retrieval, it may not be optimal to con-
duct RA all the time. A straightforward idea
is to only conduct retrieval when LLMs are
uncertain about a question. This motivates
us to enhance the LLMs’ ability to perceive
their knowledge boundaries to help RA. In this
paper, we first quantitatively measure LLMs’
such ability and confirm their overconfidence.
Then, we study how LLMs’ certainty about a
question correlates with their dependence on
external retrieved information. We propose sev-
eral methods to enhance LLMs’ perception of
knowledge boundaries and show that they are
effective in reducing overconfidence. Addition-
ally, equipped with these methods, LLMs can
achieve comparable or even better performance
of RA with much fewer retrieval calls. The
code can be found at https://github.com/
ShiyuNee/When-to-Retrieve.

1 Introduction

Recently, Large Language Models (LLMs) such
as ChatGPT have demonstrated remarkable perfor-
mance across various NLP tasks (Ouyang et al.,
2022; Brown et al., 2020; Shi et al., 2024a,b; Bi
et al., 2024a,b; Fan et al., 2024), sometimes even
outperforming humans. However, unlike humans,
they have been found to have difficulty perceiving
their factual knowledge boundaries, i.e., knowing
what they know and what they do not know (Yin
et al., 2023; Ren et al., 2023). When LLMs cannot
answer a factual question, they should acknowl-
edge it instead of providing a specious answer,
especially in safety-critical fields like healthcare.
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Nevertheless, LLMs are recognized to be incredibly
confident about their answers, no matter whether
they are correct or not (Ren et al., 2023).

For the pitfalls of LLMs such as hallucination
and delayed awareness of the latest information,
Retrieval Augmentation (RA) has drawn substan-
tive attention to remedy them. However, since re-
trieval incurs substantial overhead and the quality
of retrieved documents cannot be guaranteed, it is
not an ideal choice to always conduct retrieval for
augmenting LLMs. When LLMs have the internal
knowledge, it would be unnecessary to resort to
external information and also a poorly performed
retriever can adversely affect the LLMs. If we
only leverage retrieval when the LLMs lack corre-
sponding internal knowledge, efficiency would be
improved and the Question-Answering (QA) per-
formance could not get worse based on irrelevant
retrieved results. Thus, it is critical to enhance the
LLMs’ perception of knowledge boundaries, espe-
cially reducing their overconfidence, so that we can
strengthen RA by performing retrieval only when
they say they do not know the answer.

To achieve this goal, we conduct studies on two
representative factual QA benchmarks, i.e., Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019)
and HotpotQA (Yang et al., 2018). First, we must
understand the current status of LLMs’ ability to
be aware of their knowledge boundaries. We de-
fine several metrics, i.e., alignment, overconfidence,
and conservativeness, to quantitatively measure this
and find that the unsatisfactory alignments between
LLMs’ claims of whether they know the answers
and their actual QA performance are mainly due
to overconfidence. Then, we need to know when
LLMs show uncertainty to a question, whether they
will leverage the provided external information. We
divide the questions into four different certainty
levels and observe that the more uncertain LLMs
are about a question, the more they leverage the
supporting retrieved documents.
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To reduce LLMs’ overconfidence and thereby
enhance their perception of their knowledge bound-
aries, we approach from two directions: urging
LLMs to be prudent about their claims of certainty
and improving their ability to provide correct an-
swers. We propose three methods of prompting
LLMs - Punish, Challenge, and Think-Step-by-
Step in the first direction as well as two methods -
Explain and Generate in the second, to investigate
how different representative methods affect model
self-awareness and accuracy. Through extensive
comparisons and analyses (in Section §6), we show
that Punish and Explain perform the best in their
group and combining them can achieve the best
balance between alignment and accuracy stably.

To validate whether our proposed methods can
also benefit adaptive retrieval augmentation, we
compare the performance of only triggering re-
trieval when the models express uncertainty using
Punish, Explain, Punish+Explain, and the vanilla
prompt without any special strategy (See Sec-
tion §7). We employ sparse retriever, dense re-
triever, and gold documents as supporting external
information to investigate how the enhanced LLMs
perform in a lower-bound, practical, and upper-
bound setting. We show that when the retrieval
quality is low, our self-awareness-enhanced LLMs
behave robustly to applying undifferentiated RA
for all the questions. When the retrieved results are
of better quality, the enhanced LLMs have achieved
comparable or even better performance with much
fewer requests for retrieval.

To sum up, the main contributions of this work
include:

1) We quantitatively measure LLMs’ perception
of their factual knowledge boundaries and find that
overconfidence is the primary reason for the unsat-
isfactory perception of knowledge boundaries;

2) We investigate the relationship between
LLMs’ certainty about their internal knowledge
and their reliance on external information and ob-
serve a negative correlation;

3) We propose several methods to mitigate over-
confidence, which are shown to effectively enhance
LLMs’ perception of knowledge boundaries;

4) We conduct adaptive retrieval for augmenta-
tion and show that by enhancing LLMs’ perception
of knowledge boundaries with our approaches, the
overall RA performance can be comparable or even
better with much fewer requests for retrieval.

