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Abstract

Text ranking is a critical task in information
retrieval. Recent advances in pre-trained lan-
guage models (PLMs), especially large lan-
guage models (LLMs), present new oppor-
tunities for applying them to text ranking.
While supervised fine-tuning (SFT) with rank-
ing data has been widely explored to better
align PLMs with text ranking goals, previous
studies have focused primarily on encoder-only
and encoder-decoder PLMs. Research on lever-
aging decoder-only LLMs for text ranking re-
mains scarce. An exception to this is Ran-
kLLaMA (Ma et al., 2023a), which uses di-
rect SFT to explore LLaMA’s potential for text
ranking. In this work, we propose a two-stage
progressive paradigm to better adapt LLMs to
text ranking. First, we conduct continual pre-
training (CPT) of LLMs on a large weakly-
supervised corpus. Second, we perform SFT,
and propose an improved optimization strategy
building upon RankLLaMA. Our experimen-
tal results on multiple benchmarks show that
our approach outperforms previous methods in
both in-domain and out-domain scenarios.

1 Introduction

Text ranking is to order a set of candidate docu-
ments by their relevance to a given query. This
process is often the second step in information re-
trieval, following the initial collection of candidate
documents from a large corpus by a fast retriever1.
Early work relied primarily on the handcrafted
numerical features based on query-document
pairs (Chapelle and Chang, 2011). Recent advances
in PLMs such as BERT, along with large-scale an-
notated datasets like MS MARCO (Nguyen et al.,
2016), have significantly improved model perfor-
mance in text ranking.

* Corresponding author.
1As the candidate set is usually small, while the first step

focuses on efficiently collecting candidate documents, text
ranking tends to prioritize performance over efficiency.

The farad (symbol: F) is the SI derived
unit of electrical capacitance, ...

Reference:

What is the unit of
capacitance?

How many joules per
coulomb is equal to 1 farad?

Query:

Document Unknown

Ground-Truth LLM-Generated

Figure 1: Misalignment between LLMs (LLaMA) and
text ranking objectives: Sachan et al. (2022) measures
relevance using the probability of generating a query
given the document. Unlike ground-truth queries, LLM-
generated queries could contain document-irrelevant
terms. Such misalignment would lead to suboptimal
ranking performance with out-of-the-box LLMs.

LLMs, such as LLaMA (Touvron et al., 2023a)
and GPT4 (OpenAI, 2023), have brought a
paradigm shift in natural language processing
through their impressive performance on various
tasks. This has driven growing interest in applying
LLMs to text ranking (Liang et al., 2022). Recent
works have explored prompt learning, as well as
pointwise (Sachan et al., 2022), pairwise (Qin et al.,
2023) and listwise (Sun et al., 2023b) text ranking
schemas to enable out-of-the-box LLMs to perform
unsupervised ranking. With the help of LLMs, sub-
stantial improvements over the BERT-style PLM
counterparts have been achieved.

However, a misalignment persists between the
LLM pre-training and the text ranking, as shown
in Figure 1. Several studies address this through
SFT of encoder-only (Nogueira et al., 2019) and
encoder-decoder (Zhuang et al., 2023b) models.
Yet rare work has targeted decoder-only LLMs.
RankLLaMA (Ma et al., 2023a) might be the only
exceptional work exploring SFT on decoder-only
LLMs. While RankLLaMA shows some gains, its
achievements still lag behind those of previous SFT
studies, and the observation could be even more
serious when tested on the out-domain scenario.
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In this work, we propose a two-stage training
framework to adapt decoder-only LLMs to text
ranking progressively: (1) CPT followed by (2)
SFT. Given the broad definition of text relevance,
e.g., reasoning and semantic similarity, we first ex-
ploit a CPT stage to teach LLMs various cases of
relevance. This helps the second-stage SFT more
readily and accurately align LLMs with text rank-
ing objectives. During CPT, we construct a large-
scale weakly-supervised text-pair dataset, and then
perform the next-token prediction task (NTP) (Rad-
ford et al., 2018) on it. For SFT, we introduce a new
optimization objective different from RankLLaMA
to better explore the potential of LLMs.

We demonstrate the efficacy and generalizability
of our two-stage adaptation with extensive experi-
ments on in-domain and out-domain datasets. We
test our method on major decoder-only LLMs and
various model scales, covering BLOOM 560M-
7B (Scao et al., 2022), LLaMA-7B (Touvron et al.,
2023b), Baichuan-7B (Yang et al., 2023), and
Qwen-7B (Bai et al., 2023). The experimental re-
sults show that our method substantially improves
over its baselines, highlighting the benefits of our
progressive paradigm for text ranking. We also
perform in-depth analysis into how our two-stage
adaptation bridges the gap between LLMs and the
text ranking task2.

2 Method

2.1 Background

Text ranking refers to the task of determining how
relevant each candidate document is to a given
query. In our work, we exploit the pointwise
strategy for inference, where the relevance scores
are computed explicitly for each query-document
pair (Crammer and Singer, 2001; Nogueira et al.,
2019). The strategy has demonstrated high effi-
ciency in real-world deployment compared with
pairwise and listwise approaches (Liu et al., 2009).

