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Abstract

Effective interlocutors account for the uncer-
tain goals, beliefs, and emotions of others.
But even the best human conversationalist can-
not perfectly anticipate the trajectory of a di-
alogue. How well can language models rep-
resent inherent uncertainty in conversations?
We propose FortUne Dial, an expansion
of the long-standing “conversation forecasting”
task: instead of just accuracy, evaluation is
conducted with uncertainty-aware metrics, ef-
fectively enabling abstention on individual in-
stances. We study two ways in which language
models potentially represent outcome uncer-
tainty (internally, using scores and directly, us-
ing tokens) and propose fine-tuning strategies
to improve calibration of both representations.
Experiments on eight difficult negotiation cor-
pora demonstrate that our proposed fine-tuning
strategies (a traditional supervision strategy and
an off-policy reinforcement learning strategy)
can calibrate smaller open-source models to
compete with pre-trained models 10x their size.

1 Introduction

Dialogue models are increasingly fluent, topical,
and informative conversationalists, capable of pre-
dicting plausible next-utterances given a partial
conversation. Yet, the capacity to generate a sin-
gle, plausible utterance is not the same as modeling
the uncertainty about all possible next-utterances
in a calibrated way – that is, assigning an appro-
priate probability to potential conversation out-
comes, reflective of the randomness we observe
in the real world. For example, in negotiations,
“Sounds good!” or “No thanks” may be equally
fluent/topical/informative next-utterances, but one
choice may be more likely if the goals, beliefs,
and emotions of the interlocutors are taken into ac-
count. While even the best conversationalists can-
not perfectly predict the trajectory of a dialogue,
humans often manage uncertainty about social cues
appropriately (Druckman and Olekalns, 2008), and
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🤖

⚖ 🔬 ✅

👨⚖ Well… Your Honor 
👩⚖ And it's just too bad for the U.S. 
👨⚖ -- No, to the contrary, the U.S. claim 

is preserved. They can prove that.
👩⚖ But your position was that it can't...

💁 If I can the balls you 
can have the books

🙋 How about I get 1 hat 
and 1 book? 

🤦 Can’t take that deal. 

Collaborative Negotiations (like legal cases) Distributive Negotiations
8 Benchmark Conversation Uncertainty Tasks

Will the petition be accepted? What are the chances of a deal?

2 Uncertainty Tuning and Inference Methods

Post Correction, Interpretable Eval, Open LMs

🔐

There is a 
60% chance.P(token=“Yes”)

60% 80%

Figure 1: FortUne Dial tests the ability of lan-
guage models to represent uncertainty about future con-
versation outcomes. To meet this task, we tune models
to express uncertainty directly in their output tokens or
implicitly in their score distributions. We also provide
additional strategies to correct uncertainty at inference-
time. We propose tasks across 8 existing datasets, ex-
perimenting with GPT-4, Llama-2, and Zephyr-style
models to release our best performing models publicly.

demonstrate ability to both anticipate and affect
the likelihood of future conversation outcomes (Ho
et al., 2022). Meanwhile, it is not yet clear if lan-
guage models posses even the simplest of these
capabilities: anticipation of outcome certainty.

To study this, we expand the long-standing “con-
versation forecasting” task (Sokolova et al., 2008;
Zhang et al., 2018). While the usual goal is to
predict the outcome of an unfolding dialogue, we
instead account for how well language models rep-
resent uncertainty about outcomes by measuring
performance with calibration metrics. In effect,
these calibration metrics allow models to abstain
from predicting on instances when they estimate
high uncertainty. Potential applications of models
performant in this setting include: improved tools
for studying the effects of strategy and social struc-
ture in negotiations (Curhan and Pentland, 2007),
intervening to improve human and machine con-
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versations (Lewis et al., 2017; Zhou et al., 2019;
Schluger et al., 2022; Argyle et al., 2023), or assess-
ing trust/heterogeneity in a data source via metrics
like entropy (Csáky et al., 2019; Kuhn et al., 2022).

Here, we focus on the case of negotiations; this
type of conversation is not only particularly sen-
sitive to social uncertainties, but also, outcomes
are readily quantified post-hoc. We ask language
models questions about the likelihood of deals, de-
cisions, and emotional conflicts in settings like mar-
ketplaces, online forums, and courtrooms, totaling
8 tasks to test uncertainty modeling in negotiations.
Our contributions include:

1. formalizing the conversation uncertainty model-
ing task, along with its metrics (§ 2.1);

2. introducing two methods for representing uncer-
tainty about the outcome of conversations using
language models (§ 2.2);

3. and proposing fine-tuning (§ 2.3, § 2.4) and
inference-time strategies (§ 2.5) for improving
these representations.

We call this task FortUne Dial.1 Experiments
(§ 3) show GPT-4 and other large models can antic-
ipate outcome certainty well, improving over prior
knowledge by up to 9%. Moreover, results show
the utility of our fine-tuning strategies: smaller
(7B) models are tuned to outperform pre-trained,
open-source models 10x their size. Indeed, metrics
improve up to 11% on the tuning datasets and up to
3% out-of-distribution. Besides the performance of
our model deliverables, experiments also commu-
nicate insight on the biases of pre-trained language
models at this task, the ability of different models
to make use of prior knowledge, and the general-
ization of different algorithmic strategies. Models
and code are available on github.2

2 Modeling Uncertainty in Conversations

2.1 Problem, Notation, and Evaluation

Consider a natural language token set T . We ob-
serve partial multi-party dialogues D ∈ T ∗ con-
sisting of K ∼ U{2, L} turns, with L + 1 being
the eventual (random) length of the full dialogue.3

Speaker turns are delimited by special sequences of
tokens; e.g., “Speaker 4: ...” These partial conver-

1Forecasting Uncertainty in Dialogue.
2https://github.com/anthonysicilia/fortune-dial
3Uncertainty may be higher at different points in the di-

alogue (e.g., the beginning). Uniform sampling ensures we
capture all scenarios (both high and low uncertainty), evaluat-
ing the model on diverse contexts.

sations are unfinished, but have eventual outcome
O ∈ O = {0, 1}.4 Nature picks a conversation
distribution D over T ∗ ×O which governs our su-
pervised observations: (D,O) ∼ D. A forecaster
f maps D 7→ P̂ ∈ [0, 1] where P̂ estimates the
probability O = 1.

Evaluation with Proper Scores A calibrated
forecaster satisfies (Bröcker, 2009):

E[O | P̂ = p] = p ∀p ∈ {f(x) | x ∈ T ∗}, (1)

which intuitively means if we consider all conver-
sations assigned p by the forecaster, the mean oc-
currence of the outcome should also be p. While
commonly used to asses the verity of general prob-
ability estimates (Guo et al., 2017) the constraint
in Eq. (1) is often too broad because calibration, by
itself, fails to measure the variance of a forecast
(Ovadia et al., 2019). For example, the constant
forecast P̂ = E[O] is calibrated, but rarely cap-
tures the true outcome probability (conditioned on
the conversation). The issue of variance is espe-
cially important in our setting, where social and
temporal uncertainties make anticipation difficult;
i.e., the basic, indiscernible prediction E[O] may
be competitive. To accommodate calibration and
variance, we consider the constraint

P̂ = P
def
= E[O | D] (2)

One way to achieve this is by optimizing a scoring
function s : [0, 1]×O → R≥0:

minf E[s(P̂ , O)]. (3)

If the scoring function is strictly proper,5 Eq. (2)
is satisfied by the minimizer of (3), so solving (3)
recovers the true uncertainty as desired. Moreover,
Eq. (3), indeed, optimizes variance and calibration
equally, among other nice properties for ranking
suboptimal forecasts (Bröcker, 2009).

Tangible Scores We use proper scores only, such
as the Brier Score (BS; Brier, 1950), which is the
mean squared error between forecast probabilities
and true outcomes. While the use of proper scores
is important (see previous), they do present some
caveats: (1) they lack interpretable units and (2) for

4We only consider binary outcomes, but are flexible in
application of this formulation, e.g., we can ask multiple ques-
tions to handle more outcomes in a one-vs-all fashion.

5Strict propriety requires that E[s(P,O)] ≤ E[s(P̂ , O)]

for all P̂ with equality if and only if P̂ = P .
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fixed tasks, they often vary on a small scale.6 To re-
solve these issues, we sometimes focus evaluation
on the Brier skill score:

BSS = 1− BS/BSref (4)

where BS is the Brier score of the forecaster we are
evaluating and BSref is the Brier score of some
reference forecaster. One way to interpret the skill
score is the percent improvement of the forecaster
compared to the reference. A simple reference,
first proposed by Brier (1950), is the constant pre-
diction E[O], in which case BSref happens to be
the variance of the outcome. Here, we may inter-
pret the skill score as the percent of variance in
outcome that is explained by the forecaster, like
an R2-value. On the other hand, E[O] can also
be viewed as prior knowledge, obtainable before
observing D, implying skill conveys improvement
over our prior knowledge. As desired, skill score
tends to vary more than Brier score, while also
having an interpretable unit (percentage).

Aleatoric and Epistemic Uncertainty There are
traditionally two main types of uncertainty which
are studied in machine learning (and other) litera-
ture: epistemic uncertainty, which relates to uncer-
tainty caused by a person or model’s knowledge
(lack thereof) and aleatoric uncertainty, which re-
lates to inherent uncertainty in the data and is in-
dependent of the human/model (Hüllermeier and
Waegeman, 2021). Importantly, this work only
aims to improve quantification of the aleatoric un-
certainty (inherent to the data) without consider-
ation of the epistemic factors that impact specific
interlocutors. We leave this for future research.

