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Abstract
Large-scale deployment of generative AI tools
often depends on costly API calls to a Large
Language Model (LLM) to fulfil user queries,
a process that also exposes the request stream
to external providers. To curtail the frequency
of these calls, one can employ a local smaller
language model – a student – which is contin-
uously trained on the responses of the LLM.
This student gradually gains proficiency in in-
dependently handling an increasing number of
user requests, a process we term neural caching.
The crucial element in neural caching is a pol-
icy that decides which requests should be pro-
cessed by the student alone and which should
be redirected to the LLM, subsequently aiding
the student’s learning. In this study, we focus
on classification tasks, and we consider a range
of classic Active Learning-based selection cri-
teria as the policy. Our experiments suggest
that Margin Sampling and Query by Commit-
tee bring consistent benefits over other policies
and baselines across tasks and budgets.

1 Introduction

Large Language Models (LLMs) offer unique capa-
bilities in understanding and generating human-like
text. They have gained widespread use in a wide
range of applications, such as assistive tools and en-
tertainment bots. However, large models are often
very challenging for all but a few companies and
institutions to run on their infrastructure (Schwartz
et al., 2020). Meanwhile, smaller models typi-
cally under-perform in these applications, at least
without additional fine-tuning on task-specific la-
belled data. Consequently, many applications ac-
cess LLMs via commercial APIs despite the costs
involved and the exposure of their entire request
stream to the API providers.

To minimise the costs and data exposure asso-
ciated with calling the API, we propose to locally
train a smaller private language model, which we
refer to as student, on the LLM’s predictions and,
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Figure 1: Neural caching (one iteration): A student gen-
erates a response to a user request. The policy algorithm
determines whether to rely on the student’s response or
to call an LLM. LLM responses are stored and used to
re-train the student as more data becomes available.

as the student gets more accurate, it handles an in-
creasing number of requests. The knowledge of the
LLM gets continuously distilled into the smaller
model. We refer to this scenario as neural caching
(see Figure 1), as the student can be thought of as a
smart cache. Note though that the student not only
remembers what the LLM predicted but also gen-
eralises beyond these examples. The goal of this
paper is to formalise the neural caching problem
and investigate simple ways of approaching it.

The key element in the neural caching scenario is
the policy determining which requests the student
processes independently. A good policy should
weigh the expected immediate user benefit (i.e.,
if the LLM is substantially more likely to make
a correct prediction than the student) and the an-
ticipated benefit for the student (i.e., whether the
LLM’s prediction will aid in training the student).
The latter underscores its relationship with Active
Learning (AL, Settles, 2009; Zhan et al., 2022),
although AL is typically associated with solicit-
ing human annotations. In particular, there is a
similarity to online AL (Cacciarelli and Kulahci,
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2023), where new unlabelled data points arrive in
a stream and are discarded immediately or sent to
an annotator. However, online AL tends to focus
on maximising the accuracy of the final model (i.e.
student in our terminology). In contrast, what mat-
ters in neural caching is the accuracy of the joint
system (student, teacher, along with the policy)
over its lifetime since this online accuracy reflects
the average level of service offered to a user.

Despite the aforementioned differences with AL,
evaluating the existing AL algorithms – specifically
the example selection criteria – remains valuable
given the maturity of the AL field and the ease of
implementation of some of the AL methods. This
study aims to achieve this, as well as to investigate
the potential shortcomings of these methods. For
instance, will the AL methods end up selecting ex-
amples that are too challenging even for the LLM?
Would learning from these noisy examples be detri-
mental to the student? Answering these questions
can inform future research on this practically sig-
nificant scenario.

In this work, our focus is specifically on clas-
sification tasks, as opposed to free text genera-
tion. Many practical problems, such as routing
user requests to relevant departments or answering
questions about factual knowledge, can be framed
as classification tasks. By confining our focus to
classification, we can apply methods developed in
AL without modification. This also allows us to
circumvent additional challenges tied to the auto-
matic evaluation of text generation (Celikyilmaz
et al., 2020).

Our findings reveal the benefits of using AL-
based policies such as Margin Sampling (Scheffer
et al., 2001) and Query by Committee (Seung et al.,
1992). Across datasets and budgets, these methods
consistently outperform baselines, such as routing
examples randomly or training the student at the
very start. Our analysis also reveals that the stu-
dent appears robust to the noise introduced by an
LLM. We also analyse a simplified practical sce-
nario where the student is not retrained and observe
even greater improvements in online accuracy from
using AL-based policies. We release our code to
encourage further work on this problem.1

The key contributions of this work are:

• We formulate the neural caching problem as
a powerful extension of using static caches.
In neural caching, LLM calls are optimised,

1https://github.com/guillemram97/neural-caching

while the student model is periodically re-
trained on the labels. We believe online
Knowledge Distillation could play a key role
in saving calls to expensive models.

• We release a benchmark with LLM annota-
tions for classification tasks to facilitate future
research in this setup.2

• We evaluate and analyse different instance se-
lection criteria for the neural caching setup.

• Our findings reveal that AL-based selection
criteria consistently improve performance
over baseline methods across various budgets
and datasets.

