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Abstract

As large language models (LLM) are increas-
ingly used for text generation tasks, it is criti-
cal to audit their usages, govern their applica-
tions, and mitigate their potential harms. Ex-
isting watermark techniques are shown effec-
tive in embedding single human-imperceptible
and machine-detectable patterns without sig-
nificantly affecting generated text quality and
semantics. However, the efficiency in detect-
ing watermarks, i.e., the minimum number of
tokens required to assert detection with sig-
nificance and robustness against post-editing,
is still debatable. In this paper, we propose,
Duwak, to fundamentally enhance the effi-
ciency and quality of watermarking by em-
bedding dual secret patterns in both token
probability distribution and sampling schemes.
To mitigate expression degradation caused by
biasing toward specific tokens, we design a
contrastive search to watermark the sampling
scheme, which minimizes the token repetition
and enhances the diversity. We theoretically
explain the interdependency of the two water-
marks within Duwak. We evaluate Duwak ex-
tensively on Llama2 and Vicuna under various
post-editing attacks, against four state-of-the-
art watermarking techniques and combinations
of them. Our results show that Duwak marked
text achieves the highest watermarked text qual-
ity at the lowest required token count for de-
tection, up to 70% tokens less than existing
approaches, especially under post paraphrasing.
Our code is available at https://github.
com/chaoyitud/Dual-Watermarks.

1 Introduction

Large language models (LLMs) are widely adapted
for natural language tasks, including copywrit-
ing (OpenAI, 2022), machine-translation (Zhang
et al., 2023), questioning and answering (Tou-
vron et al., 2023a), and code generation (Rozière
et al., 2023). While LLMs achieve remarkable
and human-like performance, there are increasing

risks of abusing LLM’s (Kuditipudi et al., 2023)
to produce incorrect and adversarial content on so-
cial media and to commit fraud in academic rights.
Watermarking LLM content is one of the essen-
tial solutions to govern the LLM applications and
guardrail their misuse and harm to the society, even
requested by the governmental policies (Veale and
Zuiderveen Borgesius, 2021). Much like physi-
cal watermarks, embedding watermark signals on
LLM-generated text provides the means to trace
content to their generator as well as the LLM mod-
els that constantly evolve.

Key criteria for watermarking generative lan-
guage models are multiple folds: having minimal
degradation of the generated content quality, im-
perceptible to humans for avoiding alteration, de-
tectable by machines for rigorous auditing, and ro-
bust against post-text editing. Recent studies show
that a single watermark pattern can be hidden in
generated text through either altering the underly-
ing token probability distribution (Kirchenbauer
et al., 2023a; Yoo et al., 2023; Fernandez et al.,
2023) or modifying the sampling strategy (Kudi-
tipudi et al., 2023; Christ et al., 2023; Aaronson,
2022). While the existing watermarks achieve mul-
tiple criteria, their practicability on short texts and
post-edited text is limited, as the minimum number
of tokens required for successful detection, e.g.,
low false positive rate, under those scenarios is
high.

In this paper, we propose a dual watermarking
approach, Duwak, which improves the watermark
detection efficiency and text quality by embed-
ding two independent secret patterns into the to-
ken probability distribution and sampling scheme.
To detect the watermark, Duwak searches for the
union of these two watermarks—the enabler for
efficient detection with a low token count. Under
Duwak, we first modify the pre-activation logits
of pseudo-randomly selected tokens seeded by a
function (i.e., hash) of a prior token sequence and
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Figure 1: Duwak: dual watermarking LLMs. To generate a token xt, Duwak embeds two secret patterns, governed
by random number generation seeded by two private keys and prior tokens, via (i) pre-activation logit modification
and (2) a contrastive search sampling strategy.

a secret key, similar to green-red list watermark-
ing approaches (Kirchenbauer et al., 2023a; Yoo
et al., 2023; Wang et al., 2023b; Zhao et al., 2023).
Consecutively, we randomly split the token into the
normal and watermark sampling set, which embeds
an additional random number sequence seeded by
a second secret key.

The challenge lies in efficiently detecting water-
marks without degrading quality. It is known that
watermarking activation signals inevitably degrade
the text quality due to the bias term on a pseudo-
random selection of tokens (Welleck et al., 2020;
Kuditipudi et al., 2023). To counteract this degra-
dation, we advocate the use of a quality aware sam-
pling scheme—the contrastive search, which limits
token sampling to top-k tokens resulting in the low-
est similarity w.r.t. previous generated tokens. Un-
like the popular cryptographic sampling, the con-
trastive search marks sampling patterns, thereby
improving the text expression, improving the diver-
sity of token selection and thus the watermarked
text quality (Ren et al., 2023; Liu et al., 2023).

Our contributions are summarized in the follow-
ing:
Improving watermark efficiency, through
Duwak’s joint dual watermarks patterns in the
token probability distribution and sampling
scheme.
Increasing generation diversity and robust-
ness, by avoiding expression degradation of
watermarked text. Duwak includes a novel
quality-aware sampling scheme based on the
contrastive search.

Empirical evaluation showing the effectiveness
of Duwak against existing watermark solutions un-
der nine post-editing attacks. Thereby showing the
minimum number of tokens required to reach detec-
tion accuracy is up to 70% lower than related work,
with nearly the best text quality and diversity.

2 Background

LLM text synthesis Large language models are
typically transformer-based neural networks, de-
noted by M and parameterized by θ. Internally,
these models tokenize the vocabulary into a set,
V , and generate a token sequence indexed by i,
xi≥0, based on the prompt text, which is repre-
sented as a token sequence with negative index
xi<0. Generally, generative LLMs ‘complete’ a
provided sequence (prompt) in an auto-regressive
fashion, i.e., the token of t-th position is based on
the prompt and thus far generated tokens, i.e., to-
kens xi<t, from here on notated simplified as x<t.
The token generation consists of two stages. First,
the LLM estimates the probability scores of the
succeeding token xnt for all |V| tokens at the posi-
tion t, ∀n ∈ V by softmaxing the model’s output
logits, lnt = lθ (· | x<t)

n,

pθ(·|x<t)
n = softmax(lt)

n, ∀n ∈ V.

The second step is to sample the token based
on the estimated probability distribution. Com-
mon sampling schemes differ in their objectives
and complexity: greedy search, beam-search, top-
k sampling (Fan et al., 2018a), nucleus-sampling
(top-p) (Holtzman et al., 2020), multinomial (ran-
dom) sampling, and contrastive search (Su et al.,
2022).