2.2 Language Models as General Forecasters
An (auto-regressive) language model LMθ is a func-
tion parameterized by θ ∈ Rd that returns a distri-
bution over the next token t ∈ T conditional to any
prefix x ∈ T ∗. We write T ∼ LMθ(x) for a single
token sample and T ∼ LM∗θ(x) for the iterated sam-
pling process, wherein we append a sampled token
to x and re-sample until a stopping condition. We
define a prompt Φ as a function Φ : T ∗ → T ∗

such that for any input x, it holds that x is substring
of Φ(x). So, Φ takes an input text x and modifies
it to a new text Φ(x), which contains the original
text and (usually) adds important meta-information
for solving the task; e.g., goal descriptors, expected

6This is perhaps the reason for common improper choices
like calibration error, that do not account for forecast variance.

output, and other context. We consider two types
of prompts, which can turn a language model into
a probability forecaster:

1. Implicit Forecasts (IF): The prompt ΦO poses
the question “Given the partial dialogue D, will
the outcome represented by O occur?” Then,
the language model forecasts as

P̂IF = P{T = yes}; T ∼ LMθ ◦ ΦO ◦D (5)

where yes ∈ T is an affirmation token and ◦ is
function composition.

2. Direct Forecasts (DF): The prompt ΦO poses
the modified question “Given the partial dia-
logue D, what is the probability the outcome
represented by O will occur?” Then, the model
forecasts as:

P̂DF = p ◦ T ; T ∼ LM
∗
θ ◦ ΦO ◦D (6)

where p : T ∗ → [0, 1] is a parser that extracts a
“probability estimate” from sample T ; i.e., the
model answers directly in natural language.

More details on prompts are in § 3. Abstractly, both
prompts describe the uncertainty modeling task
using language, but make different assumptions.

2.3 Uncertainty Tuning of Implicit Forecasts
We consider a language model with pre-trained pa-
rameters θinit, e.g., pre-tuned to follow instructions
(Ouyang et al., 2022). The model computes a score
vector Z|Φ(D) ∈ R|T | and uses Z to forecast:

P̂IF = P{T = yes} = exp(Zyes/τ)∑
t∈T exp(Zt/τ)

(7)

where temperature τ is a fixed hyper-parameter. A
fine-tuning objective can then be written:

max
θ : θinit→θ

E[O ln P̂IF +O lnP{T = no}] (8)

where no is a dis-affirmation token. In effect,
Eq. (8) translates the objective in Eq. (3) to a fine-
tuning objective by picking s to be the negative
log score (a proper score, essentially equivalent to
standard cross-entropy). Jiang et al. (2021) also
consider calibration of pre-trained language mod-
els by direct supervision (as above), but focus on
“factual” question-answering tasks where answers
are more clearly right/wrong and the inherent so-
cial/temporal uncertainties of conversation are ab-
sent. In addition to a difference of setting, our
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proposal also differs from Jiang et al. (2021) be-
cause we retain the language model’s whole token
distribution during inference, instead of only a can-
didate set. In § A.1, we provide a first theoretical
and empirical characterization of the impact of this
choice when fine-tuning language models. Our
main observation is these techniques are practically
equivalent at inference-time with less than 1% av-
erage difference in forecast (for our corpora). Thus,
we advocate to retain the whole token distribution,
since it is more easily coupled with other language
modeling tasks; e.g., it doesn’t require special ma-
chinery, like a loss with separate normalization.

Sampling Distribution In practice, we consider
several negotiation datasets, defining distributions
D1 . . .Dℓ and prompts Φ1 . . .Φℓ. At test-time, if
dataset diversity is sufficient, we expect the fore-
casts will generalize to new, possibly unseen, envi-
ronments Dℓ+1 and prompts Φℓ+1. Formally, this
setup is called domain generalization (Blanchard
et al., 2011; Muandet et al., 2013) and, while many
approaches to this problem exist, simply training on
the balanced aggregate of all available domains of-
ten performs best in practice (Gulrajani and Lopez-
Paz, 2020); we take this approach in § 3.

2.4 Uncertainty Tuning of Direct Forecasts
Current pre-training strategies may prime models
to express uncertainty best directly, via their output
tokens; e.g. this is observed when models express
uncertainty about factual correctness in question-
answering (Tian et al., 2023). Ideally, despite the
different setting, fine-tuning can preserve and capi-
talize on this predisposition. One challenge is that
direct forecasts make Eq. (3) non-differentiable,
due to the parser. So, we formulate direct forecast
tuning as a Markov Decision Process. We use re-
ward R = −s(p ◦ T,O) with T ∼ LM∗θ ◦ Φ ◦ D
and set s to the log score (see Eq. 8). In effect, the
reward is the negative score of our forecaster. Then,
the usual objective J(θ) of this Markov Decision
Process is:

max
θ : θinit→θ

E[R] = − min
θ : θinit→θ

E[s(P̂DF, O)]. (9)

That is, we recover the original forecasting objec-
tive. While significant machinery has been devel-
oped for reward optimization (see Sutton and Barto,
2018) we apply policy gradient.

2.4.1 Policy Optimization
We focus on gradient-based policy optimization
techniques, like REINFORCE (Williams, 1992)

and PPO (Schulman et al., 2017). In particular, we
derive an off-policy version of the policy-gradient
theorem, specific to our forecasting task, which
uses Monte Carlo samples to produce unbiased es-
timates of the gradient-updates for our optimization
problem. The off-policy aspect is an important one.
It means we can iteratively sample any policy (dis-
tribution) over our token space T , and use these
demonstrations to learn θ. Thus, while tuning, we
can prioritize exploration vs. exploitation however
we like, which can be an important factor for act-
ing optimally in very general environments (Jiang
et al., 2023), as is desired by our framework.

Off-Policy Policy Gradient For any random vari-
able X , define µX as the mass function of X . Then,
for any reference model Ref : T ∗ → ∆(T ):

∇θE[R] = E
[
sT̃ · µT (T̃ )

µ
T̃
(T̃ )
· ∇θ logµT (T̃ )

]

where T ∼ LM
∗
θ ◦ Φ ◦D,

T̃ ∼ Ref
∗ ◦ Φ ◦D,

and sT̃ = −s(p ◦ T̃ , O).

(10)

We derive this in § A.3. While other off-policy pol-
icy gradient techniques exist (Degris et al., 2012;
Imani et al., 2018; Kallus and Uehara, 2020), the
specifics of our problem allow us to make simplify-
ing assumptions and yield a “simpler” and unbiased
estimate of ∇θE[R] as the above.

As a computational note, there may be instances
where the ratio of mass functions uT /uT̃ becomes
excessively large or small, leading to issues of gra-
dient explosion or vanishing. To address this, we
adopt a widely-used clipping strategy from Proxi-
mal Policy Optimization (Schulman et al., 2017).
Specifically, for ϵ ∈ [0, 1], the update is:

sT̃ · ω · ∇θ logµT (T̃ ) where

ω = min
{
max

{
µT (T̃ )

µ
T̃
(T̃ )

, 1− ϵ
}
, 1 + ϵ

}
.

(11)

Besides the computational benefits, this has motiva-
tions related to on-policy trust-region optimization
(Schulman et al., 2015), when Ref = LMθ.

Off-Policies We consider three main choices for
the off-policy reference Ref in this work:

1. The Explorer takes random actions in the
token space T ∗, restricted only in the sense
that it must describe a probability; e.g., “53%.”
Exploration can benefit generalization (Jiang
et al., 2023), since it exposes the agent to more
diverse state-action pairs at train-time.
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Model Likelihood

Llama-2 7B: 50%
 + IF (tuned): 72%
 + DF (tuned): 64%
Llama-2 70B: 70%
GPT-4: 60%

Outcome: Conflict

Model Likelihood

Llama-2 7B: 55%
 + IF (tuned): 27%
 + DF (tuned): 66%
Llama-2 70B: 60%
GPT-4: 25%

Outcome: Conflict

Model Likelihood

Llama-2 7B: 70%
 + IF (tuned): 28%
 + DF (tuned): 56%
Llama-2 70B: 20%
 GPT-4: 30%

Outcome: No Conflict

! : WHY are you sending me 
something about DAVID
" : The article was about a non-
notable person, and so I marked 
it for deletion, and told you… 
! : == AGAIN! == I understand 
but why did you send the article 
to me of all people. Do you like 
blaming me…

Example 1

# : The Azeri section does not 
belong here. There is really too 
much information …besides a 
passing note on that, there is 
too much detail…
$ : It needs to be here b/c 
everyone will ask for ”sources" 
… it seems too much b/c we 
don’t have more elsewhere….

Example 2

% : sorry to offend, but the article 
doesn't belong. don't write if 
can’t compile suitable info… 
& : Great. by the same logic, let’s 
remove Earhart, who was non-
notable until she took a plane…
% : … we have the benefit of 
historical perspective & 
research…

Example 3

Figure 2: Examples of model forecasts for the eventual occurrence of a personal attack. Models receive priors from
data (§ 2.5) without any forecast scaling. Tuning (§ 2.3, § 2.4) improves 7B parameter models and GPT-4 shows
bias against conflict, compared to other models (§ 3). The nuances that lead to conflicts are not necessarily obvious.

2. The Exploiter takes the actions that are
optimal based on experience. We use P̂IF
has a proxy, since it does optimize a proper
scoring function (Eq. 8). While optimal on
the training data, this may not be true for new
conversation domains or outcomes.