2 Related Work

Active Learning. Active Learning (AL) seeks
to reduce the amount of manual data annotation
needed. To accomplish this, it selects the most in-
formative examples from unannotated data. These
datapoints are then presented to an annotator and
the labels are subsequently used to train a model.
The most common scenario for AL is pool-based,
where a large unlabelled dataset is available from
the start and then a subset of examples is selected
for labelling. There has been extensive work on
applying pool-based techniques to NLP tasks, es-
pecially for classification problems (Settles, 2009;
Zhan et al., 2022; Zhang et al., 2022).

Online Active Learning. In single-pass online
AL (Cacciarelli and Kulahci, 2023), access to a
large unlabelled dataset is not available. Instead,
we are given one unlabelled instance at a time and
need to decide at that time whether to request an-
notation. Online AL was initially motivated by
scenarios in which an instance would not be avail-
able for annotation at a later time, such as in defect
detection or medical applications, where an item
might get shipped or the patient becomes unavail-
able (Riquelme, 2017). Online AL tends to focus
on the final accuracy of the model, rather than the
online accuracy of the student and teacher com-
bined, the measure more suitable for our scenario.

Knowledge Distillation of LLMs. Knowledge
distillation (KD), i.e., training a smaller model to
mimic a larger one, has garnered substantial atten-
tion (Bucila et al., 2006; Hinton et al., 2015). The

2https://huggingface.co/datasets/guillemram97/cache_llm
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class of methods most closely related to ours is ac-
tive KD, which effectively applies AL to KD (Liang
et al., 2021; Xu et al., 2023; Baykal et al., 2023).
Similar to AL, the emphasis is placed on the pool-
based setting, as opposed to the online setting, with
a particular focus on optimising the final accuracy
of the student model, rather than online accuracy
as needed for our use case.

Optimisation of Commercial LLM API Calls.
Due to the high cost of commercial LLM APIs, sev-
eral works have explored methods to reduce or oth-
erwise optimise the cost of API calls. GPTCache
(Bang, 2023) relies on a vector store of past query
embeddings and retrieves their associated labels. It
shares similarities with the Coreset version of our
approach – which emerged as the weakest method
in our experiments. FrugalGPT (Chen et al., 2023)
implements a cascade of commercial LLMs, where
bigger models are only called if the response from
a cheaper model is deemed as too unreliable by
a scorer that was trained with in-domain data. In
contrast, in this work, we do not assume access to
gold data to train a scorer. Zhu et al. (2023) present
a method to allocate queries among multiple mod-
els, together with traditional caching, in a scenario
with highly repetitive queries. Šakota et al. (2023);
Shnitzer et al. (2023) optimise routing calls through
models by predicting their respective performance.
Our work deviates from all these as we propose to
use continuous KD in a student model.

Concurrent work of Stogiannidis et al. (2023)
also presents a calling strategy that leverages KD
to reduce API calls to an LLM. Unlike our pa-
per, which offers a systematic analysis of existing
AL criteria, their work concentrates on a specific
model design. This design resembles a hybrid of
our Coreset and Prediction Entropy, which do not
perform well in our experiments. Even more signif-
icantly, their method’s advantages are only shown
in comparison to a scenario where no student model
is used. This overlooks trivial baselines of front-
loading and random allocation, both of which have
shown hard to beat in our experiments. They also
use very simple student models (kNN or a non-
pretrained MLP versus our smaller pretrained LM),
whose relative success may be attributed primarily
to the simplicity of the two datasets in their study,
which do not necessitate generalisation beyond the
teacher model’s predictions.

3 The Neural Caching Problem

The objective of neural caching is to optimise the
usage of an LLM in a scenario where labels need
to be generated for a stream of inputs. As we get
more predictions from the LLM, a student model is
trained on them. Our goal is to achieve the highest
level of service possible within a set budget of LLM
calls; hence, calling the LLM serves both to attain
high accuracy for the incoming input as well as to
train a student model.

To put it formally, our goal is to establish a map-
ping between elements in the input space X and the
corresponding labels in the space Y . We start with
a student model S0, and we can access a teacher
model T on demand. Our task is to predict labels
for a sequence of n examples (x1, . . . , xn) iid∼ X .

We retrain the student model on the labels ob-
tained from the LLM every f processed requests.
This simulates the situation where the number of re-
quests is uniform in time, and there is a set time to
retrain the model, e.g. at night. For simplicity and
to follow the convention in AL to retrain the model
from scratch (Ren et al., 2022), every time we re-
train the student model, we reset it to the original
pre-trained model and then use parameter-efficient
fine-tuning. Although continual learning methods
could be employed (Biesialska et al., 2020; Zhou
and Cao, 2021), we believe this is largely orthogo-
nal to our primary focus on policies and resetting
enhances the reproducibility of our analysis. Im-
portantly, we do not assume access to ground truth
(or human annotation) at any point in learning to
simulate a fully automatic scenario.

For every new input xi, we use the student model
Si/f to obtain the predicted label ŷS

i . Then, we
have the option to request the label ŷT

i from the
teacher model (LLM), which incurs a cost of c(xi).
Finally, we return the label ŷi for xi: the teacher’s
label if requested or the student’s otherwise.