Watermarking LLM Watermarks are typically
embedded in the process of next-token genera-
tion through altering: (i) the logit and probability
(Kirchenbauer et al., 2023a; Yoo et al., 2023; Lee
et al., 2023a) and (ii) the sampling scheme (Aaron-
son, 2022; Christ et al., 2023; Kuditipudi et al.,
2023). To change the probability distribution, the
key idea is to split the vocabulary tokens into a
green (preferred) and red list, V ∈ G ∪ R, via a
random number that is hashed from a secret key
and an aggregate of previous h tokens. The number
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of green tokens is controlled by hyper-parameter
γ by taking |G| = γ|V|. The logit values of green
tokens receive a bias δ, thereby increasing their
probability estimates, thus increasing the likeli-
hood of them being selected. The sampling scheme
can remain the same as the original LLM. Conse-
quently, watermarked text is expected to have an
increase in the number of green tokens. In con-
trast, sampling-based approaches are determinis-
tic while keeping the model’s next token proba-
bility estimate untouched. Aaronson (2022) pro-
pose an exponential scheme and choose the token
xt = argmaxn∈V

{
(rn)

1
pn

}
, where p is the un-

altered probability vector and r ∈ [0, 1]|V|, is the
random number vector generated by hashing the
prior h tokens and the secret key.

Detecting Watermarking Detecting water-
marks requires inspecting a sequence of N tokens
and computing their watermark likelihood score,
SN . The exact score computation depends on wa-
termarking methods. In the case of logit modifica-
tion through the green-red list (Kirchenbauer et al.,
2023a), every token is classified into the green or
red list based on the random split, conditioned on
the random number sequence seeded by prior to-
kens and secret key. The total number of green
tokens is the score. As for the sampling approach,
e.g., Aaronson (2022), computes a pre-determined
threshold is exceeded by negative summation of∑

i∈N ln(1− ri). Here the intuition lies in the fact
that a token with low pi would require an ri arbi-
trarily close to 1, thus limiting their contribution to
the computed score. This metric essentially mea-
sures the aggregate deviation from the expected
distribution of tokens under the manipulation of
random number vector r.

Watermarking Measures There are multiple
measures for watermarking algorithms: text qual-
ity, detection efficiency, and robustness. In terms
of quality, perplexity (Kirchenbauer et al., 2023a;
Wang et al., 2023a; Kuditipudi et al., 2023) metrics,
rating from another (larger) LLM (Kocmi and Fed-
ermann, 2023; Piet et al., 2023), and diversity (Su
et al., 2022; Kirchenbauer et al., 2023b) are used
to assess the (watermarked) LLM text. As for de-
tection efficiency and robustness, it measures the
number of N tokens needed to achieve significant
detection tests under differentattacks, e.g., inser-
tion, deletion, and paraphrasing (Piet et al., 2023).

Z-statistic and p-value (Kirchenbauer et al.,
2023a) are commonly used to evaluate the signifi-

cance of the detection test, assuming the detection
scores follow the normal distribution with a mean
of µ and standard deviation of σ. The null hypoth-
esis of the detection test is that H0: the text is
unwatermarked. The Z-statistics represents the nor-
malized observed score value, which is subtracted
by the estimated mean and standard deviation. And,
its corresponding p-value represents the probability
of having a normalized score higher than observed
Z under the H0, i.e., the text is not watermarked.

3 Duwak: Dual Watermarking

The objective of Duwak is to maintain the water-
marked text quality while keeping high detection
efficiency, i.e., high detection confidence by in-
specting a low number of tokens. Duwak embeds
two secret watermark signals sequentially in the
token probability distribution and token sampling
scheme as shown in Fig. 1. To mitigate the text dis-
tortion caused by modifying the token probability,
we design a contrastive search sampling scheme
that increases the diversity via selecting tokens with
low similarity among the top-k ones. We elucidate
the interdependency through the joint watermark-
ing scheme of Duwak, demonstrating that the two
watermarks can be integrated efficiently with an
efficiency guarantee.

3.1 Token Probability Watermark

To generate token xt from a given prompt and prior
generated token sequence, Duwak first alters the
token probability distribution pt → p̂t by altering
the logit values for a subset of n ∈ V . Specifi-
cally, a secret key κtp and the prior sequence of
window h, i.e., xt−h≤t≤t−1, are inputs to a pseudo-
random number generator, RNG, for generating
a fixed-length pseudo-random number sequence.
Consecutively, each random number is used to split
the token into binary types, i.e., green v.s. red. Gen-
erally, the secret keys used during watermarking
are only known to the owner. Such a design guaran-
tees that only the watermark owner can identify and
decode the watermarked tokens, embedding a layer
of security and specificity within the generated text.
Following (Kirchenbauer et al., 2023a), a bias term,
δ, is added to the logit of tokens on the favored
list, termed green list, while keeping logits of non-
biased tokens, coined red list, remains unchanged.
As the token probability distribution is computed as
taking the softmax function on the logit, shown in
Eq. 1, the token probability distribution is thus mod-
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ified, risking text quality degradation. The higher
the δ value, the higher the distortion to the proba-
bility and thus higher the possibilityof degradation
in text quality. We note that Duwak is compati-
ble with any probability modification proposed in
existing watermarking algorithms, and we, in prac-
tice, adopt the algorithms derived in (Kirchenbauer
et al., 2023b). More specifically, defining pnt as,

p̂nt =
exp

(
ln + 1

[
n ∈ G

]
δ
)

∑
i∈V exp

(
li + 1

[
i ∈ G

]
δ
) , (1)

where 1[c] is 1 when c holds, otherwise 0.

3.2 Contrastive Search Watermark

One of the known limitations of LLM is anisotropic
representation—repetitive wording and degener-
ated expression (Ethayarajh, 2019; Su et al., 2022;
Su and Collier, 2023). To avoid such degradation,
(Su and Collier, 2023) define a self-similarity mea-
sure of token xt with respect to all other tokens in
the vocabulary V , i.e., xj∈V \{i}. A higher value of
self-similarity suggests a more isotropic represen-
tation space. To address the isotropic degradation,
the token is then sampled to maximize the sum-
mation of the weighted token probability and the
penalty of self-similarity.

We adapt such a contrastive search principle into
a watermark sampling scheme in a sliding window
manner. This approach not only incorporates a dis-
tinctive sampling scheme but also significantly en-
hances the diversity of text generation. Effectively
reducing token repetition and mitigating text degen-
eration, leading to more coherent and varied output.
Here, token at position t, are split into two sets,
(i) C with a probability η, subject to contrastive
search sampling, and (ii) C with a probability 1−η,
where standard multinomial sampling is applied.
The segmentation into C and C is facilitated by a
pseudo-random number generator that leverages a
hashing value of previous tokens and a watermark
key, κcs.

