@inproceedings{liu-etal-2024-instruction,
title = "Instruction Position Matters in Sequence Generation with Large Language Models",
author = "Liu, Yijin and
Zeng, Xianfeng and
Shao, Chenze and
Meng, Fandong and
Zhou, Jie",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.693/",
doi = "10.18653/v1/2024.findings-acl.693",
pages = "11652--11663",
abstract = "Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization, through instruction fine-tuning. The fine-tuning data is generally sequentially concatenated from a specific task instruction, an input sentence, and the corresponding response. Considering the locality modeled by the self-attention mechanism of LLMs, these models face the risk of instruction forgetting when generating responses for long input sentences. To mitigate this issue, we propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences. Theoretical analysis suggests that our straightforward method can alter the model{'}s learning focus, thereby emphasizing the training of instruction-following capabilities. Concurrently, experimental results demonstrate that our approach consistently outperforms traditional settings across various model scales (1B / 7B / 13B) and different sequence generation tasks (translation and summarization), without any additional data or annotation costs. Notably, our method significantly improves the zero-shot performance on conditional sequence generation, e.g., up to 9.7 BLEU points on WMT zero-shot translation tasks. Further analysis reveals that our method can significantly improve the tranditional model{'}s instruction following ability by 1x over traditional approch."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2024-instruction">
<titleInfo>
<title>Instruction Position Matters in Sequence Generation with Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yijin</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianfeng</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenze</namePart>
<namePart type="family">Shao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fandong</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization, through instruction fine-tuning. The fine-tuning data is generally sequentially concatenated from a specific task instruction, an input sentence, and the corresponding response. Considering the locality modeled by the self-attention mechanism of LLMs, these models face the risk of instruction forgetting when generating responses for long input sentences. To mitigate this issue, we propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences. Theoretical analysis suggests that our straightforward method can alter the model’s learning focus, thereby emphasizing the training of instruction-following capabilities. Concurrently, experimental results demonstrate that our approach consistently outperforms traditional settings across various model scales (1B / 7B / 13B) and different sequence generation tasks (translation and summarization), without any additional data or annotation costs. Notably, our method significantly improves the zero-shot performance on conditional sequence generation, e.g., up to 9.7 BLEU points on WMT zero-shot translation tasks. Further analysis reveals that our method can significantly improve the tranditional model’s instruction following ability by 1x over traditional approch.</abstract>
<identifier type="citekey">liu-etal-2024-instruction</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.693</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.693/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>11652</start>
<end>11663</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Instruction Position Matters in Sequence Generation with Large Language Models
%A Liu, Yijin
%A Zeng, Xianfeng
%A Shao, Chenze
%A Meng, Fandong
%A Zhou, Jie
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F liu-etal-2024-instruction
%X Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization, through instruction fine-tuning. The fine-tuning data is generally sequentially concatenated from a specific task instruction, an input sentence, and the corresponding response. Considering the locality modeled by the self-attention mechanism of LLMs, these models face the risk of instruction forgetting when generating responses for long input sentences. To mitigate this issue, we propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences. Theoretical analysis suggests that our straightforward method can alter the model’s learning focus, thereby emphasizing the training of instruction-following capabilities. Concurrently, experimental results demonstrate that our approach consistently outperforms traditional settings across various model scales (1B / 7B / 13B) and different sequence generation tasks (translation and summarization), without any additional data or annotation costs. Notably, our method significantly improves the zero-shot performance on conditional sequence generation, e.g., up to 9.7 BLEU points on WMT zero-shot translation tasks. Further analysis reveals that our method can significantly improve the tranditional model’s instruction following ability by 1x over traditional approch.
%R 10.18653/v1/2024.findings-acl.693
%U https://aclanthology.org/2024.findings-acl.693/
%U https://doi.org/10.18653/v1/2024.findings-acl.693
%P 11652-11663
Markdown (Informal)
[Instruction Position Matters in Sequence Generation with Large Language Models](https://aclanthology.org/2024.findings-acl.693/) (Liu et al., Findings 2024)
ACL