The processing of the n examples is subject to
a budget constraint, where the total cost must not
exceed a fixed budget b. We assess the effective-
ness of our querying strategy based on the accuracy
of our predicted label ŷi compared to the actual
label yi (online accuracy) on the online examples.
Additionally, we measure the accuracy of the final
student model Sn/f on a test dataset (final accu-
racy). Algorithm 1 describes the process.
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Algorithm 1: Pseudo-code for the neural
caching algorithm with budget b, retraining
frequency f , cost per query c, data from the
LLM DLLM and an initial student S0
Donline = ∅
for xi in Xonline do

if i mod f == 0 then
Si/f = Train(DLLM)

end
ŷi = Si/f (xi)
if Call_LLM(b, xi, ŷi) and b ≥ c(xi)

then
ŷi = LLM(xi)
b = b − c(xi)
DLLM = DLLM ∪ {⟨xi, ŷi⟩}

end
Donline = Donline ∪ {⟨xi, ŷi⟩}

end
Dtest = {⟨xj , Si/f (xj)⟩ | xj ∈ Xtest}
Acconline = Evaluate(Donline)
Accfinal = Evaluate(Dtest)

3.1 Instance Selection Criteria
We use classical instance selection criteria from AL
for the neural caching problem. We use the term
selecting an instance to denote using the LLM to
annotate that example.

Front-loading (FR) This simple approach in-
volves using the entire budget initially by selecting
all instances for LLM annotation. Once the bud-
get is used up, subsequent requests are handled
by the student model alone. As the examples are
i.i.d. in our experiments, this strategy has the same
expected final accuracy as random selection.

Margin Sampling (MS) MS (Scheffer et al.,
2001; Luo et al., 2004) selects examples with high
margin between the top two predictions made by
the student model

Margin(xi) = log P (yi = k∗
1 | xi)

− log P (yi = k∗
2 | xi)

(1)

where k∗
1 and k∗

2 are the first and second most likely
labels, respectively, according to the distribution
P (yi | xi) computed by the student model. This
is a popular selection criterion for AL (Roth and
Small, 2006; Balcan et al., 2007). Schröder et al.
(2022) evaluated different uncertainty-based strate-
gies with Transformer models (Devlin et al., 2019)
and found MS to be the best-performing one in

an offline, pool-based setting. To adapt MS – as
well as the other criteria – to an online setting as
a selection policy, we define a threshold, and only
examples with a margin above this threshold are
selected until the budget is exhausted. We refer to
Appendix A.1 for more details.

Prediction Entropy (PE) In PE (Schohn and
Cohn, 2000; Roy and McCallum, 2001), we select
instances with high entropy of the output distribu-
tion:

Entropy(xi) =
−

∑

j

P (yi = k∗
j | xi) log P (yi = k∗

j | xi) (2)

Query by Committee (QBC) In QBC (Seung
et al., 1992; Burbidge et al., 2007), we select in-
stances relying on the disagreement among a com-
mittee of models. Our committee is the set of d = 4
previous student models plus the current – presum-
ably best – student. The disagreement is quantified
by computing the proportion of committee mem-
bers contradicting the current student.

Coreset (CS) CS (Sener and Savarese, 2018)
uses an encoder to obtain the embedding repre-
sentation of the new instance. Then, it calculates
the cosine similarity between the embedding of the
new input and the embeddings of past examples.
If the similarity with respect to the most similar
past instance xi annotated by the LLM is below a
certain threshold s, then it requests further annota-
tion from the LLM. To obtain the embeddings, we
average the encoder representation across tokens,
as this has been proven effective in sentence em-
bedding benchmarks (Ni et al., 2022). Similarity
with previous examples has been employed in AL
to encourage diversity and coverage (Kim et al.,
2006; Zeng et al., 2019). GPTCache (Bang, 2023)
also uses the embedding representations to decide
whether an incoming instance should be labelled.

4 Experimental Setup

4.1 Datasets
We study the proposed setup on four classification
tasks. The first two tasks have been commonly
studied in AL for NLP: ISEAR (Shao et al., 2015)
and RT-Polarity (Pang and Lee, 2005). The remain-
ing two tasks showcase harder problems where
factual knowledge acquired during pre-training
of an LLM could be highly beneficial: the fact-
checking dataset FEVER (Thorne et al., 2018)
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ISEAR RT-Polarity FEVER Openbook

Accuracy, T5+LoRA (100 gold labels) 0.51 0.85 0.53 0.23
Accuracy, T5+LoRA (5000 gold labels) 0.67 0.90 0.74 0.68
Accuracy, LLM 0.68 0.91 0.78 0.80

Average margin (LLM labels) 10.0 15.4 9.2 10.3
Average margin when wrong (LLM labels) 4.2 10.3 6.9 5.3

Table 1: The accuracy of the LLM is similar to training the simple model with 5000 gold labels.

and the question-answering dataset Openbook (Mi-
haylov et al., 2018). We split all datasets into online
and test portions (80%-20%, except for Openbook,
as it has fewer samples). The datasets are balanced.

ISEAR (Shao et al., 2015) annotates personal
reports for emotion (classes: joy, fear, shame, sad-
ness, guilt, disgust, anger; 7666 examples).

RT-Polarity (Pang and Lee, 2005) provides sen-
timent polarity labels for movie reviews (classes:
positive, negative; 10662 examples).