Contrastive searching sampling aims to reduce
the similarity to the prior L token sequence. For all
the contrastive set, we limit the selection to the top-
k tokens, i.e., V (k)

t , with the highest kth probability.
The top-k sampling is designed to reduce the risk
that unlikely tokens are sampled (Fan et al., 2018b),
reducing the search space of contrastive search. We
then choose a token, v ∈ V

(k)
t that maximizes the

weighted probability and minimizes self-similarity
with respect to the prior L tokens.

We first define the similarity between xt and
xt−L≤j<t as the cosine distance between their hid-
den state, s

(
hxt , hxj

)
= cos(hxi , hxj ), where hxi

and hxj represent the last layer hidden states in
the model of token xi and xj respectively, and cos
is the cosine-similarity between embeddings. Ex-
tending it to the L window, the self-similarity of
xt is computed as the maximum value with respect
to all L prior tokens, xt−L≤j<t, i.e., sL(xt) =
maxt−L≤j<t

{
s
(
hxt , hxj

)}
.

A sliding window L increases generation effi-
ciency by limiting the similarity computation to
L preceding tokens. Moreover, it increases ro-
bustness against attacks by limiting the context
on which the watermark is conditioned. The token
is finally chosen by maximizing the weighted prob-
ability, p̂vt and similarity penalty, ·sL(xvt ), where α
is a hyper-parameter that balances the importance
of the weighted probability of the token against its
self-similarity penalty.

xt = argmax
v∈V(k)

{
(1− α) · p̂vt − α · sL(xvt )

}
(2)

Algorithm 1 Duwak Token Generation.
Input: θ, κtp, κcs
Params: RNG, k, L,Hash, η, sL
Output: xt ∈ V

1: function DUWAKGENERATE

2: seed← hash(x<t)
3: r ← RNG(seed, κcs)
4: procedure TOKENPROBWATERMARK

5: G ← RNG(seed, κtp)
6: Compute p̂nt as Eq. 1
7: procedure CSWATERMARK

8: if r < η then
9: V(k)t ← topk(p̂t)

10: Contrastive search as Eq. 2
11: else
12: xt ∼ Multinomial(p̂t)
13: return xt

3.3 Detection in Duwak
To detect the watermarks within a text sequence x
of length T , we employ hypothesis testing to differ-
entiate between the null-hypothesisH0: “the text is
generated naturally” and the alternative hypothesis
H1: “the text is generated with Duwak.”

Given the incorporation of two distinct water-
marks, we treat the detection of each as two
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Algorithm 2 Duwak Watermark Detection.
Input: θ, κtp, κcs
Params: γ, T, η,M,L
Output: p-value ∈ [0, 1)

1: function DUWAKDETECTION

2: procedure COMPUTE_Ptp

3: ϕtp ←
∑T

t=1 1
[
xt ∈ Gt

]

4: ztp =
ϕtp−γT√
Tγ(1−γ)

5: Ptp = 1− Φ(ztp)
6: procedure COMPUTE_Pcs

7: Pcs ← 1
8: for κm ∈ {κm | κm ̸= κcs}Mi=m do
9: Pcs ← Pcs + 1

[
ϕ
(κm)
cs ≥ ϕ

(κcs)
cs

]

10: Pcs ← 1
1+MPcs

11: P ← 1− Fχ2(x, 4) where x =
−2(ln(Ptp) + ln(Pcs))

12: return P

separate and independent tests. We first detect
token probability and constrastive search water-
mark independently and compute their p-values,
namely, Ptp and Pcs, against the full hypothesis
that the text is not altered by token probability
(constrastive search) watermark. We then apply
Fisher’s method (Fisher, 1922) to that combining
p-values from these two independent tests into a
single statistic follows a chi-square (χ2) distribu-
tion with d = 4 degrees of freedom:

−2(ln(Ptp) + ln(Pcs)) ∼ χ2(4).

Furthermore, the resulting p-value P , derived from
the chi-square distribution, is given as:

P = 1− Fχ2 (−2 (ln(Pkgw) + ln(Pcs)) , 4) ,

where Fχ2 is the cumulative distribution function
(cdf) for the chi-square distribution. This provides
a unified statistical measure to assess the presence
of watermarks in the text.

To compute the p-values for both watermarks,
we resort to a concept of score, ϕ, which repre-
sents the discernible discrepancy between water-
marked and non-watermarked texts. Higher the
score, stronger the evidence of watermarked text.
We explain how to derive the p-values from their
detection scores.

P-value of token probability watermark (Ptp).
We use the number of detected green-listed to-
kens of the T token sequence as the score, i.e.,
ϕtp =

∑T
t=1 1 [xt ∈ Gt], where Gt is generated

from RNG (hash (x<t) , κ), which based on the
watermark key and preceding tokens. To assert its
significance, we apply a Z-test on ztp =

ϕtp−γT√
Tγ(1−γ)

and then compute the corresponding p-value, as
Ptp = 1− Φ(ztp), where Φ is the cumulative dis-
tribution function of normal distribution.

P-value of contrastive search watermark (Pcs).
As the score distribution in non-watermarked text
is unknown, our proposed score for the contrastive
search watermark is based on self-similarity dif-
ference between the contrastive set, C and non-
contrastive set C, split by using the key κ. Intu-
itively, the score is higher when the correct key,
κcs, is used to split the set, compared to using ar-
bitrary keys. To assert the statistical significance
in the score difference, we propose to compare the
scores between using the known private key κcs
and other M randomly chosen keys, κ1≤m≤M .

We first formally define these two sets as, C and
C. Following that we define the score of contrastive
search watermark using any key κ as

ϕ(κ)
cs = −

(∑
t∈C sL(xt)
|C| −

∑
t∈C sL(xt)

T − |C|

)
.

(3)
We then compute the score for the key, κcs and

κm, and count the number of times that the score
of using κm is higher than κcs, Finally, we approx-
imate the p-value of contrastive search as,

Pcs =
1

M + 1

(
1 +

M∑

m=1

1
[
ϕ
(κtp)
cs ≥ ϕ(κcs)

cs

]
)
.

3.4 Theoretical Analysis

The following theorem shows that two watermarks
do not influence each other.

Theorem 3.1 (Green List Tokens using topk).
Given X = {x1, . . . , xT } from an LLM with green
list fraction γ, and token n’s adjusted probability
at t follows Eq. 1. Define V

(k)
t as the set of top-

k tokens by p̂nt ,with xt ∼ Uniform(V
(k)
t ). Given

E|V k
t |G ≥ ν, then the expectation and variance of

the count of green list tokens |x|G inX are bounded
as follows:

E|x|G ≥
ν

k
T, Var |x|G ≤ T · ν (k − ν) k−2.