2 Related Work

Perception of Knowledge Boundaries. Previ-
ous studies have investigated whether modern neu-
ral networks (Guo et al., 2017; Minderer et al.,
2021), pre-trained language models (Jiang et al.,
2021), and large language models (Yin et al., 2023;
Ren et al., 2023) clearly perceive their knowledge
boundaries. Modern neural networks (Guo et al.,
2017; Minderer et al., 2021) and pre-trained lan-
guage models (Jiang et al., 2021) have been shown
to exhibit poor perception, often displaying over-
confidence. These studies typically explore and
improve the perception of knowledge boundaries
based on the logits output by the model, which may
not be applicable to current black-box LLMs. Re-
cently, some studies (Yin et al., 2023; Ren et al.,
2023) reveal that LLMs also struggle to perceive
their knowledge boundaries and tend to be overcon-
fident. Yang et al. (2023) have proposed training
methods to address this, however, further research
is needed to develop training-free methods that also
work effectively on black-box models.

Retrieval Augmentation. The mainstream re-
trieval augmentation methods primarily follow a
retrieve-then-read pipeline and perform retrieval
augmentation for all the questions. Given a ques-
tion, the model first retrieves a set of relevant
documents from a large-scale knowledge base.
Then, the reader combines its internal knowl-
edge with these documents to generate the an-
swer. The research on this pipeline can be cate-
gorized into three main categories: improving the
retriever (Karpukhin et al., 2020; Qu et al., 2020;
Liu et al., 2023) or the reader (Izacard and Grave,
2020; Cheng et al., 2021) or training these two
parts jointly (Lewis et al., 2020; Singh et al., 2021;
Guu et al., 2020). Recently, Some studies explore
retrieval augmentation on LLMs (Shi et al., 2023;
Yu et al., 2022; Zhang et al., 2024). However, the
quality of retrieved documents cannot be guaran-
teed, and retrieval results in additional overhead.
Therefore, in this paper, we focus on adaptive re-
trieval augmentation (Mallen et al., 2023; Ren et al.,
2023), only providing documents when LLMs lack
confidence in the answer.

3 Preliminaries

In this section, we provide an overview of our tasks
and the experimental settings.
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3.1 Task Formulation

Open-Domian QA. The goal of open-domain QA
can be described as follows. For a give question q
and a large collection of documents C = {di}mi=1,
the model is asked to provide an answer of the ques-
tion q based on the corpus C. LLMs are able to
directly answer the questions by themselves with-
out relying on external resources C due to the vast
amount of knowledge stored in the parameters. In-
stead of only providing answers, we instruct LLMs
to output their certainty c about the answer via
prompt p and this can be described as follows:

(a, c) = fLLM (q, p) (1)

where c = 1 indicates the model believes the an-
swer is correct, while c = 0 implies the opposite.

Enhancing LLMs with Retrieved Documents.
LLMs can not memorize all the knowledge and to
further enhance the performance, we can utilize
the retrieve-then-read pipeline (Karpukhin et al.,
2020; Lewis et al., 2020) where we retrieve a set
of relevant documents D from the corpus C for a
given question q first and then use these documents
to augment the knowledge of LLMs. This can be
described as follows:

a = fLLM (q,D, p̂) (2)

where q̂ is the prompt used for retrieval augmented
generation.

However, retrieval introduces additional over-
head and the retrieved documents may mislead
LLMs for their quality cannot be guaranteed. In-
spired by the idea of adaptive retrieval (Mallen
et al., 2023; Ren et al., 2023), we aim to use the
confidence of LLMs to guide when to retrieve. The
format is:

a =

{
fLLM (q, p), if c = 1

fLLM (q,D, p̂), if c = 0
(3)

3.2 Experimental Setup

Datasets. We conduct experiments on two open-
domain QA benchmark datasets, including Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019)
and HotpotQA (Yang et al., 2018) because these
datasets are representative in terms of difficulty and
the benefit of retrieval augmentation. NQ is built
using Google Search queries with annotated short
answers or long answers. HotpotQA is a dataset

comprising question-answer pairs that need multi-
hop reasoning. These question-answer pairs are
gathered through Amazon Mechanical Turk. Hot-
potQA is harder so their need for retrieval augmen-
tation may be different. We conduct experiments
on the test set of NQ and the development set of
HotpotQA. We only use questions with short an-
swers and set short answers as labels.

Accuracy Certain Uncertain

Correct Ncc Ncu

Incorrect Nic Niu

Table 1: Count of samples for various matches between
answer correctness and model confidence.