FEVER (Thorne et al., 2018) is a fact-checking
dataset (classes: true, false; 6612 examples) with
claims that can be checked with 1-3 sentences from
Wikipedia.

Openbook (Mihaylov et al., 2018) is a challeng-
ing question-answering dataset modelled after open
book exams for assessing human understanding of
a subject. Each instance consists of a multiple
choice question (classes: A, B, C, D) and includes
one fact that can help answer it. The full dataset
consists of 5957 data points; we selected 5457 for
the online set and 500 for testing.

4.2 Annotation by LLM

While we are interested in the online caching sce-
nario, to facilitate comparisons between our meth-
ods and ensure replicability in future work, we
create a dataset in which we obtain LLM predic-
tions for all data points; this dataset is then used to
simulate the online setup.

We generate soft labels using OpenAI’s
text-davinci-003, an InstructGPT-based
model (Zhan et al., 2022). For each task, we
design a prompt that describes the task and the
possible classes. Our prompts do not contain any
in-context examples (zero-shot), but we use a
small part of the dataset (up to 10 examples) for
prompt engineering.

On all datasets, we observe that the LLM
achieves better accuracy than the smaller model
trained on 5000 gold labels, suggesting that KD
would be useful in these datasets (Table 1). In our
benchmark, we store the log-probabilities of the
labels. We note that the average margin for the
generated labels is substantially lower when the
predicted label is wrong; we observe with addi-
tional experiments that the LLM annotations are
well calibrated (Figure 4). We release our bench-
mark with the generated labels to encourage further
work on the neural caching problem.

4.3 Experiment Details

We run all our experiments with three random
seeds, which also determine the ordering of ex-
amples; we present the average scores. For sim-
plicity, we use a retraining frequency f = 1000
and a constant cost per query c(xi) = 1. To avoid
a cold-start, we train the initial student model S0
with N = 100 (ISEAR, RT-Polarity) or N = 1000
(FEVER, Openbook) data points from the LLM;
we choose N so that S0 is better than random
choice. For the student model, we use T5base (Raf-
fel et al., 2020) as the backbone model; we freeze
the model weights and add LoRA adapter layers for
a parameter-efficient fine-tuning (Hu et al., 2022).

We fine-tune the student model with the cross-
entropy loss using the log-probabilities assigned by
the teacher to each class. Using hard labels seems
to work almost as well (Table 9). We split the
accumulated data from the LLM into training and
validation sets, and train each student from scratch
for 30 epochs with early stopping with patience of
five epochs. The rest of the hyperparameters can
be found in Appendix A.

5 Experiments

We first present our results and then their analysis.
To report accuracy across budgets, we use the cor-
responding Area Under the Curve (AUC) divided
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ISEAR RT-Polarity FEVER Openbook Average

Random 0.640 0.886 0.704 0.662 0.723

Margin Sampling 0.666 0.896 0.725 0.703 0.748
Query by Committee 0.656 0.889 0.725 0.687 0.739

Table 2: Online accuracy (AUC) for neural caching with
no student retraining.

by the budget range, thus obtaining an average ac-
curacy.

5.1 Neural Caching without Student
Retraining

We first study a simplified version of neural
caching, where the student model is not retrained
on new data points. This is a practical scenario, as
retraining creates extra overhead for the application
provider (e.g., consider a setting where the student
is run on a portable device, which is not powerful
enough to support retraining).

We adapt the AL instance selection criteria in the
following way. Given a criterion C, we calculate
the respective values from the previous outputs of
the student and call this list the history Ĉ. If we
have a remaining budget b and n remaining online
instances, we use as a threshold for an incoming
instance the b

n -th percentile of the history Ĉ. The
best possible scenario would imply having oracle
threshold values for each budget (i.e. as if we had
access to the full dataset offline). However, in
additional experiments, we found that the above
rule yields very similar scores.

To use QBC in this setup, we simulate that we
have four previous students trained on subsets of
the data. For example, if the student is trained
on N = 1000 examples, the previous students
are trained on 900, 800, 700, and 600 data points,
respectively. We find that MS yields results very
similar to PE and that Coreset is similar to Random.
To ease visualising the results, here we omit PE and
Coreset.

Table 2 and Figure 2 contain the results when
we train the initial student with N = 1000 dat-
apoints annotated by the LLM. Our experiments
with different initial budgets N yield similar re-
sults (Table 8 in Appendix), and Coreset performs
poorly even with different encoders.

We find that MS and PE are the best-performing
methods on all datasets and across all the initial
student models, followed by QBC, which outper-
forms the baseline of random selection. Given the
simplicity of these methods, these results make a

strong case for using AL-based selection methods,
especially MS. Unlike QBC, MS does not require
storing multiple models and performing inference
with each of them.

5.2 Neural Caching with Student Retraining
We now turn to the complete setup proposed in
Section 3, in which the selected instances are used
to retrain a student model with some periodicity.
This creates the incentive to spend the budget early
to get a more proficient student model as soon as
possible. To observe this effect, we include a ran-
dom baseline with a uniform sampling rate. This
suggests waiting longer for informative examples
to arrive counterweights the benefits of getting a
strong student as quickly as possible. We select
thresholds to encourage spending more of the bud-
get early on (see Appendix A.1).