In our theorem, we describe a bound that elu-
cidates the interdependency between two water-
marks. We model the contrastive search as akin to
uniformly sampling from the top-k candidates. By
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influencing the selection among the top-k tokens
based on historical similarity, with a large vocabu-
lary size |V| and a small k, the process effectively
approximates random selection. The theorem sets
bounds on the expectation and variance of "green
list" tokens, based on the limit of mean green to-
ken selection within the top-k candidates. This
effectively outlines the interdependency between
the two watermarks in our Duwak.

4 Evaluation

In this section, we first detail the evaluation setup
on the LLM prompts and evaluation tasks. The
evaluation metrics are the quality of watermarked
text and the token count needed to achieve certain
detection p values under normal conditions and
various post-editing attacks. We compare Duwak
against existing single watermark techniques and
combinations thereof.

4.1 Evaluation setup

Prompt. For evaluation, we use open-ended
generation (Su and Collier, 2023) and MarkMy-
Words’ (Piet et al., 2023) structured tasks. The
detailed settings can be found in Appendix C.1.

Models. In our experiments, we utilize two pri-
mary models: Llama2-7b (Touvron et al., 2023b)
and Vicuna-7b-v1.5 (Zheng et al., 2024).

Evaluation metrics. To evaluate watermark
methods, we use the following metrics: Diversity,
MAUVE, Rating, and Detection efficiency. De-
tails on these metrics and their configurations are
provided in Appendix C.2.

Baseline. A summarized baseline overview is
given in Tab. 1 (i) the Kirchenbauer-Geiping-Wen
(KGW) algorithm (Kirchenbauer et al., 2023a), Ex-
ponential (EXP) (Aaronson, 2022), Binary (Christ
et al., 2023) (BINARY), Inverse Transform Sam-
pling (Kuditipudi et al., 2023) (ITS) and Con-
trastive Search (CS) (ours) are the single water-
marking algorithm, and (ii) KGW-EXP, CS-EXP,
and Duwak (ours) are the dual watermark algo-
rithms. We highlight where the watermark signals
are inserted in the token probability or sampling.
For dual watermarking schemes, we conduct the χ2

test on the p-value of each watermark as Duwak.
Hyper-parameter setting. For a fair compari-

son across algorithms, we limit the hashing input
to the first preceding token to generate watermark
seeds for all watermarking algorithms. As for the
fraction of green tokens, γ|V| under KGW proba-

bility modification, we use a fixed γ = 0.5. The
detection window of Duwak is set as L = 50 to-
ken, and the probability of contrastive search is
η = 0.5.

KGW EXP ITS BINARY KGW-EXP EXP-CS Duwak

∆P (xt|x<t) KGW - - - KGW - KGW

Sampler Multi Exp Inverse Binary Exp CS CS

Comp.
Alg.

Table 1: Watermarking algorithms: token probability
modification, and sampling scheme. ‘-’ denotes no to-
ken probability distribution modification.
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Figure 2: Rating v.s. token efficiency under different
watermarking methods and hyper-parameter settings for
different detection p-values.

4.2 Results

Quality v.s. detection efficiency. We summarize
the overall results in Tab. 2 and Tab. 3, highlighting
the difference among human, unaltered LLM, and
watermarked LLM text from all the watermarking
methods. First of all, human-written text shows the
highest diversity and MAUVE scores. Regarding
the quality of the watermarked text, Duwak ranks
as the first or the second-best method in terms of
diversity, MAUVE, and rating, achieving similar
results as the unaltered LLM text. CS achieves the
highest diversity and MAUVE as expected among
the single watermarks. Among dual watermarks,
the direct combination of the common probability
modification (KGW) and token sampling (EXP)
deteriorates text quality due to the EXP sampling
method, which heavily biases the modified token
probability. Overall, including contrastive search
improves the text quality to its CS-less counterpart.

The efficiency of detection of watermarks mea-
sures the number of tokens needed to detect wa-
termarks with p-values of 0.02. EXP-CS is the
only exception because both watermarks are em-
bedded in the sampling process and interfere with
each other, arguing the risk of blending multiple
watermarks. On the other hand, a single watermark
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Watermark Human No Watermark KGW EXP BINARY ITS CS KGW-EXP EXP-CS Duwak
Diversity (%) (↑) 93.62 86.66 81.41 39.58 44.56 78.72 86.53 17.90 83.83 83.98
MAUVE (%) (↑) 100.0 82.36 75.5 55.87 55.57 79.02 80.71 27.03 77.58 82.18
Rating (%) (↑) - 87.28 86.15 82.56 87.10 86.25 83.74 77.14 83.91 86.51
Dection efficiency (↓) - - 113 89.5 847 >1024 >1024 79.5 572 94.5

Table 2: Comparison of watermarking methods on different metrics on Llama2-7b. Arrows point to the direction of
better performance: a downward arrow (↓) means lower is better, and an upward arrow (↑) means higher is better.
Bold/underlined text means the best/second-best score.

Watermark No Watermark KGW EXP BINARY ITS Duwak

Rating (%) (↑) 84.1 82.1 82.0 82.2 83.4 83.1
Detection efficiency (↓) - 101.5 71 252 >1024 82.5

Table 3: Comparison of watermarking methods on dif-
ferent metrics on Vicuna-7b-v1.5.

requires a significantly higher number of tokens,
especially for BINARY, ITS, and CS, strengthen
the watermarked text’s robustness and quality.

Fig. 2 provides a sensitivity perspective of wa-
termark methods under different hyper-parameter
settings and p-values, 0.02 and 0.05. Specifically,
different δ values are used in KGW probability
modification. Duwak shows more consistent per-
formance across all δ’s compared to KGW, i.e.,
slightly higher rating and lower tokens with a lower
variance. This trend continues for a p-value of
0.05, with a more pronounced difference in their re-
quired token counts. Specifically, when compared
to the best KGW watermark, our algorithm requires
∼ 40 fewer tokens. When p-values are smaller, the
number of tokens needed for detection increases
considerably.
Duwak achieves the best quality efficiency ratio,

high diversity, MAUVE, and rating, using fewer
tokens to detect watermarks accurately compared
to other watermarking methods.

Post-editing attack robustness. Here, we eval-
uate the robustness of Duwak under different post-
editing attacks, i.e., attacks that alter the tokeniza-
tion. Specifically, we consider contraction, lower-
case, misspelling, repetition, swap, synonym, trans-
lation, typo, and paraphrase attacks from MarkMy-
Words (Piet et al., 2023). Tab. 4 and Tab. 5 present
the efficiency of reaching a p-value of 0.02 under
KGW, EXP, and Duwak. Such a selection is based
on the observation in Tab. 2 that only these three
methods achieve reasonable text quality while in-
specting roughly 100 tokens.