3. The Quantizer takes actions learned from
ground truth data by binning. It is inspired by
Lin et al. (2022), who calibrate model uncer-
tainty to factual correctness by binning sub-
tasks, computing average correctness in each
bin, and training the model to predict these
with routine supervision. Lacking clear “sub-
tasks”, we propose a (new) more general strat-
egy, using clustering to bin our data. In § 3,
we also ablate our use of RL to optimize, in-
stead of routine supervision.

Greater detail on these policies, including precise
definitions and implementation are in § A.4.

2.5 Post-Hoc, Inference-Time Corrections

A New View on Old Tricks If validation data
is available, temperature (τ ) scaling (Guo et al.,
2017) is common to correct the scale of implicit
forecasts (Jiang et al., 2021; Kadavath et al., 2022).
Yet, this helpful technique is not well-studied for
direct forecasts because these are parsed from a
discrete token sequence (they have no underlying
latent scores to scale). To address this, we propose
a unified correction strategy that is well-suited for
both implicit and direct forecasts. We suggest es-
timation of the underlying latent scores to allow
post-hoc scaling for any forecast style:

Ẑyes ← log P̂ /(1− P̂ )

Z̃yes ← Ẑyes/τ − β

P̂new ← 1/(1 + exp(−Z̃yes))

(12)

where τ relates to temperature as before and β is a
bias correction term. By estimating the latent score
as above, we can effectively “simulate” traditional

(τ ) scaling in such a way that it works for both
implicit and direct forecasts. We argue this theoret-
ically and compare our proposal to other correction
techniques in § A.2, finding it theoretically equiva-
lent, practically equivalent, or better in general. We
use Eq. (12) as the primary correction in § 3.

A Bayesian View Use of prior knowledge is con-
sidered an important qualifier for generalization
in some theories of machine learning (McAllester,
1998). Motivated by this, we explore the use of
natural language priors as a type of inference-time
correction; e.g., , “On average, this type of con-
versation ends with {x} about {y}%...” Additional
details on these priors are provided next.

Correction is Not Always Zero-shot Quality
corrections require data in new domains. Data (n
≈ 250) is generally used to learn τ, β in Eq. (12),
so scaling is not zero-shot. For priors, data can also
be used or, in practice, a “guess” can be made. To
simulate a “guessed” prior, we use averages out-
side a 95% confidence interval of the data average
(n=50). Intuitively, this means we would rarely
estimate this average using data (across repeated
experiments), which is akin to, or worse than, hu-
man guesswork. § 3 considers data priors
learned from data and bad priors using a high
and low simulated guess.7 We consider only the
second to be zero-shot, since it tests robustness to
“guesses” we expect to rarely obtain via data.

3 Experiments

Data & Splits We consider 8 modeling tasks
spanning both traditional (distributive) negotiations
and collaborative negotiations (Chu-Carroll and
Carberry, 1995); Table 1 summarizes the corpora.
Tasks have diverse situations and outcomes, span
multi-party/dyadic settings, and are both short/long.

7We also checked non-numeric priors, e.g., reminding all
outcomes have non-zero likelihood; these were worse overall.
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Dataset Situation Outcome # Speak # Turn # Char Aff. Distr.
Zhang et al. wikipedia editing personal attack > 2 6.2 2.5K yes no
He et al. craigslist best deal for buyer = 2 9.8 720 no yes
Chawla et al. camp provisions both camps happy = 2 11.4 1.2K yes yes
Chang et al. reddit personal attack > 2 5.3 3.2K yes no
Wang et al. charity donation occurs = 2 20.6 2.2K yes no
Lewis et al. item allocation deal occurs = 2 5.0 253 no yes
Mayfield et al. wikipedia editing article deleted > 2 8.6 2.2K no no
Chang et al.a courtroom petitioner wins > 2 218 55K no no

Table 1: Forecasting tasks. We list setting, outcome of interest, number of speakers, average turn/character count,
and whether the setting is distributive. We also note if affective reasoning (about emotions) is useful in forecasting.
Data are grouped into 3 train-test splits (easy, med., hard) to simulate generalization difficulty (see Tables 6, 7).
aSee also Danescu-Niculescu-Mizil et al. (2012) for courtroom data. Precise outcome definitions are in § B.1.

post-hoc scaling no scaling combined

����prior data prior ����prior data prior bad prior neg all

model BS ↓ BS ↓ BSS ↑ BS ↓ BS ↓ BSS ↑ BS ↓ BSS ↑ BI BI

gpt-4 DF 21.1 20.7 8.5 23.8 21.8 3.8 22.7 9.0 -11 -1.1
70B IF 22.9 23.1 -2.0 66.1 66.1 -182 66.1 -160 3.6 -49.4
70B DF 22 22.1 2.3 25.0 22.0 2.7 23.6 5.0 -5.6 -1.3

Table 2: Scores for large, pre-trained models with different access to prior knowledge. Use of post-hoc correction
and data-dependent priors is not truly zero-shot. GPT-4 uses direct forecasting (DF), while Llama-2-chat 70B
uses direct or implicit (IF). BSS = 0 corresponds to always forecasting the prior, e.g., for data prior, this is the
corpus mean outcome. bad priors are defined in § 2.5. DF consistently improves upon prior knowledge (BSS > 0).

in-domain pseudo OOD zero-shot OOD combined

all all easy med hard all neg all

model BS ↓ LSS ↑ BS LSS LSS LSS LSS BS LSS BI BI

7B 22.7 -3.2 -10.9 -7.5 1.1 24.3 -5.1 -0.4 -2.7
↪→ IF 21 5.3 22.4 -1.4 -12.4 2.2 -3.9 23.9 -3.7 0.3 0
↪→ DF 22.8 -3.2 22.9 -3.7 -14.1 -8.2 -8.3 25.3 -9.7 0.9 0.6
↪→ DF 22.9 -3.9 22.9 -3.6 -9.3 -8.5 1.7 24.2 -4.9 0.8 -0.9
↪→ DF rl 22.9 -3.7 22.8 -3.3 -10.7 -5.9 2.1 24 -4.5 3 -0.6
↪→ DF ��rl 22.9 -3.8 22.9 -3.7 -11.9 -6.9 2.7 24.1 -4.9 3.4 -0.9
↪→ IF×4 19.6 11.4 21.4 3.7 8.9 2.9 -6.9 23.3 0.7 -3.5 -2.4
↪→ DF×4 22.8 -3.2 22.8 -3.4 -10.7 -3.7 4.5 23.6 -2.3 3.7 -2.8

7B 22.5 -1.2 -9.9 -9.6 -8.1 25.5 -9.1 -10.6 1.8
↪→ IF 22.5 -1.6 22.8 -3.4 -26.3 -10.2 -6.8 25.8 -13 1.5 -9.1
↪→ DF rl 23 -4.2 23 -4.2 -11.4 -8.9 -3.8 24.9 -7.6 0.2 -6.8

1B 22.8 -3.3 -11.2 -3 -2.6 24.4 -4.9 3.5 6.5
↪→ IF 22.2 -0.5 22.8 -3.2 -19.4 -10.6 -3.2 25.2 -10 -2.4 -5.5
↪→ DF rl 23 -4.2 23 -4.2 -11.4 -8.9 -3.8 24.9 -7.6 1 -1.2

Table 3: Scores for uncertainty tuned Llama-2-chat 7B, Zephyr 7B. , and “tiny” 1B Llama-2 trained in Zephyr
style. First row (each section) provides a pre-tuned reference. in-domain shows test data scores from within tuning
distribution, using val. data for post-hoc scaling and data priors. pseudo OOD and zero-shot OOD show scores when
test data is out of distribution (i.e., held out domains), but only pseudo OOD uses scaling and data priors. zero-shot
OOD doesn’t scale and uses “bad” priors. For 7B, we also tune on ×4 more data. Improvements are highlighted:
Light green cells show improvement against corresponding pre-trained models (same setup, before uncertainty
tuning), while darker cells (additionally) improve over larger 70B DF (LSS always compares to DF).

11705



To simulate varying degrees of distribution shift,
we group these datasets into different train/test
splits, categorized as easy, medium, or hard.
To make the forecasting task more difficult, each
of these three splits hold out full datasets for test-
ing. Conceptually, the splits are designed to create
different degrees of train/test imbalance for im-
portant properties like the topic, the length of the
conversation, the type of outcome, and the number
of speakers; Tables 6+7 and § B.1 provide more
detail on train/val/test splits. Sometimes, we re-
strict inference to data with affective conflict as
outcome (neg) like, a personal attack or unhappy
speaker. Here, to compute some metrics, we swap
the positive and negative classes as needed, e.g.,
the positive class becomes 1 − O to study “both
camps unhappy” instead of “both camps happy.”

Models & Prompts We use GPT-4 (0613, Ope-
nAI, 2023), Llama-2-chat (Touvron et al., 2023),
and Zephyr-β (Tunstall et al., 2023), which have
all been pre-tuned for chat/instruction following
(Zephyr is pre-tuned via distillation). We also use
a “tiny” Llama-2 replicate trained in the style of
Zephyr (Chat-v0.6, Zhang et al., 2023). Open-
source model sizes range from 7B to 70B param-
eters. We use pre-trained to refer to these models
before we tune uncertainty (§ 2.3, 2.4). Concretely,
the prompts the models receive have: situational
context specific to each dataset, like “the speakers
are defending their opinions on an issue”; priors,
as in § 2.5; and the main question that asks the
model about the likelihood of outcome occurrence
in the conversation, or just occurrence for implicit
forecasts. Pre-trained models also receive system
prompts to constrain output and clarify the task
goals. We use QLoRA (Dettmers et al., 2023) for
uncertainty tuning. Additional details are in § B.2.