We show the results averaged across all datasets
in Figure 3 and per-dataset in Figure 5. We observe
that both MS and QBC substantially outperform the
other methods. Coreset (embedding-based) does
badly in all the studied setups and encoders (Ta-
ble 12). Table 3 summarises the results.

5.3 Analysis
Hard examples with noisy labels. We have ob-
served in our experiments that prioritising harder
instances for teacher annotation leads to clear gains
in online accuracy. However, as discussed in the
introduction, LLM accuracy may be significantly
affected by the increased ‘complexity’ of an ex-
ample, which can inflate the proportion of noisy
annotations in the data on which the student is
trained (see Figure 4). This problem is known in
KD as confirmation bias (Arazo et al., 2020; Liu
and Tan, 2021). Previous results from offline KD
suggest that this type of confirmation bias can be
mitigated by avoiding the hardest instances (Baykal
et al., 2023), improving the chances that the teacher
model makes a correct prediction. However, we
observe that the most significant advantage of the
LLM with respect to the student in terms of accu-
racy lies in these samples that are deemed hard by
the student (leftmost part of the plot in Figure 4);
since we are optimising the online accuracy, the
trade-off between providing hard or correct labels
may be different in our online case than in the of-
fline scenario. Given the above, we hypothesise
that MS and QBC would be more negatively af-
fected by the confirmation bias than front-loading,
which does not prioritise hard examples. To test

11843



0 1000 2000 3000 4000 5000
Budget (number of LLM calls)

0.58

0.60

0.62

0.64

0.66

0.68

0.70
Ac

cu
ra

cy
 (o

nl
in

e)
ISEAR

Margin Sampling
Query by Committee
Random

0 1000 2000 3000 4000 5000 6000 7000
Budget (number of LLM calls)

0.875

0.880

0.885

0.890

0.895

RT-POLARITY

0 1000 2000 3000 4000
Budget (number of LLM calls)

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78
FEVER

0 1000 2000 3000 4000
Budget (number of LLM calls)

0.55

0.60

0.65

0.70

0.75

0.80
OPENBOOK

Figure 2: Accuracy curve with respect to budgets for neural caching without student retraining.

ISEAR RT-Polarity FEVER Openbook Average

Random 0.614 0.872 0.723 0.703 0.728
Front-loading 0.637 0.879 0.734 0.731 0.745
Coreset 0.637 0.878 0.715 0.726 0.739
Entropy 0.657 0.886 0.728 0.693 0.741
Margin Sampling 0.658 0.889 0.753 0.726 0.757
Query by Committee 0.650 0.887 0.748 0.737 0.755

Table 3: Online accuracy (AUC) for neural caching with student retraining.
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Figure 3: Accuracy curve with respect to budgets, in the
neural caching problem with student retraining. Error
lines indicate variance.
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Figure 4: On the left, we order data points by their mar-
gin and plot the accuracy of their respective labels gen-
erated by the student and teacher. We observe that the
greatest advantage of using the labels from the teacher
comes from examples with small margins. On the right,
the accuracy of the labels generated by the LLM calls in
neural caching with no student retraining. We observe
that MS and QBC are more likely to generate wrong
labels. We focus on Openbook for both plots.

this hypothesis, we designed an experiment to put
an upper bound on the effect of wrong LLM annota-
tions. For each strategy, we only retrain the student
model on correct labels, simulating an oracle that
discards incorrect examples. Table 5 shows the
absolute improvements in the online and final accu-
racy with respect to the values obtained without the
oracle (Table 3 and 4). We observe moderate abso-
lute improvements, but surprisingly MS and QBC
do not seem to improve more than front-loading,
suggesting that the hypothesis is wrong and that the
impact of confirmation bias is somewhat limited
and - what is surprising - similar across strategies.

As an additional test, we analyse the subset of
test examples where the teacher is incorrect. If
confirmation bias is a major issue for MS and QBC
than for front-loading, we would expect that they
are more prone to reproducing the teacher’s errors.
Again, we do not find any substantial differences
between these two strategies vs front-loading (Ta-
ble 11).

Online accuracy vs. final accuracy. Taking a
look at the accuracy of the final student (Table 4),
we observe that it is generally consistent with the
online accuracy (Table 3). However, MS has a low
final accuracy on FEVER while having the best
online accuracy on that dataset, confirming that in
some tasks, calling the LLM to obtain labels for
hard examples may improve the online accuracy
while not necessarily improving the student. This
result emphasises the differences between our set-
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ISEAR RT-Polarity FEVER Openbook Average

Front-loading 0.598 0.879 0.686 0.647 0.702
Coreset 0.599 0.879 0.680 0.641 0.700
Entropy 0.608 0.885 0.682 0.647 0.705
Margin Sampling 0.609 0.884 0.678 0.634 0.701
Query by Committee 0.609 0.882 0.687 0.646 0.706

Table 4: Final accuracy (AUC) of the last student model for neural caching with student retraining.

∆Online ∆Final

Front-loading 0.009 0.019

Margin Sampling 0.008 0.022

Query by Committee 0.008 0.018

Table 5: Absolute improvements for the online and
final accuracy using an oracle that allows us to discard
instances with wrong labels from the LLM, averaged
across datasets. The improvements are with respect to
values from Table 3 and 4.