In Tab. 4, while EXP shows the best efficiency
in the no-attack scenario (through significant infer-
ence quality), Duwak requires significantly lower

Attack Conf. EXP KGW Duwak

None 89.5 113 94.5
Contraction 88.5 114 87.5
Lowercase 106 146 113
Repetition&deletion 83.5 108 87.0
Paraphrase GPT3.5 238 322 193
Misspelling 25% 93.5 119 82.5

50% 148 147 114
Swap 5% 83.0 113 77.5

10% 83.0 113 82.0
Synonym 25% 90.5 118 81.0

50% 100 134 100
75% 126 169 112
100% 170 213 125

Translation FR 118 147 114
RU 156 195 148

TypoAttack 5% 221 221 177
10% 389 337 301

Table 4: Attacked detection efficiency on Llama2-7b,
lower is better.

Attack Conf. EXP KGW Duwak

None 71 101.5 82.5
Contraction 72.5 99 87.5
Lowercase 108 130 113.5
Repetition&deletion 72.5 114 89
Paraphrase GPT3.5 1024 582 328
Misspelling 25% 124 128.5 116.5

50% 82 96 86
Swap 5% 84.5 96 84

10% 84 100.5 101.5
Synonym 25% 80.5 118 91

50% 97 131 116
75% 142.5 139.5 126
100% 206.5 156 126.5

Translation FR 102 155 106.5
RU 137.5 168 148

TypoAttack 5% 212 209.5 185
10% 1024 1024 316

Table 5: Attacked detection efficiency on Vicuna-7b-
v1.5, lower is better.

11422



tokens for inspection in the presence of attacks,
i.e., ranging between 6 to 70%. The presence of
attacks clearly increases the need to consider more
tokens for all watermark methods. Let’s zoom into
the performance of Duwak against each of those
attacks, in contrast to the cast of no attack. TypoAt-
tack significantly increases the detection difficulty
and results in a more than 3× increase in the num-
ber of tokens. Misspelling and repetition&deletion,
swap, and synonym (25%) are simple attacks, even
reducing the number of inspection tokens. Para-
graphs and TypoAttack are where Duwak has the
best performance, compared to EXP, the second-
best policy. We attribute this difference to the two
watermarks and no interference among them. Ad-
ditionally, Duwak benefits from incorporating two
distinct watermarks that operate without mutual in-
terference, thereby enhancing its robustness. In re-
sults from Vicuna-7b-v1.5, as shown in Tab. 5, we
observe similar trends in performance. However,
under some attacks, particularly simpler ones, EXP
achieves better efficiency. Nevertheless, in more
severe scenarios, especially with strong attacks like
the paraphrase attack, Duwak significantly outper-
forms EXP, demonstrating its robustness in han-
dling more complex attacks.
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Figure 3: Detection efficiency (↓) of Duwak and KGW
with equal hyper-config under varying δ.

Impact of contrastive search sampling. Here,
we highlight the impact of contrastive search com-
pared to the single KGW watermark. In Fig. 3, we
show the rating and the number of inspected tokens
to achieve a p-value of 0.02 under the different
distribution shifting(δ ∈ {2.5, 3, 3.5}) with clean
and paraphrase attack versions. Unsurprisingly,
Duwak outperforms KGW due to the addition of
contrastive search, such the advantage diminishes
with increasing δ. When δ is large, e.g., 3.5, it
introduces a large distortion in the generation prob-
ability, leaving little room for Duwak to further
improve the quality. In the case of the challenging

paraphrasing post-attacks, shown in Fig. 4b, one
can observe the clear advantage of using contrastive
search. This observation again verifies our design
of dual watermark, which is inherently more robust
to the post-editing when compared to the token-
level approaches of prior art.

5 Related Studies

Prior single watermark solutions embed the water-
mark signal at the token level with a modification
of the generation process by modifying either the
token probability distribution (Lee et al., 2023b;
Wu et al., 2023; Takezawa et al., 2023) or sam-
pling scheme (Aaronson, 2022; Christ et al., 2023;
Kuditipudi et al., 2023).

Watermark in token probability distribution.
Kirchenbauer et al. (2023a) design the very first
single-bit watermark method for LLM text genera-
tion, splitting tokens into a green and red list using
a cryptographic key.

To further improve the text quality and robust-
ness, subsequent studies modify the criteria of
green-red splits. Zhao et al. (2023) prove that
global red-green splits improve robustness against
post-editing attacks, whereas Kirchenbauer et al.
(2023b) propose to use the minimum hashed token
to determine the red-green list.

Furthermore, to improve the governance of wa-
termarks and provide additional information, e.g.,
copyright and timestamp, multi-bit watermarks
(Wang et al., 2023b; Yoo et al., 2023; Fernandez
et al., 2023) are proposed, introducing message-
specific red-green lists. We note that such water-
marks split the text into multiple sections, each of
which has only a single watermark in their token
probability, whereas our solution embeds up to two
watermarks into a single token.

Watermark in Sampling Binary water-
mark (Christ et al., 2023) samples the token based
on the comparison of the predicted probability
and the pseudo-random presentation. Because
of the fixed length of pseudo-random numbers,
the LLM can end up generating the same text
for the same prompt. Kuditipudi et al. (2023)
propose the usage of longer pseudo-random
number sequences than the generated text itself
and randomly choose the insertion location in the
text to add the watermark. Hou et al. (2023) resort
to watermarking via sentence-level sampling,
which iteratively performs sentence-level rejection
sampling until the sampled sentence falls within
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the watermarked region.
We note that orthogonal to watermark detection

is more general detection of whether text is synthe-
sized by LLMs (Solaiman et al., 2019; Gehrmann
et al., 2019; Mireshghallah et al., 2023; Mitchell
et al., 2023). However, as traceability to specific
models cannot be provided, these detection works
are limited in their application for the governance
of synthesized text.

6 Conclusion

In this paper, we propose a dual watermark scheme
for LLM, Duwak, which embeds human imper-
ceptible and machine detectable watermarks in to-
ken probability distribution and sampling schemes.
Combining two watermarks significantly decreases
the minimum number of tokens for detecting water-
marks with a desirable false positive rate, especially
when encountering post-editing attacks. To avoid
text quality degradation due to watermarking token
probabilities, we design a contrastive search sam-
pling scheme that samples tokens with the lowest
similarity. We show the effectiveness of Duwak by
providing a theoretical lower bound on the water-
marked tokens and extensive empirical evaluation.
Compared against existing single watermark solu-
tions and combinations thereof, Duwak provides a
better watermarked text quality. This is especially
highlighted in terms of diversity, and robustness
against nine post-editing attacks, using up to 70%
less tokens for detection.