Metrics We use the Brier Score (BS) and skill
score (BSS) as discussed in § 2.1, macro-averaged
across datasets and prompts. BSS refers to the orig-
inal skill score (Brier, 1950) where the reference
model in the skill score is the constant (average)
outcome probability. When a prior is provided, we
substitute this prior for the data mean in the refer-
ence score to account for how priors can implicitly
bias forecasts. Indeed, variance around an (incor-
rect) prior is always higher than the true variance,
so the prior-adjusted BSS reports the percent of this
larger variance explained by the forecaster. Besides
BSS, we also suggest a new skill score called the

Llama Skill Score (LSS). LSS is identical to usual
skill scores, i.e., Eq. (4), but uses the Brier score of
Llama-2-chat 70B (direct forecasts, same exper-
imental setup) as the reference score BSref. This
quantifies how smaller fine-tuned models compare
to this large model by % improvement. Since tuned
models are smaller, % improvement is sometimes
negative: a less negative value is a smaller decrease
(compared to Llama 70B) which means better per-
formance. Finally, we report statistical bias (BI)
to convey average over- or under-estimation of out-
come probability (positive or negative values, re-
spectively). In addition to discussion (§ 1, 2.1),
empirical motivation for uncertainty-aware metrics
is given in Table 8, comparing BSS to more typical
classification metrics.

3.1 Results and Discussion

Forecasting is Better with Correction Table 2
shows Brier and skill scores of pre-trained models
without uncertainty tuning. We modulate priors and
ablate post-hoc scaling. GPT-4 has lower (better)
Brier scores when granted access to validation data
to make corrections, e.g., via data priors or scal-
ing. Scaling appears to have the greatest impact
on scores as they are lowest, even when excluding
the data prior. However, priors are still useful. In
zero-shot settings (i.e., no scaling or data prior),
GPT-4 performs better when it has access to “bad”
guesses of prior probability, rather than no guess at
all. Trends are similar for Llama-2-chat 70B.

How Priors Help Curiously, “bad” priors can
also improve model inferences. We hypothesize
the benefit of priors may also come from elicit-
ing “chain-of-thought” behavior at inference-time
(Wei et al., 2023), compounding the improvement
gained from increased information access. Man-
ual analysis of GPT-4 on the corpora of Zhang
et al. (2018) shows that GPT-4 explains its answers
60-85% more frequently, when provided a prior
(depending on exact prior setting).

Problems with Pre-trained Implicit Forecasts
For Llama-2-chat 70B, we have access to scores
of every token, so we can compare implicit fore-
casting to direct forecasting. In Table 2, implicit
forecasting is worse for this pre-trained model.
Echoing Kadavath et al. (2022), we find post-hoc
correction is vital to improve pre-trained implicit
forecasts. Moreover, degradation of uncorrected
implicit forecasts is high, suggesting amplification
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of this effect in our unique (conversational) set-
ting. Manual inspection suggests the model’s logit
probabilities for “Yes” tends to be much smaller
than 1%. When scaled, these probabilities range
more appropriately (for example, 10% to 90%) and
become adequately predictive.

Have Data? Tuned Implicit Forecasts Are Best
Based on the previous results, we focus on uncer-
tainty tuning with access to a prior (even a “bad”
one) and compare uncertainty tuned models to di-
rect forecasts of pre-trained versions. We consider
an in-domain setting first, wherein test data fol-
lows the tuning distribution, post-hoc correction is
used, and priors are data-dependent. Here, Table 3
shows tuned implicit forecasts can significantly im-
prove over pre-trained Brier score, even compared
to models 10x their size. For instance, a tuned
Llama-2-chat 7B improves over the 70B model by
about 11% (or, 5% with less data). With enough
training data, out-of-distribution (OOD) scores are
also about 4% better than Llama-2-chat 70B scores
(if both have access to data for correction).

Direct Tuning Generalizes Better (Sometimes)
Next, we consider a zero-shot OOD setting without
data for correction. Here, performance of tuned
implicit forecasts is still good, for Llama-2-chat
7B. With enough data, tuning brings Llama-2-chat
7B implicit forecasts to the skill of its 70B coun-
terpart (+0.7%), but for Zephyr-style (distillation-
tuned) models, degradation is significant compared
to (even) pre-tuning scores. In contrast, for all 7B
models and different levels of data access, direct
forecasts show consistent improvement of scores
after uncertainty tuning (see light green cells). For
Llama-2-chat 7B, tuned direct forecasts also handle
difficult (hard) distribution shift up to 4% better
than their 70B counterpart. As speculated earlier,
direct forecast tuning may preserve some predispo-
sitions of pre-trained models to direct uncertainty
signals; this may explain consistent generalization
of these forecasts beyond the tuning distribution.

Qualitative Comparison of IF and DF Tuned
implicit forecasts tend to have higher variance than
tuned direct forecasts. Averaging over all tuning
strategies in Table 3, implicit tuning of Llama-2-
chat 7B leads to 2× the standard deviation in fore-
casts compared to direct tuning (about 11% and
5% SD, respectively). As noted in § 2.1, all else
equal, a higher variance is preferred by our metrics
in order to capture the discernability of forecasts.

Potentially, directly tuned models tend towards dis-
tribution collapse due to insufficient regularization
in our RL objective (Korbak et al., 2022). Methods
to resolve this will be of interest in future work.

Impact of Scale Tuning of implicit forecasts al-
low in-domain scores of a 1B model to rival a
model 70x it’s size (-0.5%). But, tuning methods
show less improvement, or even degradation, when
applied to the 1B model OOD. Possibly, and espe-
cially since we use QLoRA tuning, the reduction in
trainable parameters is detrimental to these meth-
ods. This, and the observed benefits of increasing
data (see previous discussion), suggest our tuning
techniques may follow neural scaling laws (Kaplan
et al., 2020), meaning generalization is strongly
dependent on model, data, and compute scale.

Exploration & Exploitation Llama-2-chat 7B
findings indicate pure exploitation is detrimental
to generalization when compared with pre-trained
models (see absence of green scores). On the other
hand, exploration tends to offer some improve-
ment, beating the pre-trained scores on easy and
all as well as the 70B scores on hard. The best
tuned direct forecasts use quantization , which is
neither completely random nor optimal on the train
set, offering a balance of exploration/exploitation.

Benefits of RL For our best performing direct
forecast tuning mechanism, we also ablate the role
of using RL to tune; i.e., we use a traditional su-
pervised update rule, similar8 to Lin et al. (2022).
We find improvements over pre-training are less
consistent and worse overall.

Human Preference Tuning May Induce Bias
We also postulate human preference tuning (RLHF;
e.g., Ouyang et al., 2022) may bias pre-trained
models to under-estimate negative affective con-
flicts, since these are presumably undesirable to
human annotators. To study this, we report statisti-
cal bias (BI) of forecast probabilities in predicting
negative (neg) emotional outcomes; i.e., personal
attacks, unhappy interlocutors, or refusals to donate
to charity. On average, direct forecasts from GPT-4
underestimate this probability by about 11%, while
direct forecasts from Llama-2-chat 70B underesti-
mate this probability by about 6%. For the same
models, bias across all outcomes is not as stag-
gering. Smaller language models do not necessar-
ily exhibit this bias, but distillation-tuned models

8Ours is still more general, due to the clustering proposal.
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may learn similar biases from their larger teachers
(see 7B). Generally, uncertainty tuning does not
appear to introduce as staggering bias against emo-
tional conflict, but especially for distillation-tuned
models, the overall bias can be elevated.

4 Related Works

Negotiation & Conversation Forecasting Ne-
gotiation and dispute modeling has a long history
(Lambert and Carberry, 1992; Jameson et al., 1994;
Traum et al., 2008; Lascarides and Asher, 2008)
with early works hand-crafting models of inter-
locutor behavior by logical or discourse structures.
Reinforcement learning in simulated environments
offers improvement (Georgila and Traum, 2011;
Efstathiou and Lemon, 2014) with most recent ad-
vances modeling opponents’ dialogue acts (Keizer
et al., 2017), word choices (He et al., 2018), and
mental states (Yang et al., 2021; Chawla et al.,
2022). Instead of full simulation, we focus on effi-
cient and interpretable outcome models (Sokolova
et al., 2008; Nouri and Traum, 2014). Outcome
models, or forecasts, are also common in broader
dialogue for proactive moderation of social me-
dia (Zhang et al., 2018; Kementchedjhieva and
Søgaard, 2021) as well as predicting task-success
(Walker et al., 2000; Reitter and Moore, 2007),
mental health codes (Cao et al., 2019), emotions
(Wang et al., 2020; Matero and Schwartz, 2020),
situated actions (Lei et al., 2020), and financials
(Koval et al., 2023). Among these, ours is first to
propose and evaluate probabilistic methodology,
modeling dynamic uncertainty for the first time.
Our proposal is also uniquely general, operating
independent of setting or outcome of interest. In-
deed, we evaluate on general negotiations, looking
beyond distributive applications (zero-sum games
in specific markets) to include common collabora-
tive negotiations (Chu-Carroll and Carberry, 1995),
like planning, where parties share some goals, but
conflicts arise from competing sub-goals or beliefs.