Openbook FEVER

N=1000 N=2000 N=3000 N=500 N=1000 N=1500

Front-loading 0.731 0.769 0.751 0.716 0.734 0.734
Margin Sampling 0.726 0.777 0.764 0.718 0.753 0.751
Query by Committee 0.737 0.786 0.779 0.722 0.748 0.755

Table 6: Online accuracy (AUC) of different selection
criteria with different initial student models S0.

up and the setting normally studied in AL.

5.4 Robustness of the Findings

Vary initial training (S0). We study the effect of
the quantity of LLM-annotated data on which the
first student model is trained, focusing on the setup
with retraining (Table 6). We consider the two
more challenging tasks, FEVER and Openbook.
We find that QBC performs best overall, and the
performance of MS is more sensitive to the initial
budget. This observation suggests that better deci-
sion criteria for transitioning from a front-loading
regime to MS can be beneficial; we leave this for
future exploration.

Higher retraining frequency f . We repeat neu-
ral caching experiments, setting this time a higher
frequency of retraining f = 100; this results in
much longer runs as the student model has been
retrained an order of magnitude more times. Ta-
ble 7 shows the results. We observe that results are
consistent and very similar to those with a lower
frequency of retraining (Table 3).

ISEAR RT-Polarity FEVER Openbook Average

Front-loading 0.637 0.879 0.734 0.731 0.745
Margin Sampling 0.661 0.892 0.750 0.728 0.758
Query by Committee 0.657 0.890 0.751 0.740 0.759

Table 7: Online accuracy (AUC) for neural caching with
retraining frequency f = 100.

Alternative teacher models Are our findings
specific to the teacher model we used? We test
this by repeating the neural caching experiments
with Mixtral 8x7b (Jiang et al., 2024) as the teacher
model. Our results (Table 10) validate Margin Sam-
pling and Query by Committee as the best strate-
gies.

Experiments on additional datasets We further
experiment with two sentiment analysis datasets:
Customer Reviews (CR) (Ni et al., 2019) and SST-
2 (Socher et al., 2013). Results can be found in
Appendix B.6. The trends in relative performance
are similar to other tasks in Table 3.

6 Conclusions

In this work, we have studied how instance selec-
tion criteria from AL behave when they are used
to decide in real time whether we should perform
an LLM call or use a student model that has been
trained on previous LLM predictions. In the sce-
nario where we are not retraining the student model,
Margin Sampling performs the best, across differ-
ent datasets. In the scenario where we retrain the
student model with some time periodicity, Query
by Committee is the most robust option. While
Margin Sampling outperforms the front-loading
baseline on harder tasks, it is more sensitive to the
initial budget spent to train the student model S0.

We find that the embedding-based strategy (Core-
set) consistently performs poorly across different
encoders; to our knowledge, it is the only LLM
caching approach that has been adopted by practi-
tioners to date (e.g., GPTCache (Bang, 2023)). We
believe these types of strategies could be useful in
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certain contexts, e.g. multiple near-identical calls
to an LLM, a scenario which has not been the focus
of this work.3

Our results suggest that (i) there is room for
smart LLM query allocation in the context of con-
tinuously distilling an LLM into a student model
and (ii) previous literature in Active Learning can
transfer well to this setup. We believe that online
Knowledge Distillation could play a key role in
caching LLMs, saving unnecessary calls to expen-
sive models, and training smaller private models.

Limitations

Our experiments assume that there is no develop-
ment set available for each task, which could help
improve the results of non-baseline methods by in-
troducing a task-specific hyperparameter for thresh-
olds.

We leave for future work configurations with
other student models. We also leave for future
work experiments on text generation, which would
require using text-based AL criteria.

In this work, we focused on a stationary (i.i.d.)
stream of requests. In practice, the distribution of
requests is likely to change over time (Cacciarelli
and Kulahci, 2023). As suggested by the online AL
literature (Bifet and Gavaldà, 2007), this should
further increase the gap between the AL-based ap-
proaches and static strategies, e.g., front-loading.
In those cases, we would expect improvements in
both online and final accuracy.

Ethics statement We anticipate that our pro-
posed approach will be advantageous for smaller
companies and will enhance user privacy by limit-
ing the amount of data shared with API providers.
However, we recognise the potential for misuse of
this technology. For instance, it might contravene
the service policies of API providers and poten-
tially could decrease the revenue of creators if they
are compensated for the usage of their content by
the API provider. Furthermore, while the original
model provided through the API may have been
fine-tuned to diminish harmful biases and tailored
for fairness across diverse user groups, there is a
possibility that the student model derived through
our process may not inherit these qualities.

3FEVER does contain paraphrases or statements entailing
each other but these constitute only a small fraction of the
dataset.
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A Experimental details and
hyperparameters

Student model We use the T5 implementation
from Huggingface’s transformers library. We
use LoRA adapters (Hu et al., 2022), as they have
been considered one of the most parameter-efficient
architectures in few-shot settings (Liu et al., 2022).
Following Ponti et al. (2023), we add a LoRA
adapter to the query, key, value and output weights
in each self-attention layer of T5. We set the LoRA
rank to r = 16, and the scaling to α = 0.25.
We use learning rate η = 5 · 10−4, training batch
size m = 16 and weight decay λ = 0.01. We
validate this hyperparameter choice based on ex-
periments using the soft labels from the teacher.