7 Limitation

This study introduces advancements in watermark-
ing techniques for Large Language Models (LLMs)
through Duwak, while also recognizing certain lim-
itations that warrant future investigation. Firstly,
our approach’s effectiveness is contingent on the
specific characteristics of the LLMs evaluated, pri-
marily Llama2. Consequently, the applicability
of Duwak to different models and subsequent ver-
sions of LLMs is a subject that merits further explo-
ration. Moreover, our evaluation was restricted to
text-generation tasks. The extension of our method-
ology to encompass additional tasks, such as the
generation of mathematical proofs or code, remains
an area requiring in-depth study. Additionally,
Duwak necessitates conducting two separate detec-
tion processes for each watermark, which results
in a decrease in detection time efficiency compared
to single watermark methods.

Impact Statements

With the popularity of large language models and
their applications, embedding watermarks into their
generated content is an essential step toward trust-
worthy and responsible AI technology development
and deployment. Our findings of improved wa-
termark detection performance and utility provide
novel insights into the research and practice of wa-
termarking for large language models.
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A Nomenclature

α Parameter balancing the importance of token probability and self-similarity in contrastive search.

θ Large language model parameters used for text generation.

δ Bias term added to the logits of tokens on the green list to alter their probabilities.

η Probability determining whether contrastive search or multinomial sampling is used for token
generation.

γ Portion of the vocabulary designated as the green list in the token probability modification process.

p̂nt The probability distribution over tokens after applying watermark modifications.

κcs, κtp Secret keys used for embedding watermarks in the text.

G A subset of tokens selected for next word generation, influenced by a watermark key.

V The set of all possible tokens the LLM model can generate.

Φ, Fχ2 Cumulative distribution functions used to calculate p-values in hypothesis testing for watermark
detection.

ϕcs A score for Contrastive Search watermark.

ϕtp A score computed for token token probability watermark

HV The representation of tokens in the model’s hidden layer.

k Top-k parameter defining the number of top predictions considered in the generation process.

L Sliding window length used in contrastive search to compute token similarity.

lt The raw outputs of the LLM model for the next token, before applying the softmax function.

P , Pcs, Ptp P-values indicating the likelihood of observing the test results under the null hypothesis.

sL(xt) A measure of a token’s similarity to its preceding tokens within a sliding window of length L.

Hash A function used to generate a hash value based on the current context.

RNG A function generating pseudo-random numbers based on a seed and possibly a key.
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B Additional Results

B.1 Rating and perplexity comparison between Duwak and KGW
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Figure 4: Comparative analysis of Duwak and KGW with identical hyper-parameters under varying δ, detection
efficiency (↓).

B.2 Empirical false positive rates
To assess the theoretical false positive rate (p-value) through empirical means, we utilize a the following
methodology to identify unwatermarked text within the Wikitext dataset. For each watermark, we examine
10,000 samples, each with an average length of 260 tokens. The empirical false positive rate is determined
by the proportion of texts erroneously identified as watermarked at the p-value threshold.
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(b) Zoomed-in version of Fig. 5a from 0 to 0.1.

Figure 5: Comparison of empirical false positive rate and theoretical false positive rate for different watermarks

We observe that our algorithm does not result in an empirical false positive rate (FPR) higher than the
theoretical FPR. Moreover, all methods tend to overestimate the false positive rate when the p-value is
lower than 0.1, particularly in the case of KGW.
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B.3 Detection Efficiency Under Different p-value Thresholds
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Figure 6: Detection efficiency vs. rating under different watermarking methods and hyper-parameter settings with
p-value 0.01 and 0.01. Arrows are drawn between the corresponding configurations with different p-values to
indicate the reduction of detection tokens required for a more lenient p-value.

B.4 Ablation Study

We conducted additional experiments on the Llama2-7b model, as shown in Table 6, to assess the
effectiveness of our Duwak when both components are active as well as to assess the effectiveness of each
individual component (KGW and CS) on the process. Table 6 summarizes the detection efficiency results,
defined as the median number of minimal tokens needed for detection when the p-value reaches 0.02.
These findings clearly demonstrate that the combined use of both the KGW watermark and the contrastive
search watermark within our Duwak results in superior detection efficiency compared to the performance
the individual components.

C Evaluation Setup

C.1 Prompt

For evaluation, we use open-ended generation and MarkMyWords’ (Piet et al., 2023) structured tasks.
Open-ended text generation: Following Su and Collier (2023), 40 WebText corpus token prompts are

used to generate completions of up to 200 tokens. Comparing the quality of watermarked generations to
the datasets’ human-completions indicates the watermarkings’ relative effectiveness.

MarkMyWords generation tasks: Additionally, we include three tasks from the MarkMyWords dataset—
book reports, story generation, and fake news generation—to mirror realistic scenarios where watermark-
ing allows for harm mitigation and accountability.
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C.2 Evaluation metrics

We use the following metrics to assess the performance and effectiveness of watermark methods.
Diversity: Accounts variance in generated content using repetition under varying n-grams (n ∈
{2, 3, 4}).

MAUVE: (Pillutla et al., 2021) Measures the similarity between generated and human-written text token
distributions. Higher MAUVE shows better resemblance to human text.

Rating: Automated evaluation with the GPT-3.5 Turbo API, rating the relevance and fluency of
watermarked texts on a 100-point scale based on zero-shot prompting.

Detection efficiency: The minimum token count required for watermark detection for a type-I error rate
(p-value). Thus ensuring a precise balance between text length and the efficacy of watermark detection,
highlighting our watermarking technique’s efficiency.

C.3 Assessment Guidelines for Rating Responses

To systematically evaluate the text quality, each text will be graded out of a total of 100 points by GPT-3.5.
The grading criteria are divided into four key categories, with points allocated as follows:

Accuracy (20 points): This measures the correctness and relevance of the response in relation to the
provided prompt. Points are awarded based on how well the response adheres to factual accuracy and
pertinence to the initial query or statement.

Detail (20 points): This assesses the comprehensiveness and depth of the response. A higher score
is given for responses that cover the topic thoroughly, providing a nuanced understanding of the subject
matter.

Grammar and Typing (30 points): This category evaluates the grammatical and typographical
precision of the response. A flawless submission, free from spelling errors, punctuation mistakes, and
grammatical inaccuracies, will receive full points.

Vocabulary (30 points): This criterion looks at the appropriateness and richness of the language used.
Responses that utilize a diverse vocabulary appropriately and effectively to convey ideas will score higher
in this category.

Points should be deducted for any deficiencies observed within each category. The total score, calculated
out of 100, should be presented at the beginning of the evaluative feedback.