Language Models & Uncertainty Modern large
language models fine-tuned to human preferences
(Ouyang et al., 2022) are increasingly general, “un-
supervised” multi-taskers. When queried on fac-
tual information, these models also represent uncer-
tainty about their solutions with little to no super-
vision (Kadavath et al., 2022). Uncertainty (about
correctness) has also been studied in smaller mod-
els without preference tuning (Desai and Durrett,
2020; Jiang et al., 2021; Dan and Roth, 2021) with

many algorithms for improvement (Kong et al.,
2020; Zhang et al., 2021; Li et al., 2022). Albeit
similarly operationalized, modeling uncertainty
about factual correctness is distinct from our focus
in negotiations, which elicits modeling of social
dynamics and mental states. Fewer works study
uncertainty in social reasoning (Jiang et al., 2021;
Hosseini and Caragea, 2022; Kumar, 2022). These
look at smaller models without instruction-tuning,
and lack focus on the interactive, temporal aspects
of conversations that cultivate an inherent uncer-
tainty about future outcomes. Ours is also one of
few works that study how models communicate un-
certainty directly via output tokens (Mielke et al.,
2022; Tian et al., 2023), and fewer that propose
tuning algorithms for this (Lin et al., 2022).

5 Conclusion

We show language models represent uncertainty
about conversational outcomes quite well, depend-
ing on their size, inference strategy, training strat-
egy, and access to prior knowledge. We design a
task to evaluate this ability and show:
• large (commercial-scale) models do this well,

provided limited data to pick hyper-parameters;
• without data, these models still offer improve-

ment over low quality priors, like human guesses;
• specialized fine-tuning can elevate small open-

source models to beat models 10x their size;
• current pre-trained language models may be pre-

disposed to representing uncertainty in their tex-
tual outputs, instead of their logit distributions;

• exploration at train-time can be more beneficial
for generalization (compared to exploitation);

• and finally, pre-trained models may be biased
against forecasting emotional conflict.

This work (and task) presents a first step towards
understanding how language models can anticipate
the certainty of outcomes in interactive social situ-
ations. We make our code, models, and data open-
source to promote continued research.

Limitations

While we explore a wide array of datasets and ex-
perimental setups, the generality of our conclusions
are limited to what’s explored in this paper. Further
study, e.g., replication study with different data,
models, and settings, would provide evidence to
confirm the generalization of our findings. One
aspect of particular interest, is the application of
these techniques to languages other than English.
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Indeed, there is evidence that the uncertainty rep-
resentations of language models may experience
performance degradation when applied to other
languages (Ahuja et al., 2022; Krause et al., 2023),
especially those which are low-resource.

Additionally, while our task is motivated by a
desire to probe a language model’s ability to antici-
pate social (un)certainties in conversation, there is
no clear way for us to separate causation and corre-
lation in this task. We cannot claim the language
model actually “understands” the causes of social
(un)certainties, like interlocutor mental states, since
instead, it may be the case that language models
capitalize on “superficial” or “spurious” statistical
correlations associated with an outcome (Ho et al.,
2022).

Finally, we quantify the quality of a forecast pri-
marily through its improvement over prior knowl-
edge. Effectively, this compares a forecaster with a
performance lowerbound, demonstrating the fore-
caster is using information revealed through the
dialogue to provide an improved prediction. In the
future, a performance upperbound (such as human
performance) would be useful to establish a ceil-
ing for our goals. This is particularly important
for proper scores, since it is exceedingly rare for
forecasters to achieve a perfect value (e.g., 0 for
the Brier score or 1 for the skill score).

Ethics Statement

The models we use and train may exhibit, or even
amplify, biases contained in the training data, such
as societal biases. Robustness to adversaries and
natural token perturbations is also not guaranteed.
In any application, ethical and safety considerations
should be made, such as bias mitigation method-
ologies and careful human moderation.

Moreover, even with mitigation strategies in
place, using these models can introduce unexpected
biases into the ecosystems where they are deployed.
Users of these models (e.g., for decision making)
can very well be lead astray by our models’ out-
puts, especially without appropriate scrutiny. The
ramifications of such over-reliance can also be far
reaching, impacting not only the model user, but
many other downstream parties, at a scale which is
amplified by the automation purposes our models
serve. Deployment of these models should con-
sider the potential impact on users, their potential
over-reliance, and the far-reaching consequences
un-checked use of our models can create.
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A Theory and Derivations

A.1 Comparison of Implicit Forecasting Approaches in Inference and Uncertainty Tuning
When doing implicit forecasting with language models, we find two main approaches in the existing
literature (i.e., on calibration to correctness). As in the main text, one can retain the whole token
distribution during inference. Recall, this is written:

P̂IF =
eZyes/τ

∑
t∈T eZt/τ

. (13)

On the other hand, one can consider a normalized probability, restricted to a set of candidate answers.
For example, Jiang et al. (2021) suggest this approach for smaller models, lacking appropriate instruction
following capability. In our context, the approach is described:

P̂IFN =
eZyes/τ

eZyes/τ + eZno/τ
. (14)

Primarily, Jiang et al. (2021) argue for this strategy to cope with the spreading of probability across the
many different ways to indicate “yes” or “no”, dependent on the question. In modern instruction-following
models tuned with human feedback, Kadavath et al. (2022) consider both approaches. In their notation,
“P(True)” takes the former approach (using the whole distribution), while “P(IK)” tunes a classification
head on top of the model’s internal feature representation, making “P(IK)” equivalent to tuning in the
fashion of Jiang et al. (2021). As we are aware, there has not been much exploration of tuning and
inference in the fashion of Eq. (13). We provide a first, formal comparison of these approaches next.

Qualitative Pros & Cons We view the approach of Eq. (13) to be preferable for a few reasons.

1. Compatibility with Other Tasks: Most other language modeling tasks require retention of the full
token distribution. While we do not experiment with this in our paper, uncertainty tuning of implicit
forecasts, as in Eq. (13) and § 2.3, can theoretically be coupled with other tasks in a more broadly
scoped fine-tuning pipeline. In contrast, use of normalized probabilities during uncertainty tuning, as
in Eq.(14), would require distinct loss functions and inference protocols to be coupled with other
tasks (due to differences in score normalization).

2. Generalized Extension: Extension beyond yes/no answers (and dialogue forecasting) is far easier
when using Eq. (13). Indeed, we simply change the token in the numerator and add more data
instances during training. In the alternative Eq. (14), we may require additional algorithms/compute
to select candidate sets – as is done by Jiang et al. (2021). For one, these added protocols can inhibit
inference due to compounding errors, and related to our first point, these added protocols also make
uncertainty tuning on many different types of tasks and data prohibitive.

Theoretical and Empirical Characterization of Differences We can also consider the difference
between these approaches more precisely. We begin with a theoretical result that is both conceptually
informative and useful for empirical study. Primarily, we bound the absolute difference between the two
types of implicit forecasts. Define X = T − {yes,no}, then:

|P̂IF − P̂IFN| = P̂IFN · |1− P̂IF/P̂IFN| = P̂IFN ·
∣∣∣∣∣1−

1

P̂IFN + (1− P̂IFN) +
∑

x∈X eZx/τ

eZyes/τ+eZno/τ

∣∣∣∣∣

= P̂IFN ·
∣∣∣∣∣1−

(
1 +

∑
x∈X eZx/τ

eZyes/τ + eZno/τ

)−1∣∣∣∣∣

= P̂IFN ·
∣∣∣∣∣

∑
x∈X eZx/τ

eZyes/τ + eZno/τ
·
(
1 +

∑
x∈X eZx/τ

eZyes/τ + eZno/τ

)−1∣∣∣∣∣ ≤
∑

x∈X eZx/τ

eZyes/τ + eZno/τ

≤
∑

x∈X eZx/τ

eZno/τ
=
∑

x

(
eZx

eZno

)1/τ

=
∑

x

ε1/τx

(15)
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where we define εx = eZx/eZno as the excess score ratio for the token x. We estimate this value empirically
for temperature τ = 1 across all different datasets, splits, and setups for our fine-tuned models, finding a
small average of 1.1 (on a 100pt scale).

Interpretation So, for τ = 1, P̂IF and P̂IFN are practically equivalent forecasts. The main difference
is the qualitative benefits of P̂IF we just discussed. Because xp decreases as a function of p > 1 (and
x < 1), we also know this number will not get larger for smaller τ – so, our interpretation for τ < 1
remains the same. On the other hand, our observed difference does grow with τ , which can mar our
interpretation if one uses post-hoc correction techniques like τ scaling. In our experimental study, this is
largely unimportant, since our experiments on fine-tuned models actually observe the implicit signal at
τ = 1 before doing our proposed (simulated) correction technique in § 2.5.

All this is to say, if one conducts correction as in § 2.5, the tuned forecasting approaches are equivalent
with about 1% difference on average. Consequently, it makes sense to use Eq. (13), recouping the potential
qualitative benefits discussed earlier. As for use of other correction techniques, we discuss these next.

A.2 Comparison of Post-Hoc Correction Techniques
In this section, we discuss other choices of post-hoc correction, comparing them to our proposal in § 2.5.
As we are the first to study language modeling of uncertainty in a conversational forecasting domain, we
focus on studies calibrating uncertainty to model correctness. Namely, we consider approaches by

1. Kadavath et al. (2022), who infer an implicit signal and conduct temperature scaling using the
language model’s entire predicted token distribution;9

2. Jiang et al. (2021), who infer implicit signals and scale temperature on only a set of candidate tokens;
3. and Tian et al. (2023), who study direct signals of model correctness and briefly suggest their own

temperature scaling approach for this their experiments.
Our approach is mixed. We (a) infer implicit signals using the full token distribution like Kadavath et al.
(2022), and then (b) conduct an “approximate” Platt scaling (Platt et al., 1999) on only a set of candidate
tokens. Recall, the “approximation” (or simulation) in step (b) is what allows the method to be applicable
to both implicit forecasts and direct forecasts.