Adaptation of strategies For Entropy, we nor-
malise before computing it by applying a softmax
over the classes.

Reporting of results In order to report accuracy
across budgets, we use the corresponding Area Un-
der the Curve (AUC) divided by the budget range.
By budget range, we refer to the biggest budget
minus the smallest one for that task. Intuitively,
this gives us an average accuracy across budgets.

Normalisation, pre-processing and evaluation
We do not apply normalisation or pre-processing
before using the T5 tokeniser. This can be con-
sulted in our code.

A.1 Threshold values
To encourage an early expense of the budgets in the
setting with student retraining, we have selected
threshold values to ensure initially a higher propor-
tion of calls for LLM annotation (PE=0.5, MS=5,
QBC=4, CS=0.9); we have selected these values
so that the first student model selects at least 50%
of instances for LLM annotation on RT-Polarity.
However, we observe very similar results when we
use the empirical threshold from Section 5.1.

A.2 Labels from the LLM
We use a budget for LLM annotation of $200. All
the labels are obtained during May 2023. Since the
OpenAI API can only return up to the five most
likely tokens, we add a bias b = 100 to the tokens
that represent each class:

• ISEAR: ’ joy’, ’ fear’, ’ anger’, ’ sadness’, ’
disgust’, ’ shame’, ’ guilt’

• RT-POLARITY: ’ positive’, ’ negative’

• FEVER: ’ true’, ’ false’

• OPENBOOK: ’ A’, ’ B’, ’ C’, ’ D’

If a class is not among the five most likely tokens,
it gets assigned in our experiments a log probability
of -100.

A.3 Computational resources
T5base has 220 million parameters. We addition-
ally added LoRA modules, which comprise 3.5 mil-
lion parameters. Only LoRA modules are trained,
making it a lightweight student overall. For our ex-
periments, we used clusters with NVIDIA Tesla
V100-SXM2-16GB and NVIDIA A100-SXM4-
40GB. Runs with frequency f=100 take between 1
and 4 hours to run.

B Additional results

B.1 Neural caching with no student retraining
We observe that Margin Sampling is the best-
performing method on all datasets and across all
the initial student models, followed by Query by
Committee and outperforming the baseline of ran-
dom selection (Table 8). The gap between Margin
Sampling and the baseline widens as we have a
better initial student.

B.2 Neural caching with retraining
Figure 5 shows the online accuracy per-dataset in
the setup with retraining of the student.

B.3 Soft labels
We conduct experiments to study the effect of us-
ing soft labels (using the logprobabilities for each
class from the LLM) or hard labels (only using the
first class from the LLM). To do this, we train a
student model on multiple budgets and obtain the
final accuracy. We observe this has some gains in
FEVER (Table 9).

B.4 Effect of confirmation bias in neural
caching with retraining

To study the confirmation bias, we select the sam-
ples from the test dataset where the LLM produces
a wrong answer. If the model performance is
affected by the noise of the labels it was trained
on, it is expected it will reproduce the mistakes
of the LLM; therefore, we would expect that it
will have a lower score in this subset of the test
dataset. We do not find that Margin Sampling and
Query by Committee have lower performance
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Figure 5: Accuracy curve with respect to budgets, in the neural caching problem with student retraining. Error lines
indicate variance.

than front-loading in this subset of the dataset
(Table 11).

B.5 Experiments with different encoders

To test the validity of results for Coreset, we
repeat experiments from Section 5.2 with
encoders SimCSE (Gao et al., 2021) and MP-
Net (Song et al., 2020). For SimCSE, we
use sup-simcse-bert-base-uncased from
the project repository.4 For MPNet, we use
sentence-transformers/all-mpnet-base-v2
from Huggingface. We use threshold = 0.9 for all
the methods and retraining frequency f = 100.

We show our results in Table 12. We observe that
front-loading outperforms Coreset with the three
encoders.

B.6 Experiments with additional tasks

Table 13 contains the results for sentiment analysis
tasks for SST-2 and CR. As expected, we find re-
sults similar to those in the sentiment analysis task
RT-Polarity (Table 3).

4https://github.com/princeton-nlp/SimCSE

B.7 Experiments with an alternative teacher
model

We repeat the evaluation of the main results (Ta-
ble 3) using Mixtral 8x7b (Jiang et al., 2024) as
the teacher model. Table 10 contains the results.
Our results validate Margin Sampling and Query
by Committee as the best strategies.

C Prompts used

The following are the prompts we used when call-
ing the LLM. We have marked in blue one example,
and in red the expected answer.