Prompt Template:

[INST] <<SYS>> You are given a prompt and a response,
and you need to grade the response out of 100 based on:
Accuracy (20 points) - correctness and relevance to the prompt;

Attack Conf. Duwak KGW in Duwak CS in Duwak

None 83 89 269
Contraction 81 87 241
Lowercase 97 114 233
Repetition&deletion 76 82 300
Misspelling 25% 84 91 543

50% 88 99 228
Swap 5% 84 96 342

10% 89 102 206
Synonym 25% 88.5 92 247.5

50% 85.5 104 275.5
75% 91 108 259.5
100% 97.5 125 351

Translation FR 105 153 675
RU 107 148.5 >1024

TypoAttack 5% 85 150 517
10% 152 225 985

Paraphrase GPT3.5 184 312 1012

Table 6: Attacked detection efficiency on Llama2-7b for Duwak and it’s components, lower is better.
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Detail (20 points) - comprehensiveness and depth;
Grammar and Typing (30 points) - grammatical and typographical accuracy;
Vocabulary (30 points) - appropriateness and richness.
Deduct points for shortcomings in each category.
Give a total grade at the first line of the response. <</SYS>>
Prompt: {}
Response: {}
[/INST] Grade out of 100:

This structured approach ensures a comprehensive and fair assessment of GPT-3.5’s responses, facilitat-
ing a consistent evaluation process.
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D Generated text

Table 7: Completions to prompt “[INST] «SYS» You are a helpful assistant. Always answer in the most accurate
way. «/SYS» Write a story about a retired astronaut that joins a risky interstellar rescue mission.. [/INST]”, limited
to first 3 sentences.

response
generator delta

BINARY 1.5 John "Hawk" Hawkins had seen it all during his illustrious career as an astronaut.
He had flown on dozens of missions to space, including the historic first manned
voyage to Mars, and had even broken a record for the longest time spent in space.
But after decades of flying through the cosmos, Hawk decided it was time to
hang up his space suit and enjoy his well-deserved retirement.\n\nThat was
until he received a distress call from a nearby planet that had been devastated
by a catastrophic event

CS 2.5 Title: The Call of Duty\n\nRetired astronaut John "Hawk" Hawkins had seen it
all during his illustrious career in space exploration. From the vastness of the
cosmos to the intricate workings of the human body, he had experienced it all.
But at the age of 65, he thought he had left his adventurous days behind

CS+EXP 2.5 Title: The Call of Duty\n\nJohn "Hawk" Hawkins, a retired astronaut in his
early sixties, had grown accustomed to the quiet life on Earth. After decades
of space travel, he had left the thrill of exploration behind and settled into a
comfortable routine. However, fate had other plans.\n\nOne fateful evening,
while watching the news, Hawk’s eyes widened as he listened to the urgent
message from Mission Control: an interstellar rescue mission was underway,
and they needed his expertise

CS+KGW 2.5 Title: The Call of Duty\n\nRetired astronaut John "Jack" Jackson had spent
his entire adult life working for NASA, logging over a hundred days in space
and earning a reputation as one of the best pilots in the business. But after a
near-fatal accident on a mission to Mars, he was forced to retire and leave his
beloved space travel behind.\n\nYears went by, and Jack found himself growing
restless and unfulfilled in his post-NASA life. He spent his days golfing and
fishing, but something was missing

EXP 1.5 Title: The Courageous Retiree\n\nJohn "Hawk" Hawkins, a grizzled astronaut
in his early sixties, had long since left his spacefaring days behind. Or so he
thought. When he received the phone call from Mission Control, his heart raced
with a mixture of excitement and trepidation

KGW 2.5 Title: The Call of Duty\n\nMission Briefing:\n\nMission Objective: Retrieve
the last surviving member of the Icarus Expedition, stranded on a hostile
exoplanet.\n\nMission Location: Planet Xylophia-IV, located 4.5 light years
from Earth.\n\nMission Profile: The Icarus Expedition was sent to explore
Xylophia-IV over 5 years ago. Upon reaching the planet’s atmosphere, their
spacecraft encountered unexpected storms and malfunctions, causing them to
crash-land on the hostile surface. The surviving member of the expedition,
Captain Emma Taylor, has been stranded on the planet for over 4 years, with
limited supplies and medical equipment
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Table 8: Completions to prompt “[INST] «SYS» You are a helpful assistant. Always answer in the most accurate
way. «/SYS» Write a book report about ’A Clockwork Orange’, written by Anthony Burgess. [/INST]”, limited to
first 3 sentences.

response
generator delta

BINARY -

Sure, I’d be happy to help you with a book report on "A Clockwork Orange" by
Anthony Burgess!\n\nIntroduction:\n\n"A Clockwork Orange" is a dystopian
novel written by Anthony Burgess in 1962. The novel is set in a future society
where violence and sexuality are Conditioned into the population through a pe-
culiar Conditioning method called the "Ludovico technique." The story follows
the protagonist, Alex, a young man who is imprisoned for his vicious crimes
and undergoes the Ludovico treatment to reduce his criminal urges. However,
upon his release, Alex finds that he is unable to enjoy his favorite pastime
– raping and Ultraviolence – due to the side effects of the treatment.\n\nPlot
Summary:\n\nThe novel begins with Alex, a charismatic and violent young
man, who lives in a dystopian society where Conditioning is a norm

CS -

Title: A Clockwork Orange\nAuthor: Anthony Burgess\nPublished:
1962\nPages: 208\n\nBook Report:\n\n"A Clockwork Orange" is a dystopian
novel written by anthony Burgees in 1962. The story takes place in a future
society where violence and sexuality are socially accepted and encouraged. The
protagonist, Alex DeLarge, is a charismatic and intelligent young hoodlum
who leads a gang of teenage thugs in a world where "ultraviolence" is the
norm.\n\nThe novel explores themes of free will, morality, and rehabilitation
through Alex’s journey

CS+EXP -

Title: A Clockwork Orange\nAuthor: Anthony Burgess\nPublished:
1962\nPages: 208\n\nBook Report:\n\n"A ClockWORK Orange" is a dystopian
novel written by Anthony Burgee in 1962. The story takes place in a future
society where violence and sexual deviance are socially accepted and encour-
aged. The protagonist, Alex, is a charismatic and intelligent young hoodlum
who narrates the events of the novels with a unique slang and dialect.\n\nThe
novel begins with Alex and his droogs (friends) committing a series of violent
crimes, including rape and murder

CS+KGW 2.5

Sure, I’d be happy to help you with your book report on "A Clockwork Orange"
by Anthony Burgess!\n\nTitle: "A Clockwork Orange"\nAuthor: Anthoyn
Burgess\nPublication Date: 1962\nGenre: Dystopian Novel, Satire, Young
Adult\n\nPlot Summary:\nSet in a dystopian future, "A Clockwork Orange"
follows the story of Alex, a charismatic and violent young hoodlum, who
is arrested and sentenced to a controversial rehabilitation program called the
"Ludovico technique." This program is designed to condition Alex to detest
violence and sex, and to promote a sense of empathy and compassion towards
others. However, the program has unintended consequences, and Alex becomes
increasingly isolated and disillusioned with society.\n\nThroughout the novel,
Burgess explores themes of free will, morality, and the nature of evil. Burgess
challenges the reader to question the morality of punishing individuals for
their actions, and to consider the ethics of manipulating people’s emotions and
behaviors through conditioning.\n\nCharacters:\n\n* Alex: The protagonist of
the novel, Alex is a violent and charismatic young hoodlum who is the narrator
of the story
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EXP 1.5