Models. We conduct experiments on two repre-
sentative open-source models (Vicuna-v1.5-7B and
LLaMA2-Chat7B), along with three widely used
black-box models, including GPT-Instruct (gpt-3.5-
turbo-instruct), ChatGPT (gpt-3.5-turbo-0301), and
GPT-4 (gpt-4-1106-preview). For the black-box
models, we set the maximum output length to 256
tokens and all the other parameters are set to their
default values. For open-source models we set the
temperature to 0 to get stable results additionally.

Metrics. All the test samples are categorized into
four parts based on whether the answer is correct
or the model expresses uncertainty and we use
N = Ncc+Ncu+Nic+Niu to represent the total
number of test samples, as we can see from Table 1.
We use accuracy and uncertain rate (Unc-rate for
short) to measure the model’s QA performance and
confidence level respectively. Accuracy be format-
ted as:

Accuracy =
Ncc +Ncu

N
(4)

which considers a response correct if it contains
the ground-truth answer. Uncertain rate is used
to represent the proportion of responses where the
model express uncertainty and can be formatted as:

Unc-rate =
Ncu +Niu

N
(5)

A lower uncertain rate indicates greater confi-
dence. To directly assess the model’s perception
of knowledge boundaries, we propose Overconfi-
dence, Conservativeness, and Alignment to evalu-
ate the model’s extent of overconfidence, conserva-
tiveness, and overall perception level, respectively.
Overconfidence is used to compute the proportion
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NQ HotpotQA

Model Unc-rate Accuracy Conserv. Overconf. Alignment Unc-rate Accuracy Conserv. Overconf. Alignment

Vicuna 0.0278 0.2634 0.0011 0.7099 0.2889 0.0571 0.1447 0.0030 0.8012 0.1957
LLaMA2 0.1684 0.2986 0.0161 0.5490 0.4349 0.4484 0.1168 0.0230 0.4560 0.5209

GPT-Instruct 0.1900 0.4003 0.0346 0.4444 0.5211 0.2188 0.2330 0.0144 0.5626 0.4230
ChatGPT 0.2917 0.3850 0.0557 0.3789 0.5654 0.5679 0.1951 0.0376 0.2747 0.6877

GPT-4 0.1894 0.4896 0.0456 0.3666 0.5878 0.3437 0.3198 0.0561 0.3926 0.5513

Table 2: The QA performance and perception of factual knowledge boundaries of LLMs on Natural Questions(NQ)
dataset and HotpotQA dataset. Bold denotes the highest score across all the models. Conserv. and Overconf. stand
for Conservativeness and Overconfidence respectively.

of samples where the model is confident but the
response is incorrect. The format is:

Overconfidence =
Nic

N
(6)

Conservativeness measures the proportion of sam-
ples where the model expresses uncertainty but the
response is correct and can be formulated as:

Conservativeness =
Ncu

N
(7)

Alignment is computed by the proportion of sam-
ples where the confidence of the model matches
the correctness of the response and the format is:

Alignment =
Ncc +Niu

N
(8)

4 Perception of Factual Knowledge
Boundaries in LLMs

In this section, we select a broad range of repre-
sentative LLMs and use the vanilla prompt (See
Figure 3 in Appendix §A.1) to test their QA per-
formance and the perceptual level of factual knowl-
edge boundaries. Instead of indirectly character-
izing the LLMs’ perception of their knowledge
boundaries as done by Ren et al. (2023), we mea-
sure this by precise metrics and show the degree
of overconfidence and conservativeness. We can
observe the overall results in Table 2. It shows: 1)
The alignment between the QA performance and
confidence of LLMs is not high and all the mod-
els exhibit overconfidence, even the most powerful
model GPT-4. For example, on NQ, GPT-4 can
only answer less than 49% of the questions cor-
rectly, yet falsely confirms its answers as wrong
in 18.94% of the cases. 2) Overconfidence is
much more severe than the Conservativeness, in-
dicating that the unclear perception of knowledge
boundaries is mainly caused by overconfidence. 3)
There is no clear correlation between accuracy and

the perception of knowledge boundaries. In other
words, models with higher accuracy can have lower
alignment, e.g., GPT-Instruct versus ChatGPT on
both datasets. This suggests that further training on
dialogue data may enhance the perception of knowl-
edge boundaries but decrease QA performance.

Figure 1: Correlation between certainty and reliance on
external information. For LLaMA2, the samples in level
0 and level 1 are nearly identical.

5 Correlation between Certainty and
Reliance on External Information

Under retrieval augmentation, we need to know
when LLMs show uncertainty to a question,
whether they will leverage the provided external
information. In this section, we investigate whether
LLMs tend to rely on the documents when express-
ing uncertainty and how the models’ confidence
levels affect their reliance.