As a standalone property, this unification is nice. It reduces the computational overhead to study many
different methods, since we can use the same inference and post-processing code for all forecasts in our
experiments. In addition, we point out our approach is computationally efficient. Indeed, using the
approach we propose, correction is done using the probability of the yes token only, so we need only
conduct one forward pass and save this single float per instance. In contrast, temperature scaling using
the entire token distribution – for implicit forecasting, as done by Kadavath et al. (2022) – requires an
increase in forward passes at least proportional to the number of temperatures we try, or otherwise, about
32000× more memory to avoid re-computing forward passes by remembering the token scores.

Next, we conduct some theoretical and empirical analyses comparing our correction technique to that
of Jiang et al. (2021), showing it is practically equivalent. Later on, we also compare our post-processing
with Kadavath et al. (2022) on implicit forecasts and Tian et al. (2023) on direct forecasts, using an
empirical study. Again, we find ours to be practically equivalent (or better on average).

Comparison of Proposed Correction to that of Jiang et al. (2021) Recall our “estimated logit”
post-processing technique described in Eq. (12). We have processed score:

Ẑyes = ln
(
P̂ /(1− P̂ )

)
/τ − β (16)

and the post-processed forecast P̂PP = P̂new, expanded as below:

P̂PP = (1 + exp(−Ẑyes))
−1 =

(
1 + eβ

(1− P̂

P̂

)1/τ
)−1

=
P̂ 1/τ

P̂ 1/τ + eβ(1− P̂ )1/τ

=
eZyes/τ

eZyes/τ + eβ(eZno +
∑

x e
Zx)1/τ

(17)

9Recall, this is their methodology for “P(True)”. Their methodology for “P(IK)” is most similar to Jiang et al. (2021).
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τ 0.25 0.5 1 1.5 1.75 2 2.5
Prob. Difference Bound 4.3 2.1 1.1 0.7 0.6 0.5 0.4

Table 4: Estimation of bound in Eq. (18) from data with β = 0. Note, we report the bound on a 100pt scale.

Post-Processing Method % Preferred (over ours) Magnitude (Brier score gain; 100pt)
Kadavath et al. (2022) 4.2 0.03

Tian et al. (2023) 16.7 0.03
Tian et al. (2023) + Bias Correction 20.1 0.03

Table 5: Comparison of post-processing methods to our approach. For the method of Tian et al. (2023), we also
consider adding a (new) second parameter – a bias correction term similar to β – to make it more competitive. We
report percent of times each method is preferred (compared to our method) based on validation data, as well as
average magnitude of preference. In practice, when validation data is used to select among methods, our technique
is generally preferred over existing techniques. Even when others are preferred, the degree of preference is small.
Meanwhile, when preferred, our post-processing method has preference magnitude 6× larger on average (0.19).

Defining ε =
∑

x εx we have

|P̂PP − P̂IFN| =
∣∣∣ eZyes/τ

eZyes/τ + eβ(1 + ε)1/τeZno/τ
− eZyes/τ

eZyes/τ + eZno/τ

∣∣∣

= eZyes/τ ·
∣∣∣ eZno/τ − eβ(1 + ε)1/τeZno/τ

e2Zyes/τ + eZyes/T+Zno/τ + eβ(1 + ε)1/τeZyes/T+Zno/τ + eβ(1 + ε)1/τe2Zno/τ

∣∣∣

=
∣∣∣ 1− eβ(1 + ε)1/τ

eZyes/T−Zno/τ + 1 + eβ(1 + ε)1/τ + eβ(1 + ε)1/τeZno/T−Zyes/τ

∣∣∣ ≤ |1− eβ(1 + ε)1/τ |

(18)

Since β is a free parameter, it can always be chosen to be 0 during post-processing (e.g., if we determine it
is not helpful based on validation data). Thus, since any deviation due to β would be by choice to improve
our forecasts, we consider estimation of this bound when β = 0. Indeed, we can easily collect statistics
on (1 + ε) during the forward passes of our experiments, and do so, estimating this bound value with
different selections of τ in Table 4. We find all differences to be practically negligible.

Comparison of Proposed Correction to that of Kadavath et al. (2022) and Tian et al. (2023) Lacking
theoretical analysis, we compare our unified post-processing approach to the discussed techniques of
Kadavath et al. (2022) and Tian et al. (2023), empirically. To keep all methods on equal footing, we use
our fine-tuned Llama-2 7b model for implicit forecasts; i.e., since the method of Kadavath et al. (2022)
only operates on implicit forecasts. We also limit study to one prompt setup (the data inferred prior)
because the method of Kadavath et al. (2022) is more computationally expensive. To evaluate, in Table 5,
we look at performance at minimizing Brier score on the validation set, reporting the percent of times we
would have preferred the method of Tian et al. (2023) or Kadavath et al. (2022) due to a lower Brier score.
We also report the average magnitude of preference; i.e., how much smaller the Brier score is. The logic
here is to show the utility of each post-processing method in a practical setting, since we would never
actually select a method that does worse on validation data in practice. Indeed, the results show that if
we did use these other proposals, in conjunction with our own, and picked the best technique for each
instance based on validation data, we would have still have used our own proposal most of the time.10

Moreover, the actual magnitude of preference for other methods is very small, so even when another
method is preferred, we would ultimately expect similar performance when transferring to a test set.

Computational Details To select hyper-parameter τ and β, we consider two cases: β ̸= 0 and β = 0.
For the first (β ̸= 0), we fit a 2 parameter logistic model of the outcome variable (i.e., this optimizes a
proper scoring function – the log score). For the latter case (β = 0), we use either traditional temperature
scaling (optimizing Brier score) or a newer scaling approach called Expectation Consistency, as described

10We used only our approach for experiments to avoid extra computational overhead, and because it was best overall.
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by Clarté et al. (2023). To decide which of these cases (and subsequent optimization procedures) to
use, we compare Brier scores, picking the method that yields the overall lowest on validation data. To
re-implement the approach of Tian et al. (2023), we optimize the functional form exp(log(P )/τ), or more
generally exp(log(P )/τ)/β when applying bias correction, picking parameters to minimize Brier score;
this preserves the authors’ primary suggestion that scaling be done so the result is proportional to pα for
some α.11 In general, we use the scipy optimization package or scikit-learn to implement the
aforementioned parameter selection. When re-implementing the correction approach of Kadavath et al.
(2022), it is too computationally costly to use the scipy optimization package, so we conduct a simple
linear search for τ ∈ {0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}.

11We inferred no other restrictions or implementation details from their description.
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A.3 An Off-Policy Policy Gradient Theorem

In this section, we show the claimed result from the main text:

∇θE[R] = E
[
sT̃ · µT (T̃ )

µT̃ (T̃ )
· ∇θ logµT (T̃ )

]

where T ∼ LM∗θ ◦ Φ ◦D,

T̃ ∼ Ref∗ ◦ Φ ◦D,

and sT̃ = −s(p ◦ T̃ , O).

(19)

Let all random variables be as above and fix the mass functions µT and µT̃ . Then, we have

−∇θE[R] = ∇θE

[ ∑

t∈T ∗
s(p ◦ t, O) · µT (t)

]
= E

[ ∑

t∈T ∗
s(p ◦ t, O) · ∇θ µT (t)

]

= E

[ ∑

t∈T ∗
s(p ◦ t, O) · µT (t) · ∇θ lnµT (t)

]

= E

[ ∑

t∈T ∗
s(p ◦ t, O) · µT (t) · µT̃ (t)

µT̃ (t) · ∇θ lnµT (t)

]

= E

[ ∑

t∈T ∗
µT̃ (t)

(
s(p ◦ t, O) · µT (t)

µT̃ (t) · ∇θ lnµT (t)
)]

= E

[
s(p ◦ T̃ , O) · µT (T̃ )

µT̃ (T̃ )
· ∇θ lnµT (T̃ )

]
.

(20)

So, we have our desired result.

A.4 Off-Policy Implementation Details

Next, we’ll discuss some choices for the reference policy Ref. The formal framework we’ve provided
actually allows us to recover variants of some existing techniques for getting language models to output
forecasts in token space.

The Quantizer Lin et al. (2022) fine-tune an LM to forecast the correctness of its answers in token
space for a factual question-answering task. Primarily, they use the accuracy of different question types
to assign confidence levels that the LM should predict for each type. We propose to extend this idea to
more general settings via clustering. Instead of assuming pre-assigned partitions, we infer the partitions
by clustering the data. The average outcome of a cluster is computed and assigned to each datum in the
cluster, which defines a deterministic reference policy Ref∗ to be used in Eq. (10):

Ref∗C(X) = p†
[
|C(X)|−1

∑

N∈C(X)

ON

]
(21)

where C(X) is the neighborhood of X , ON is the outcome of neighbor N , and p† : [0, 1] → T ∗ is an
inverse for p,12 mapping probabilities to tokens. In experiments, C is defined by k-means clustering
over the internal feature representations of LMθ. These representations are the average (over time) of the
last hidden layer of the model, ignoring masked inputs, and they are updated each epoch when clusters
are re-assigned. In practice, we pick k by hyper-parameter tuning and run k-means individually for
each dataset, re-aggregating the cluster assignments afterwards; our motivation for this is to prevent
uninformative, imbalanced cluster assignments, which may occur if clusters correlate with dataset labels.