Title: A Clockwork Orange\nAuthor: Anthony Burgess\nPublication Date:
1962\nGenre: Dystopian Novel, Horror, Science Fiction\n\nBook Re-
port:\n\nSet in a dystopian near-future, Anthony Burgess’s "A Clockwork
Orange" follows the story of Alex, a charismatic young hoodlum who, along
with his gang, commits gruesome acts of violence and rape. The novel ex-
plores themes of free will, morality, and the impact of societal conditioning
on human behavior.\n\nTitle Analysis:\nThe title "A Clockwork Orange" is a
clever play on words, referencing both the novel’s dystopian setting and the
lead character’s name. The term "clockwork orange" is a contradictory phrase,
as oranges are typically associated with nature and growth, while clockwork
implies mechanical, predetermined movement

KGW 2.5

Title: A Clockwork Orange\nAuthor: Anthony Burgess\nPublished:
1962\nPage Count: 307\nGenre: Dystopian Fiction, Satire,
Novel\n\nSummary:\n\nA Clockwork Orange is a dystopian novel writ-
ten by Anthony Burgess, published in 1962. The story takes place in a futuristic
society where violence and sexuality are condoned and encouraged. The
protagonist, Alex DeLarge, is a charismatic young hoodlum who is sentenced
to a form of experimental conditioning called the "Ludovico technique" in an
effort to reform him
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A Proofs for Section 3 (Duwak: Dual Watermarking)

Theorem 3.1 (Green List Tokens using topk). Given X = {x1, . . . , xT } from an LLM with green list
fraction γ, and token n’s adjusted probability at t follows Eq. 1. Define V

(k)
t as the set of top-k tokens by

p̂nt ,with xt ∼ Uniform(V
(k)
t ). Given E|V k

t |G ≥ ν, then the expectation and variance of the count of green
list tokens |x|G in X are bounded as follows:

E|x|G ≥
ν

k
T, Var |x|G ≤ T · ν (k − ν) k−2.

Proof. Expectation: The expected number of green list tokens, E|x|G , is calculated as the sum of
expectations over all tokens being selected from the green list across all T steps. Given that xt is
uniformly chosen from the set of top-k tokens V (k)

t , the probability of choosing a green list token at any

step t is the fraction of green list tokens in V
(k)
t , which is

|V k
t |G
k . Therefore:

E|x|G =

T∑

t=1

∣∣V k
t

∣∣
G

k
=

1

k

T∑

t=1

E
[∣∣∣V k

t

∣∣∣
G

]
.

Given E
∣∣V k

t

∣∣
G ≥ ν, it follows that:

E|x|G ≥
ν

k
T.

Variance: For the variance, considering the sum of independent but not identically distributed Bernoulli

trials, each trial’s success probability is the fraction of green list tokens at step t,
|V k

t |G
k . The variance of a

Bernoulli variable with probability p is p(1− p). Therefore, the variance of the total count of green list
tokens is:

Var |x|G =
T∑

t=1

∣∣V k
t

∣∣
G

k

(
1−

∣∣V k
t

∣∣
G

k

)
.

This simplifies to:

Var |x|G = T · E
[∣∣V k

t

∣∣
G

k

(
1−

∣∣V k
t

∣∣
G

k

)]
.

By applying Jensen’s Inequality, due to the concavity of the function f(x) = x(1− x) for x in [0,1], and
given E

∣∣V k
t

∣∣
G ≥ ν, we derive:

Var |x|G ≤ T · ν
k

(
1− ν

k

)
.

Theorem A.1 (Green List Tokens in Duwak). Given X = {x1, . . . , xT } from an LLM with green list
fraction γ, and adjusted probability of token n at t being

p̂nt =
exp(ln + 1[n ∈ G]δ)∑
i∈V exp(li + 1[i ∈ G]δ) ,

define V
(k)
t as top-k tokens by p̂nt , with xt ∼ Uniform(V

(k)
t ). The expectation and variance of green list

tokens, |x|G , are bounded by:
E|x|G ≥ AT,

Var |x|G ≤ AT (1−A)(k + T − 1)k−1,

with
A =

γβS⋆

1 + (β − 1)γ

under an approximation of top-k sampling to a stochastic sampling based on adjusted probability without
replacement for k times. So (xt) from V

(k)
t approximates a stochastic process without replacement,

reflecting the dynamic adjustment of probabilities as tokens are selected.
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Proof. Referencing Lemma E.1 from Kirchenbauer et al. (2023a), when a token index v is sampled from
the watermarked distribution, the probability that the token is from the green list in the top-k candidates is

P[v ∈ G] ≥ γβ

1 + (β − 1)γ
St.

For simplification in the proof, we rewrite
∣∣V k

t

∣∣
G as V k

t and |x|G as x.
Then, the expectation of the number of green list tokens in the top-k can be expressed as:

Ek[V
k
t ] = k · γβ

1 + (β − 1)γ
St.

Given V k
t , the expectation of the number of green list tokens in X is

Et[x | V k
t ] =

T

k
Ek[V

k
t ].

Therefore, the total expectation of green list tokens in X becomes

Et[x] = Et

[
T

k
Ek[V

k
t ]

]
=

T

k
· k · γβ

1 + (β − 1)γ
EtS

t ≥ T · γβS⋆

1 + (β − 1)γ
,

i.e.,
Et[XG] ≥ TA.

Then, the variance of the green list tokens in the top-k, considering a Bernoulli distribution:

VarV k
t = k

γβSt

1 + (β − 1)γ

(
1− γβSt

1 + (β − 1)γ

)
.

Consider the variance within the top-k candidates, the variance of the green list token number in the whole
sequence is

Varx = Et[Var[x | V k
t ]] + Var[Ek[x | V k

t ]].

Var[x | V k
t ] = T · V

k
t

k
(1− V k

t

k
),

Et[Var[x | V k
t ]] = T

(
Et[V

k
t ]

k
− Et[(V

k
t )

2]

k2

)
,

given Et[(V
k
t )

2] = (Et[V
k
t ])

2 +Vart V
k
t and Et[V

k
t ] ≥ kA, Vart V k

t ≤ kA(1−A),

Var[Ek[x | V k
t ]] = T 2 · VarV

k
t

k2
≤ T 2 · kA(1−A)

k2
,

combine all terms together:
Varx ≤ AT (1−A)(k + T − 1)k−1.
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