5.1 Experimental Setup
We guide the model to output its certainty in an-
swering a question correctly using two different
prompts and categorize the confidence into four
levels based on these two responses. We obtain the
certainty c and ĉ using the vanilla prompt (See Fig-
ure 3 in Appendix §A.1) and the Punish+Explain
method which we propose in Section §6, respec-
tively. If the model expresses uncertainty twice, it
indicates a lack of confidence, whereas two expres-
sions of certainty indicate high confidence. The
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four confidence levels are delineated as follows:
Level 0: c = 0, ĉ = 0; Level 1: c = 0; Level 2:
c = 1; Level 3: c = 1, ĉ = 1. Confidence levels
increase from level 0 to level 4.

We investigate the relationship focusing on two
types of supporting documents: Gold Documents:
where the ground-truth document provided by
DPR (Karpukhin et al., 2020) is used for augmen-
tation. There are 1691 questions with gold docu-
ments. Corrupt Documents which are identical
to gold documents except that correct answers are
replaced with “Tom”.

We ask the model to decide whether to rely on its
internal knowledge or the document for the answer
on its own (See Figure 10). We test the relationship
across three models (i.e., LLaMA2, GPT-Instruct,
and ChatGPT) and evaluate the results by two met-
rics. Utilization Ratio: For a given question q and
the document d, along with the response a without
augmentation, and the response â with augmen-
tation. If the Overlap(â, d) − Overlap(a, d) > γ
where γ is the threshold, we infer that the model
relies on the document. In this paper, we set γ = 0.
Corruption Rate: Percentage of questions where
a is right but â is wrong. Utilization ratio is used
for gold documents and corruption rate is used for
wrong documents. Relying on the gold document
does not guarantee a correct answer, as the model
may refer to other parts of the document. Therefore,
we consider the increase in overlap between the an-
swer and the document as an indicator. However,
there is a high probability of generating incorrect
answers when relying on the corrupt document.
Therefore, if the model generates incorrect answers
to questions that it originally could have answered
correctly, we consider it to rely on the document.

5.2 Results and Analysis

The results are shown in Figure 1. We observe that
all the models exhibit a decrement in document
dependency as the confidence increases. It
indicates LLMs tend to rely more on external
documents when they express uncertainty. The
overall dependency on the documents is quite high,
regardless of whether the documents contain the
correct answers. This implies that LLMs tend to
trust the input content, making it indispensable to
be prudent when leveraging retrieval augmentation,
especially when the retriever can have poor
performance. This also emphasizes the importance
of adaptive retrieval augmentation.

6 Alignment Enhancement

As discovered in Section §4, the poor perception of
knowledge boundaries in LLMs is mainly caused
by their overconfidence. Therefore, we enhance
the perception of knowledge boundaries by mit-
igating overconfidence. This can be done from
two perspectives: urging LLMs to be prudent and
improving their ability to provide correct answers.

6.1 Mitigating Overconfidence

We designed prompts from two perspectives with
the aim of mitigating overconfidence.

Methods aimed at urging LLMs to be prudent.
We design three types of prompts to reduce the con-
fidence. 1. Punish: We add “You will be punished
if the answer is not right but you say certain" to
the prompt, encouraging the model to be prudent.
2. Challenge: We challenge the correctness of the
generated answer and force the model to express
more uncertainty. 3. Think Step by Step: The
“Think step by step” approach has been proven to
be an effective way to enhance the reasoning abil-
ity (Kojima et al., 2022). Therefore, we explicitly
ask the model to think step by step, answering the
question first and outputting the confidence in the
next step. We hope the model can recognize its
overconfidence when asked to think step by step.

Methods aimed at enhancing QA performance.
We design two methods to enhance the accuracy. 1.
Generate: LLMs can generate high-quality docu-
ments on their own, thereby assisting in generating
accurate answers (Yu et al., 2022). We ask the
model to generate a short document that aids in
answering the question, ultimately bolstering the
accuracy of the response. 2. Explain: In addition
to generating auxiliary information before provid-
ing the answer, we may also obtain more reliable
results by asking the model to explain the reason
about its answer. This may mitigate the risk of the
producing incorrect responses lacking reasonable
explanation.

To combine the concepts of being prudent and
enhancing QA performance, we merge the Punish
and Explain methods into a single approach, called
Punish+Explain. We can find all the proposed
prompts in Appendix §A.1.

6.2 Results and Analysis

We can find the performance of different strate-
gies on NQ and HotpotQA in Table 3. We do not
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NQ HotpotQA

Model Strategy Unc-rate Acc Conserv. Overconf. Alignment Unc-rate Acc Conserv. Overconf. Alignment

LLaMA2

Vanilla 0.1684 0.2986 0.0161 0.5490 0.4349 0.4484 0.1186 0.0230 0.4560 0.5209
Punish 0.6922 0.2277 0.1028 0.1787 0.7144 0.7911 0.0907 0.0453 0.1635 0.7912
Challenge 0.9737 0.2986 0.2898 0.0174 0.6928 0.9825 0.1186 0.1160 0.0150 0.8690
Step-by-Step 0.3152 0.2914 0.0371 0.4852 0.5324 0.5009 0.1144 0.0241 0.3998 0.5762