• ISEAR: This is an emotion classification task.
Only answer one of: ’joy’, ’fear’, ’anger’,
’sadness’, ’disgust’, ’shame’, ’guilt’.
INPUT: During the period of falling in love,
each time that we met and especially when we
had not met for a long time.
OUTPUT: joy

• RT-Polarity: This is a sentiment classification
task for movie reviews. Only answer either
’positive’ or ’negative’.
INPUT: if you sometimes like to go to the

11851
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N ISEAR RT-Polarity FEVER Openbook Average

500

Random 0.629 0.882 0.679 0.567 0.689
Margin Sampling 0.656 0.895 0.698 0.587 0.709
Query by Committee 0.644 0.887 0.693 0.568 0.698
Entropy 0.657 0.895 0.698 0.586 0.709
Coreset (T5) 0.633 0.886 0.669 0.570 0.689
Coreset (SimCSE) 0.636 0.887 0.682 0.569 0.694
Coreset (MPNet) 0.632 0.886 0.675 0.566 0.690

1000

Random 0.640 0.886 0.704 0.662 0.723
Margin Sampling 0.666 0.896 0.725 0.703 0.748
Query by Committee 0.656 0.889 0.725 0.687 0.739
Entropy 0.665 0.895 0.726 0.700 0.747
Coreset (T5) 0.643 0.887 0.699 0.665 0.724
Coreset (SimCSE) 0.646 0.888 0.704 0.661 0.725
Coreset (MPNet) 0.641 0.888 0.704 0.661 0.724

2000

Random 0.652 0.884 0.724 0.729 0.747
Margin Sampling 0.673 0.896 0.751 0.764 0.771
Query by Committee 0.667 0.891 0.745 0.760 0.766
Entropy 0.672 0.893 0.747 0.756 0.767
Coreset (T5) 0.656 0.886 0.719 0.733 0.749
Coreset (SimCSE) 0.657 0.888 0.725 0.728 0.750
Coreset (MPNet) 0.655 0.888 0.724 0.727 0.749

3000

Random 0.648 0.885 0.738 0.734 0.752
Margin Sampling 0.669 0.895 0.757 0.767 0.772
Query by Committee 0.665 0.890 0.758 0.773 0.771
Entropy 0.664 0.893 0.752 0.760 0.767
Coreset (T5) 0.651 0.885 0.733 0.740 0.752
Coreset (SimCSE) 0.652 0.885 0.735 0.736 0.752
Coreset (MPNet) 0.653 0.885 0.735 0.732 0.751

Table 8: Online accuracy (AUC) for neural caching without retraining.

movies to have fun , wasabi is a good place to
start .
OUTPUT: positive

• FEVER: This is a fact-checking task. Only
answer either ’true’ or ’false’.
INPUT: On June 2017, the following claim
was made: Jeb Bush is former President
George H. W. Bush’s daughter. Q: Was this
claim true or false?
OUTPUT: false

• Openbook: This is a multiple-choice test.
You are presented a fact and a question. Only
answer one letter, producing no more output.
FACT: the sun is the source of energy for phys-
ical cycles on Earth
QUESTION: The sun is responsible for

A: puppies learning new tricks
B: children growing up and getting old
C: flowers wilting in a vase
D: plants sprouting, blooming and wilting
OUTPUT: D
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ISEAR RT-Polarity Openbook FEVER Average

Soft labels 0.598 0.880 0.617 0.670 0.691
Hard labels 0.598 0.879 0.616 0.659 0.688

Table 9: Final accuracy (AUC) of the last student model, taking either soft or hard labels from the LLM.

ISEAR RT-Polarity FEVER Openbook Average

Random 0.583 0.868 0.722 0.750 0.731
Front-loading 0.599 0.873 0.736 0.778 0.747
Margin Sampling 0.614 0.880 0.755 0.782 0.758
Query by Committee 0.619 0.882 0.748 0.789 0.760

Table 10: Online accuracy (AUC) for neural caching with student retraining, using Mixtral-8x7b as the teacher
model.

ISEAR FEVER Openbook

Front-loading 0.171 0.513 0.339
Margin Sampling 0.180 0.497 0.340
Query by Committee 0.178 0.512 0.344

Table 11: Accuracy (AUC) over the subset of the test
dataset where the LLM produces wrong labels for the
last student model for neural caching with student re-
training.

D Additional information about datasets

Datasets used RT-Polarity, FEVER and Open-
book were relased as NLP benchmarks for classi-
fication. While ISEAR was originally released as
part of a psychological study on emotion across
cultures, it has been used as an Active Learning
benchmark in the past (Ein-Dor et al., 2020; Bastos
and Kaul, 2021).

We did not check if these datasets contain any in-
formation that names or uniquely identifies individ-
ual people or offensive content because the data we
use comes from established classification/multiple
choice benchmarks. A custom filtering or modifica-
tion of the data would hamper comparability with
other works using these benchmarks.

Dataset generated We release the soft labels
from the LLM under the CC BY 4.0 DEED license.
We refer to the original data sources for documen-
tation such as coverage of domains, languages or
linguistic phenomena.

FEVER Openbook

Front-loading 0.734 0.731
Coreset (SimCSE) 0.707 0.726
Coreset (MPNet) 0.716 0.724
Coreset (T5) 0.715 0.726

Table 12: Online accuracy (AUC) for neural caching
with student retraining.

CR SST-2

Random 0.911 0.893
Front-loading 0.913 0.899
Margin Sampling 0.917 0.907
Query by Committee 0.914 0.904

Table 13: Online accuracy (AUC) for neural caching
with student retraining for additional tasks. We observe
that results are similar to those for RT-Polarity (Table 3).
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