12p is not bijective in general, but we can consider a subset of T ∗ – e.g., strings like “72%” – for which p† does exist.
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The Exploiter Given any pre-trained, fixed implicit signal forecaster, we can use it to train a direct
forecaster via Eq. (10). For example, assuming we have trained a LM via supervised fine-tuning (§ 2.3)
and fixed its forecasting function P̂IF, we define the deterministic reference policy:

Ref∗S(X) = p†
[
P̂IF
]
. (22)

This provides a nice controlled view for the differences between implicit and direct forecasting, since
the direct policy is actually learning from the implicit policy. Properties of the implicit policy that do not
transfer to the direct policy will be of interest. As noted in the main text, this also represents a focus on
exploitation, since the implicit forecasts P̂IF were designed to maximize the log-likelihood on the training
data. Maximizing the log-likelihood is equivalent to minimizing the negative log-likelihood (i.e., the log
score) and it is known that the log score is a proper scoring function.

The Explorer Finally, it is interesting to consider that Eq. (10) indicates the language model LM∗θ can
learn from any policy, even a bad one. To explore this, we suggest a context-less binomial reference policy
which simply assigns random probability estimates to the dialogues. Presumably, by Eq. (10), LM∗θ can
observe the rewards from these estimates and begin to make “sense” of them. For binomial parameters n
(number of trials) and π (success ratio) we define the reference policy:

Ref∗B(X) = p†
[
B
]
; B ∼ Bin(n, p). (23)

In experiments, n = 20 and p is the average outcome in the training data (one for each dataset).

On Policy Alternatively, we can actually use LM∗θ as its own reference: Ref∗PPO = LM∗θ. As alluded by
our notation, this makes Eq. (10) equivalent to on-policy policy gradient techniques, like Proximal Policy
Optimization (Schulman et al., 2017). We leave investigation of on policy learning to future work.
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# Train/Test Matches # Test Sets Matching Majority of Train
Split Topic Topic+L Outcome Length Affective Non-Affective Multi-party
easy all all 1/2 all all all all
medium 2/3 none none all 2/3 none all
hard none none none none none 2/3 1/3

Table 6: Table cells show count of test sets that share properties with the train set. easy has the most shared
properties (least imbalance), while hard has the least shared properties (most imbalance). We operate under the
assumption that greater degrees of imbalance correlate with greater degrees of difficulty in generalization, which
is consistent with the domain generalization literature (Gulrajani and Lopez-Paz, 2020). Generally, by design,
imbalance of shared properties (between train and test) increases from easy to hard, creating a sliding scale of
difficulty for the generalization problems we study. The heldout datasets for each split are listed in Table 7. The
first three columns (Topic, simultaneous Topic + Length, and Outcome) display how many of the test datasets
in the split share the column property with at least one of the train datasets. For example, in easy 1 out of 2 test
datasets share an Outcome with a train dataset in the same split. The remaining columns (Length and so on) show
how many of the test datasets in each split share the column property with a majority of the training datasets in
the same split. For example, in hard 1 out of 3 test datasets has an Affective outcome and the majority of the train
datasets have a Non-Affective outcome (causing the “none” designation for this column). When comparing length
and multi-party similarities, we assume it is easier to generalize from long to short data or multi- to single-party
data. So, “sharing” means being at least as long or having at least as many parties.

B Additional Experimental Details

Additional experimental details are provided next. In general, anything we have missed here will be
available in the code, which will be made public.

B.1 Additional Dataset Details

When available, we use default train/val/test splits from each dataset’s original proposal paper. When not
available, we split each datatset according to a 70/15/15% split. All numbers reported in the main text are
computed on the unseen test set for each individual dataset (i.e., even for the in domain setting).

Sampling of Training Data For every epoch of training, we sample 750 dialogues from each of the
heldin training datasets of the current training split (i.e., easy, medium, or hard). We pick 750 because
this ensures a balanced sample across the training data (all datasets have at least 750 training dialogues).
Each dialogue is then randomly truncated to K ∼ U{2 . . . L} turns where L is the original dialogue’s turn
length. As we generally train for 5 epochs, this means the model sees roughly 19-23K partial dialogues,
with some dependency in examples across epochs (for the smaller datasets). We also tried using larger,
imbalanced data samples for training. In this case, we sample 5K dialogues, or as many as are available.
Accounting for the datasets that have less than 5K training examples, we estimate the model sees about
4× more data overall.

Sampling of Test and Validation Data For each dataset, we use the same validation and test sets
across all experiments. We sample 250 dialogues from the validation split of each dataset, and randomly
truncate each (in exactly the same way). We sample 550 dialogues from the test split of each dataset,
again, randomly truncating each in the same way for all experiments. Some datasets have less than 550
dialogues total in their test split, in which case we use all of the available test dialogues.

Outcome Definitions Precise outcome definitions for each dataset are as follows. Most outcomes are
directly annotated in their original dataset proposals. We point this out or explain how we use existing
annotations to determine the outcome:

• Wikipedia editing (Attack): occurrence of personal attack is directly annotated

• Craigslist: buyer/seller goal prices are annotated. Best deal means sale price is closer to goal price
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Matching Train Set # Matching Train Sets
Split / Heldout Set Topic Topic+L Outcome Length Affective Multi-party
easy / wiki. (attack) deleted deleted reddit 4/6 long 3/6 yes 3/6 yes
easy / item allocation camp camp none - 3/6 no -
med / craigslist item alloc. none none - 2/5 no -
med / wiki. (deleted) none none none 4/5 long 2/5 no 3/5 yes
med / camp provisions item alloc. none none - 3/5 yes -
hard / courtroom none none none 2/5 long 3/5 no 2/5 yes
hard / charity none none none 2/5 long 2/5 yes -
hard / reddit none none none 2/5 long 2/5 yes 2/5 yes

Table 7: This table “shows our work” for the assertions of imbalance in Table 6. It provides a description of
similarities and dissimilarities between train and test sets when each dataset is one of those heldout in the split.
For each heldout test dataset, the first three columns show similarity in topic, simultaneous topic + length, noting
the specific train dataset that shares this property. The next three columns show the number of similar datasets
among the training data, considering length, usefulness of affective reasoning, and presence of multi-party dialogues.
Length “long” is categorized by having more than 2K characters on average. Recall, when comparing length and
multi-party similarities, we assume it is easier to generalize from long to short data or multi- to single-party. So, we
put dashes in for “short” or single-party data to note imbalances need not be measured.

• Camp: satisfaction post-negotiation is directly annotated on a 5 point scale: 2 levels of unsatisfied, 1
level of neutral, 2 levels of satisfied. We use annotations directly, a camper is happy if they indicated
either satisfied level.

• Reddit: occurrence of personal attack is directly annotated

• Charity: occurrence of donation is annotated

• Item allocation: occurrence of deal is annotated

• Wikipedia editing (Deletion): deletion of article is annotated

• Courtroom: petitioner winning is annotated

B.2 Hyper-Parameters and Prompts

Hyper-Parameters and other Training Details Generally, we train for 5 epochs with a batch size
of 12 using AdamW for optimization (Loshchilov and Hutter, 2017). We use 4bit QLoRA (Dettmers
et al., 2023) with LoRA rank 32. On 4 NVIDIA RTX A6000 GPUs, single model training is an overnight
process, so we only conduct full hyper-parameter selection (linear search) on the medium split using
Llama-2-chat 7B to save time. We use the best hyper-parameters for Llama-2 7B on medium for all other
train/test splits and models. For implicit forecast tuning, we pick the learning rate from the range {1e-4,
2e-5, 1e-5}. For direct forecast tuning, we pick the clipping constant ϵ from the range {0.2, 0.5, 0.8} and
the learning rate from the smaller range {1e-4, 1e-5} to save time. Clustering for the Quantizer off-policy
is also selected from the range {10, 20}. Log score on the in-domain validation data is used to pick the
best parameters.13 Parameter selection is fairly consistent overall, with most tuning setups preferring the
highest learning rate. ϵ was always 0.5 and the number clusters for the Quantizer off-policy was 10.

Inference Parameters As noted in our discussion, implicit forecasting uses τ = 1 in Eq. (13) conducting
post-hoc correction using our “estimated logit” procedure, as in Eq. (12), after the fact. For sampling,
to conduct direct forecasting, we typically use the default hyper-parameters indicated by the model
parameters (e.g., in the API, Huggingface generation configuration, or Github repository). For GPT-4
this means temperature and top p are both set to 1. For Llama-2 models, this means temperature and top

13In domain generalization, its important to avoid picking parameters using the held out domains, since this can bias results
(Gulrajani and Lopez-Paz, 2020).
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wiki (attack) craigslist camp prov. reddit charity item alloc. wiki (deleted) court
BSS 8.7 -10 0.01 0.9 -0.04 23.7 36.9 0
ACC GAIN 11.4 25.8 18.1 11.5 14.3 38.5 26 17
F1 GAIN 5.9 27 18.6 10.1 18.4 34.5 26.3 23.9

Table 8: Comparison of traditional accuracy metrics and proposed forecasting metrics for GPT-4. Inference is
conducted with post-hoc scaling and data prior. Probability forecasts are turned into “hard” predictions by selecting
the most likely outcome for the predicted probability. Accuracy and F1 are reported as gain over a random coin
flip prediction (50/50). Notably, GPT-4 always improves over a random classifier, uncertainty-aware metrics (BSS)
provide a more nuanced analysis of performance. In contrast, probability forecasts by GPT-4 do not always improve
significantly over uncertainty baselines (the average data outcome). The dichotomy in performance outcomes shows
uncertainty quantification can be a distinct, more difficult problem for language models, motivating the need to
evaluate this skill in addition to “hard” prediction skills.

p are set 0.6 and 0.9, respectively. The only exceptions are the pre-trained Llama-2 7b (no fine-tuning)
and the Llama-2 7b with direct forecasts tuned on 4× more data, which both use greedy sampling due to
clear (unsupervised) problems with the forecasts; e.g., output scores that prohibited usual sampling due
to NaN values or extreme variance in token samples (200x more than greedy). For models tuned in the
Zephyr style, temperature is 0.7 and top p is 1. For direct forecasting with pre-trained models, we sample
up to 256 tokens to allow room for an explanation (frequently provided by some models). Tuned models
generally followed the training format, so we only needed to sample up to 8 tokens in these cases. Upon
sampling, our parser extracted a probability forecast by searching for percentages, ratios, and floats in
[0,1] (in that order) using regex matching. Before parsing, some logic is also used to drop any non-answer
explanations the model provides, i.e., this is based on keywords specified in the system prompts.