Generate 0.0632 0.3413 0.0039 0.5995 0.3967 0.2718 0.1571 0.0096 0.5807 0.4096
Explain 0.1255 0.3332 0.0152 0.5565 0.4283 0.4601 0.1400 0.0237 0.4237 0.5526
Punish+Explain 0.5080 0.2640 0.0637 0.2917 0.6446 0.7143 0.1161 0.0478 0.2174 0.7348

GPT-Instruct

Vanilla 0.1900 0.4003 0.0346 0.4444 0.5211 0.2188 0.2330 0.0144 0.5626 0.4230
Punish 0.2413 0.3970 0.0454 0.4072 0.5474 0.2522 0.2311 0.0186 0.5353 0.4460
Challenge 0.7934 0.4003 0.2909 0.0972 0.6119 0.8212 0.2330 0.1622 0.1080 0.7299
Step-by-Step 0.2100 0.3798 0.0321 0.4424 0.5255 0.1854 0.2222 0.0132 0.6057 0.3811

Generate 0.0670 0.4349 0.0102 0.5083 0.4814 0.1086 0.2503 0.0073 0.6484 0.3443
Explain 0.1560 0.4499 0.0255 0.4196 0.5548 0.1651 0.2938 0.0136 0.5546 0.4318
Punish+Explain 0.2100 0.4391 0.0371 0.3880 0.5748 0.2083 0.2813 0.0115 0.5219 0.4665

ChatGPT

Vanilla 0.2917 0.3850 0.0557 0.3789 0.5654 0.5679 0.1951 0.0376 0.2747 0.6877
Punish 0.4086 0.3734 0.0886 0.3066 0.6047 0.5862 0.1854 0.0393 0.2677 0.6929
Challenge 0.8875 0.3850 0.3714 0.0989 0.5296 0.8710 0.1951 0.1880 0.1229 0.6882
Step-by-Step 0.3457 0.3823 0.0779 0.3499 0.5723 0.5479 0.1901 0.0349 0.2969 0.6682

Generate 0.1931 0.4224 0.0244 0.4089 0.5668 0.3220 0.2267 0.0080 0.4592 0.5328
Explain 0.2327 0.4424 0.0471 0.372 0.5809 0.4203 0.2562 0.0303 0.3538 0.6158
Punish+Explain 0.2927 0.4327 0.0573 0.3322 0.6102 0.4616 0.2559 0.0344 0.3169 0.6487

GPT-4*

Vanilla 0.1360 0.5920 0.0280 0.3000 0.6720 0.2680 0.4040 0.0400 0.4220 0.5560
Punish 0.2100 0.5376 0.0660 0.2800 0.6540 0.3500 0.4140 0.0760 0.3260 0.5920

Explain 0.2080 0.6660 0.0800 0.2060 0.7140 0.3820 0.5160 0.0980 0.2540 0.6580
Punish+Explain 0.3320 0.6500 0.1560 0.1740 0.6700 0.5180 0.4840 0.1460 0.1840 0.6660

Table 3: Performance of different methods on Natural Question(NQ) and HotpotQA datasets. Bold denotes the
highest scores across all the methods for each model. The model marked with * indicates that the results are based
on the sampled data. Due to budget limit, we only employ the most efficient methods for experiments on GPT-4.

investigate Vicuna because it is too confident com-
pared to the other models. More details can be
found in Appendix §A.3. Here are our observa-
tions: 1) All the methods aimed at urging models
to be prudent result in an increased proportion of
uncertain responses as expected. The Challenge
method dramatically increases the proportion of
uncertain responses, achieving the lowest level of
overconfidence and the highest degree of conser-
vativeness among all the methods. This suggests
that LLMs tend to trust the input and undermine
their own judgments, leading to excessive conser-
vativeness. In contrast, the Punish method weakens
overconfidence without making the model overly
conservative, which typically leads to an improve-
ment in alignment. The Think Step by Step method
reduces the degree of overconfidence on NQ dataset
but exacerbates it on HotpotQA dataset. Thus, this
method is not particularly effective. Moreover, the
Punish and Step by Step methods may result in a
slight performance decrease.

2) All the methods aimed at enhancing QA
performance lead to higher answer accuracy. Gen-
erate method produces the highest overconfidence
scores among all the methods. The possible reason
may be that LLMs generate documents that aid in

answering questions as expected. However, relying
on self-generated documents leads LLMs to believe
their answers are correct. The difference lies in the
fact that the Explain method typically diminishes
overconfidence and maintains comparable or even
lower conservativeness levels, thereby enhancing
the perception of knowledge boundaries for LLMs.
The overconfidence of ChatGPT is the lowest on
the HQ dataset, making it difficult to further reduce
through methods aimed at enhancing accuracy.

3) The Punish method is highly effective for
LLaMA2, while the Explain method is highly effec-
tive for GPT-4. This may be because LLaMA2 ex-
hibits severe overconfidence and has weaker gener-
ation capabilities, making the Punish method more
effective. On the other hand, GPT-4 shows lower
level of overconfidence. Given its strong genera-
tion capabilities, the Explain method significantly
improves accuracy and reduces overconfidence. To
combine the concepts of urging models to be pru-
dent and enhancing QA performance, we merge
the Punish and the Explain methods into a single
approach, called Punish+Explain. Compared to the
individual methods, this approach consistently en-
hances alignment without compromising accuracy.

We conduct experiments on the other models
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(a) Overconfidence on NQ (b) Overconfidence on HotpotQA

Figure 2: The overconfidence for each model under different strategies on the 500 sampled data. Pun. represents the
Punish method, Exp. represents the Explain method, and Pun.+Exp. represents the Punish+Explain method.

using the same 500 sampled data utilized for GPT-
4. To facilitate clarity, we illustrate the effects of
various strategies on overconfidence in Figure 2,
while comprehensive details are provided in Table 6
in Appendix §A.2. The conclusions on the 500
samples align with those from the full dataset.

7 Adaptive Retrieval Augmentation

Our work focuses on determining when to conduct
retrieval rather than triggering retrieval all the time
and enhancing the ability of LLMs to leverage a
document of unknown quality. In this section, we
introduce the methods proposed in Section §6 to
adaptive retrieval augmentation.

7.1 Experimental Settings
We conduct retrieval augmentation under two set-
tings. Static retrieval augmentation: We enable
retrieval augmentation for all the questions. Adap-
tive retrieval augmentation: We adaptively en-
able retrieval augmentation when the model be-
lieves that it cannot answer the question based on
its internal knowledge based on the four prompts:
Vanilla, Punish, Explain, and Punish+Explain.

We do not conduct adaptive retrieval augmen-
tation on Vicuna because Vicuna is notably more
confident compared to the other models, resulting
in a very low proportion of uncertainty. Therefore,
applying adaptive retrieval augmentation to Vicuna
hardly triggers any enhancement. More details can
be found in Appendix §A.3.

Retrievers. We consider three types of support-
ing documents including Sparse documents re-
trieved through Sparse retrieval (Robertson et al.,

Dataset Sparse Dense Gold

NQ 0.26 0.61 1.00
HotpotQA 0.33 0.32 1.00

Table 4: Precision@1 results for different retrievers

2009), Dense documents retrieved through Dense
retrieval (Guo et al., 2022) and Gold documents
which contain the correct answer. Dense doc-
uments represent the practical usage and the
other two respectively represent the lower and up-
per bounds of the actual situation. The knowl-
edge source is a Wikipedia dump provided by
DPR (Karpukhin et al., 2020). Following the
previous study (Ren et al., 2023), we use Rock-
etQAv2 (Ren et al., 2021) as the dense retriever to
find semantically relevant documents for each ques-
tion. For the sparse retriever, we use BM25(Yang
et al., 2017) to retrieve relevant documents from
the lexical level. We obtain gold documents which
contain the correct for NQ like Karpukhin et al.
(2020) and for HQ, we get the gold documents
as Ren et al. (2023) did. To focus on the effect
of model perception of knowledge boundaries on
adaptive retrieval augmentation, for simplicity, we
only provide LLMs the top-1 document and the
retrieval performance can be seen in Table 4. As
described in Section §6, the conclusions on the
sampled data remain consistent with those on the
full dataset. Therefore, for the budget concern, we
only conduct experiments on the 500 sampled data.
The prompt used for retrieval augmentation can be
found in Figure 10.
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NQ HotpotQA

Model Retrieval Static Vanilla Punish Explain Pun.+Exp. Static Vanilla Punish Explain Pun.+Exp.

LLaMA2

RA Rate 100% 14.6% 71.4% 9.2% 51.8% 100% 44.8% 78.4% 46.2% 70.2%

None 0.352 0.352 0.276 0.382 0.316 0.160 0.160 0.138 0.186 0.172
Sparse 0.256 0.370 0.316 0.390 0.356 0.334 0.270 0.310 0.298 0.314
Dense 0.534 0.414 0.522 0.418 0.494 0.288 0.244 0.276 0.276 0.292
Gold 0.774 0.460 0.706 0.448 0.642 0.516 0.370 0.468 0.412 0.474

GPT-Instruct

RA Rate 100% 16.6% 21.4% 13.4% 16.8% 100% 18.0% 20.6% 12.0% 16.2%

None 0.496 0.496 0.486 0.522 0.528 0.294 0.294 0.302 0.378 0.354
Sparse 0.282 0.474 0.476 0.516 0.512 0.344 0.312 0.316 0.390 0.374
Dense 0.538 0.518 0.520 0.538 0.554 0.324 0.306 0.306 0.378 0.362
Gold 0.816 0.588 0.614 0.602 0.620 0.568 0.354 0.364 0.422 0.418