Prompts As noted in the main text, we use a standard formula for prompting all models. We provide an
example of the of prompt format used for tuning Llama-2 7B below (with model tags):

<s>[INST] [Segment Start]

<partial dialogue inserted>

[Segment End]

In the preceding conversation segment, a group of Wikipedia
contributors are deciding whether an article should be deleted.
On average, this type of conversation ends with the article
being deleted about 56% of the time. What is the percent
probability that this specific conversation will end with the
article being deleted? [/INST] </s>

and another example:

<s>[INST] [Segment Start]

<partial dialogue inserted>

[Segment End]

In the preceding conversation segment, the speakers are
defending their opinions on an issue. On average, this type
of conversation ends with a personal attack about 50% of the
time. What is the percent probability that this specific
conversation will end with a personal attack? [/INST] </s>.

For pre-trained models, we also use a consistent system prompt to constrain output format and provide
more task details. Below is the prompt used for direct forecasts:

You are NegotiationPredictionGPT, an expert language
model at predicting the likelihood of outcomes in human
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language negotiations. You will be given the first part
of a conversation between several different speakers with
potentially different goals. Use the first part of the
conversation to put yourself in the mindset of the speakers
and estimate the likelihood of the requested conversation
outcome for these particular speakers. Use the keyword
"OUTCOME" to report your predicted probability for the outcome
of interest, requested by the user. Report the probability
as a percentage using the format "OUTCOME = percent". For
example, "OUTCOME = 70%

We focus on prompts for direct forecasts in these examples, but prompts for implicit forecasts are similar,
changing only the main question asked (to evoke a yes/no response).

C Examples

Here, we provide some examples of negotiations the model would see during training and testing.
A wiki. editing example where the outcome of interest is the occurrence of a personal attack:

Speaker 3: Material moved from anon edit for discussion. I vaguely remember this or a similar
incident from a TV news program. But I thought the kids were older. Notable? Verifiable?

”In 2005, approximately twenty sixth grade students at Reading Fleming Middle School (now
Reading Fleming Intermediate School) in Flemington, New Jersey contracted syphilis after
attendeding a "rainbow party".”

Speaker 3: Rainbow party

Speaker 2: I don’t really see much point in reporting every case of syphilis ever reported.... -

Speaker 1: Indeed. There is no source, it sounds rather urban-legendlike, and a rainbow party
is a sure ingredient for those kind of tales. Sure enough, Googling for the string ”Flemington
"rainbow party" syphilis” gives 0 hits.

Speaker 0: Source from Hunterdon Central Regional High School in Flemington, New Jersy
http://central.hcrhs.k12.nj.us/bezsylko/discuss/msgReader$281?mode=day

I don’t think a teacher would assign that if it wasn’t true and, trust me, it is. One of my friend’s
sister’s was one of the girls who contracted it. So, I’d appreciate it if you didn’t accuse it of
being an "urban legend".

Speaker 1: This is ”absolutely” not a reliable source, apart from the fact that this received NO
media coverage. Please stop reinserting this. When MMWR reports this, we can talk again.
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An example from craigslist where the outcome of interest is whether the buyer will get the best deal:

Speaker 0: I am interested in this apartment! Can you tell me more about it?

Speaker 1: This apartment is located in San Pablo and close to everything! You will have a
short commute to the office, the hottest stores, and the newest restaurants! The apartment has
lots of closet space, two bedrooms, large windows that really brighten up the space, and an
enclosed patio on the back.

Speaker 0: Great. I’m looking for a place in that area. Is a security deposit required?

Speaker 1: Right now we have a special . . . $99 security deposit! But you have to take
advantage of the offer today!

Speaker 0: Would you be willing to go down to $800 for the first month’s rent?

Speaker 1: I am sorry, but the rent is $1725 . . . $800 is much too low.

Speaker 0: What about $1,200?

An example from the charity discussions where the outcome of interest is a occurence of a donation:

Speaker 1: Hi! Have you heard of an organization called Save the Children?

Speaker 0: I think I have once before, in a grocery store I believe

Speaker 1: Do you mind if i give you a little information about them?

Speaker 0: Sure, go ahead

Speaker 1: Just some ver basic info, Save the Children is an international non-governmental
organization that promotes children’s rights, provides relief and helps support children in
developing countries.

Speaker 0: Are they a non profit organization?

Speaker 1: Yes they are! They work 100% on donated funds. There is a lack of support for
children in developing countries, especially in war zones. For instance, millions of Syrian
children have grown up facing the daily threat of violence. In the first two months of 2018 alone,
1,000 children were reportedly killed or injured in intensifying violence. Your donation can
address such problems.

Speaker 0: Oh wow, shocking news. Do you know how many children have been helped due to
this organization?

Speaker 1: According t0 their yearend report they were able to reach 155 million children. Over
200k of those kids were in the US.

Speaker 0: Thats awesome! Are you apart of this organization or just support them?

Speaker 1: I am just a supporter but I would like to ask how much do you like to donate to the
charity? Your donation will be directly deducted from your task payment. You can choose any
amount from $0 to all your payment
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An example from the courtroom discussions where the outcome of interest is whether the petitioner will
have a favorable decision:

Speaker 2: I was reading, Your Honor, from the only place that I know of that the findings of
fact of the district judge are reprinted. They’re in the petition – the appendix – no, Your Honor,
that’s their brief. The petition for certiorari, page 45(a) –

Speaker 6: 45 (a).

Speaker 2: Which includes the district judge’s opinion and findings of fact and conclusions on
this remand hearing. Thank you.

Speaker 5: Mr. Glasser.

Speaker 1: Thank you, Your Honor. The Kolod-Alderisio problem in our case would exist only in
relation to the Florida bugging. We agree with the government. There’s no real issue on Florida,
but there is a very severe issue, we say, in connection with an allegedly abortive additional
bugging in Georgia. I haven’t spoken of that today. We’ve briefed it pretty completely, and I
would ask the Court to watch for that item since there was some animation here at the end
about the Kolod problem which I think it is currently before the Court. Now –

Speaker 3: Well, they didn’t get – they didn’t make any tapes at all or get any recordings, did
they, in that second incident to which you refer?

Speaker 1: They – the agent who ran it said he didn’t get the tape, and I think one other agent
who was in the car with him said they didn’t get any effective audible results. But, again, we
had a very hard pushing hearing in which I, for one, can wait, feeling that I was entitled to make
a strong appellate point against the credibility of those agents on that issue too. And, indeed, on
that issue above all, they were crawling all over that part of Georgia. They were there about to
score, and they were not hesitating to bug. They were bugging all over the country. We think we
can’t prove that they were bugging in Europe. These fellows lived with bugs. It’s incredible to
me that they didn’t have more than that one abortive car bug in Georgia. They must have bugged
Desist’s room. I’m speaking of perhaps – well, all right, I’ll drop that point for now because
it’s been thoroughly briefed. Our whole submission is sufficiently stated in the briefs. Now,
on Fuller, again, may I say something that is – have been abrupt. We think this Court should
withdraw its action in Fuller on the ground that certiorari there was improvidently granted and
I’d like to say why. We’ve covered it thoroughly in our last brief. Fuller involved a telegram,
we all know that, but back of that telegram was a subpoena. The police in Fuller were not
defiant or willful towards existing law. The police in Fuller went to the Alaska Communications
Body, whatever it’s called, got voluntary relinquishment of the telegram from that body pursuant
to a federal regulation and they also got a subpoena. Now, the exact details of that whole
subpoena picture, I don’t know for sure of myself because I haven’t seen the Fuller record
but I’ve been guided through it in consultation in clause, consultation with one of the Fuller
certiorari counsel. I have the page numbers. This is covered in our last brief. Now, if there was
a subpoena in Fuller for that telegram, how can Your Honors reach the question in Fuller of
a violation of 605 because the very first sentence of 605 provides for subpoenas nor, at least
colorably and subject to a closer scrutiny of the record in Fuller than – which Your Honors may
well wish to do because Fuller is a pretty drastic decision, and to render a drastic decision like
Fuller on a record that may not stand up under scholarly criticism one of these days, I would
think would be something that the Court that wish to hear about.

Speaker 7: What did the Alaska Court held in Fuller –

Speaker 1: The Alaska Court never –

Speaker 7: With respect to the 605 violation?

Speaker 1: Never touch this problem that I’m talking about now. Oh, well, they touched the 605
problem.
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Speaker 7: What did it involve with respect to the 605 violation?

Speaker 1: Yes, they touched the 605, but they didn’t touch the problem of subpoena pursuant to
605.

Speaker 7: What did the Alaska Court hold with respect to the 605 violation of Fuller?

Speaker 1: They held that – let me think. Now, wait a minute.

Speaker 7: There’s a dissent, but the Court held that –

Speaker 1: They – oh, they held that 605 does not apply to states that they adopted the basic
Schwartz line.

Speaker 7: Yes.
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