ChatGPT

RA Rate 100% 25.4% 33.2% 17.8% 22.6% 100% 52.6% 52.6% 39.4% 40.6%

None 0.468 0.468 0.456 0.530 0.536 0.240 0.240 0.236 0.326 0.326
Sparse 0.228 0.448 0.422 0.510 0.504 0.276 0.300 0.300 0.360 0.346
Dense 0.506 0.490 0.488 0.550 0.556 0.238 0.276 0.266 0.344 0.336
Gold 0.800 0.602 0.630 0.616 0.646 0.406 0.352 0.350 0.404 0.412

GPT-4

RA Rate 100% 13.6% 21.0% 20.8% 33.2% 100% 26.8% 35.0% 38.2% 51.8%

None 0.592 0.592 0.538 0.666 0.650 0.404 0.404 0.414 0.516 0.484
Sparse 0.572 0.610 0.600 0.664 0.634 0.546 0.464 0.478 0.566 0.568
Dense 0.698 0.622 0.624 0.688 0.676 0.510 0.458 0.464 0.540 0.528
Gold 0.866 0.676 0.680 0.756 0.764 0.644 0.500 0.530 0.616 0.620

Table 5: Accuracy of each model under different strategies for retrieval augmentation. RA Rate represents the
proportion of triggering retrieval augmentation. None represents accuracy without retrieval augmentation. Bold
indicates the best performance under the current retrieval setting. The results are all on the sampled data.

7.2 Results and Analysis

Table 5 illustrates the accuracy of answers under
each strategy on NQ and HotpotQA in Table 3. Our
findings are as follows:

1) When using a gold document for augmenta-
tion, static augmentation achieves the highest ac-
curacy in almost all the cases. It shows documents
containing the answers often help answer the ques-
tions. For adaptive retrieval augmentation, in most
cases, the Punish+Explain method achieves the best
results because it consistently enhances alignment
without compromising QA performance. The best
performance obtained in adaptive retrieval augmen-
tation does not differ significantly from the static
augmentation, and in some cases, it even achieves
comparable or better performance, while utilizing
only a minimal number of retrieval attempts. For
example, ChatGPT achieves the best performance
on HotpotQA by utilizing 40.6% of retrievals under
Punish+Explain strategy.

2) Our adaptive retrieval augmentation makes
LLMs more robust to documents that may not help.
When utilizing documents retrieved through the
sparse retriever, it is observed that static augmenta-
tion often leads to performance degradation on NQ.
This is because LLMs perform well on these ques-
tions, and providing low-quality documents can

mislead the models. In contrast, adaptive retrieval
augmentation can reduce performance loss or even
lead to improvement. The highest accuracy is often
achieved under the Explain strategy because this
method inherently enhances performance and has
a relatively small uncertainty rate.

3) In real search scenarios, Explain and Pun-
ish+Explain strategies are more efficient than the
static augmentation when documents contribute to
improving accuracy. We observe that employing
sparse retrieval documents for static augmentation
on NQ and utilizing both sparse and dense retrieval
documents for static augmentation on HQ fre-
quently result in performance enhancements. This
suggests that these documents typically provide
assistance. Compared to static augmentation, adap-
tive retrieval augmentation consistently achieves
comparable or even superior performance under
the Explain and Punish+Explain strategies, while
requiring fewer retrieval augmentation attempts.

Compared to static RA, although adaptive RA
requires two rounds of inference when augmen-
tation is needed, the cost of the initial round of
uncertainty perception is much lower due to the
significantly shorter input lengths compared to the
retrieved documents or passages. Therefore, our
strategies generally save on overhead.
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8 Conclusion

In this paper, we explore the direction of effec-
tive and efficient adaptive retrieval augmentation
by enhancing LLMs’ perception of their knowl-
edge boundary. First, we propose several metrics to
quantitatively measure LLMs’ perception of knowl-
edge boundaries and find that overconfidence is the
primary reason for the unsatisfactory perception
of knowledge boundaries. To see whether LLMs’
certainty has an impact on their reliance on external
knowledge, we investigate and find that the more
LLMs are uncertain about their internal knowledge,
the more they rely on external knowledge. We fur-
ther probe to enhance the LLMs’ perception from
two perspectives and find that equipped with these
methods, LLMs can achieve comparable or even
better performance of retrieval augmentation with
much fewer retrieval calls.

Limitations

First, we divide model’s confidence about its an-
swer into two components, without delving into
finer granularity. Second, our methods mitigate
LLMs’ overconfidence through prompts, making
it difficult to significantly adjust models with ex-
cessive overconfidence (i.e., Vicuna-v1.5-7B). For
open-source models, there may be better training
methods available. Additionally, we only focus
on LLMs’ perception levels of their factual knowl-
edge boundaries. LLMs’ perception of knowledge
boundaries regarding different types of knowledge
remain to be studied.

Ethics Statement

We approach ethics with great care. In this pa-
per, all the datasets we use are open-source, and
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widely used. Furthermore, the methods we propose
do not induce the model to output any harmful
information.
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A Appendix

A.1 Prompts
In this section, we show the format of all the
prompts we use. The format of the Vanilla prompt
can be seen in Figure 3, while the prompts used to
mitigating overconfidence are shown in Figure 4,
Figure 5, Figure 6, Figure 7, Figure 8 and the com-
bination method Punish+Explain can be found in
Figure 9. For retrieval augmentation, given the un-
certainty of document quality, we allow the model
to determine whether to rely on its own knowledge
or the documents for the answer, as illustrated in
Figure 10.

A.2 Results on The Sampled Data
We randomly sample 500 question-answer pairs
from those with gold documents in both Natural
Questions and HotpotQA datasets. The QA perfor-
mance and LLMs’ perception of their knowledge
boundaries across different prompts can be seen in
Table 6.

A.3 Results of Vicuna
The results of different methods on Vicuna are
shown in Table 7. It can be observed that the Chal-
lenge method often mitigates overconfidence and
enhances the alignment. However, Vicuna shows
excessive overconfidence compared to the other
models we investigate and the model’s alignment
is always not satisfactory. We believe that the train-
ing data of this model may have led to this phe-
nomenon. Due to its significant deviation from the
other models, we do not focus on it in this paper.
Additionally, due to its particularly low uncertainty
ratio, performing adaptive retrieval augmentation
on it is essentially equivalent to not conducting
retrieval augmentation at all. Therefore, we do
not investigate its performance under the setting of
adaptive retrieval augmentation.
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Figure 3: Vanilla template form

Figure 4: Punish template form

Figure 5: Challenge template form

Figure 6: Think step by step template form
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Figure 7: Generate template form

Figure 8: Explain template form

Figure 9: Punish+Explain template form

Figure 10: Retrieval augmentation template form
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NQ HotpotQA

Model Strategy Unc-rate Acc Conserv. Overconf. Alignment Unc-rate Acc Conserv. Overconf. Alignment

LLaMA2

Vanilla 0.146 0.352 0.012 0.514 0.474 0.448 0.160 0.032 0.424 0.544
Punish 0.714 0.276 0.122 0.132 0.746 0.784 0.138 0.078 0.156 0.766
Explain 0.092 0.382 0.008 0.534 0.458 0.462 0.186 0.030 0.382 0.588
Punish+Explain 0.518 0.316 0.070 0.236 0.694 0.702 0.172 0.076 0.202 0.722

GPT-Instruct

Vanilla 0.166 0.496 0.038 0.376 0.586 0.180 0.294 0.022 0.548 0.430
Punish 0.214 0.486 0.042 0.342 0.616 0.206 0.302 0.028 0.520 0.452
Explain 0.134 0.522 0.022 0.366 0.612 0.120 0.378 0.018 0.520 0.462
Punish+Explain 0.168 0.528 0.036 0.340 0.624 0.162 0.354 0.016 0.500 0.484

ChatGPT

Vanilla 0.254 0.468 0.060 0.338 0.602 0.526 0.240 0.044 0.278 0.678
Punish 0.332 0.456 0.084 0.296 0.620 0.526 0.236 0.034 0.272 0.694
Explain 0.178 0.530 0.040 0.332 0.628 0.394 0.326 0.034 0.314 0.652
Punish+Explain 0.226 0.536 0.060 0.298 0.642 0.406 0.326 0.034 0.302 0.664

Table 6: Performance of different methods on the sampled data from Natural Question(NQ) and HotpotQA datasets.
Bold denotes the highest scores across all the methods for each model.

NQ HotpotQA

Model Strategy Unc-rate Acc Conserv. Overconf. Alignment Unc-rate Acc Conserv. Overconf. Alignment

Vicuna

Vanilla 0.0278 0.2634 0.0011 0.7099 0.2889 0.0571 0.1447 0.0030 0.8012 0.1957
Punish 0.0211 0.2645 0.0022 0.7166 0.2812 0.0481 0.1437 0.0024 0.8105 0.1871
Challenge 0.4175 0.2634 0.1285 0.4476 0.4238 0.3676 0.1447 0.0600 0.5477 0.3923
Step-by-Step 0.0501 0.2770 0.0025 0.6754 0.3222 0.0812 0.1540 0.0007 0.7655 0.2339

Generate 0.0371 0.2934 0.0044 0.6739 0.3216 0.0500 0.1593 0.0007 0.7913 0.2079
Explain 0.0427 0.2903 0.0069 0.6739 0.3191 0.0505 0.1676 0.0008 0.7828 0.2164
Punish+Explain 0.0299 0.2931 0.0058 0.6892 0.3114 0.0458 0.1637 0.0012 0.7917 0.2071

Table 7: Performance of Vicuna on Natural Question(NQ) and HotpotQA datasets. Bold denotes the highest scores
across all the methods.
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