Formally, given a query q and a set of candidate
documents D = {d1, . . . , dn}, we calculate rele-
vance score(q, di), i ∈ [1, n] first and then execute
a sorting procedure according to the scores. We
can directly use the scoring methods of the out-of-
the-box LLM exploration in text ranking to obtain
score(q, di), which has shown significant effective-
ness (Liang et al., 2022; Zhu et al., 2023).

2The source code and models will be publicly available at
https://github.com/Alibaba-NLP/RankingGPT.
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Figure 2: Two-stage adaptation paradigm. The base
LLM Mbase turns into an intermediate model Mcpt after
CPT, and then Mcpt generates the final ranking model
Msft through SFT.

Here we adopt one representative scoring strat-
egy used in Sachan et al. (2022), treating the gen-
eration probability of q conditioned on di as the
relevance score:

P(di) = ‘Document: di Query:’

score(q, di) =
∏

j

p (qj | P(di), q<j) .
(1)

Here, qj denotes the j-th token of the query q, q<j

represents the token sequence preceding the j-th to-
ken in query q, and P(di) represents the document-
conditioned prompt. The calculation of each token
generation probability can be parallelized, so the
time complexity of this strategy is similar to that of
its counterparts (Nogueira et al., 2019, 2020).

Although this out-of-the-box scoring method is
mostly reasonable for text ranking, it would lead to
suboptimal performance due to salient differences
between the goals of LLM pre-training and text
ranking, as illustrated in Figure 1. Previous studies
have shown that we can better explore PLMs by
adapting them with text ranking-specific training
objectives (Nogueira et al., 2020; Zhuang et al.,
2023b). Building on these studies, we propose a
two-step training strategy, (1) CPT and (2) SFT, to
adapt LLMs to text ranking, as shown in Figure 2.

2.2 Continual Pre-training (CPT)

The first stage involves CPT of LLMs on a weakly
supervised relevance dataset that is automatically
collected. As originally proposed by Gururan-
gan et al. (2020), CPT enables task- and domain-
specific adaptation of LLMs for text ranking tasks.
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Text Pair Format Source Size Query Document

(title, body) CommonCrawl 1.6M Tango helps support North Texas Food Bank.
Tango Celebrates their 2013/2014 Partnership
with the North Texas Food Bank . . .

(title, abstract) arXiv 1.5M Duality and Tameness.
We prove a duality theorem and show different kinds
of failure of tameness of local cohomology.

(citation, reference) Semantic Scholar 1.2M
Some comparative growth properties of
composite entire and meromorphic functions . . .

The aim of this paper is to prove some results
about composite entire and meromorphic functions . . .

(post, comment) Reddit 1.7M But are all evod 2 tanks glass? The evod and evod 2 tanks are plastic. The evod glass . . .
(entity, description) DBPedia 0.8M Economy of Nigeria. Nigeria is a middle income, mixed economy and . . .

(question, answer) StackExchange 1.9M How many chromosomes are in anaphase 2?
In anaphase II, the sister chromatids present at the end of
meiosis I are separated into 23 individual chromosomes.

(summary, content) CCNews 1.5M Zidane apologizes for head butt.
French soccer star Zidane apologized for head-butting
an Italian opponent . . .

Table 1: Examples of weakly supervised text pairs. Related words in queries and documents are highlighted in the
same colors, showing that queries are often closely related to document content. Therefore, CPT on these data can
help LLMs generate document-relevant queries, alleviating the misalignment shown in Figure 1.

A straightforward strategy of adapting LLMs
to text ranking tasks is to perform SFT with rank-
ing data, and RankLLaMA (Ma et al., 2023a) fol-
lows this strategy. However, obtaining such large-
scale and high-quality ranking datasets would be
a formidable challenge. Moreover, large gaps be-
tween LLMs and ranking tasks may limit SFT’s
capability to fully explore the original knowledge
in LLMs. A prospective solution is progressive
multi-stage learning, where we first perform CPT
to orient LLMs towards ranking goals before con-
ducting final SFT for accurate alignment.

Weakly Supervised Data. Text relevance in-
volves a range of aspects, such as question answer-
ing, semantic similarity, summarization, descrip-
tion. While LLM pre-training incorporate some
of these aspects, here we further emphasize them
since they are closely-related to text ranking.

To this end, we collect a large scale of text pairs
covering different relevance types and domains as
much as possible. Most text pairs are sourced from
public web pages, mined through tailored proto-
cols, and filtered via normalization. Concretely, we
mine the following aspects of relevance to mock
the query-document behaviors: (title, body), (ti-
tle, abstract), (citation, reference), (post, comment),
(entity, description), (question, answer) and (sum-
mary, content). Table 1 shows details and examples
of the weakly supervised corpus.

Pre-training. We regard shorter texts, such as
titles, posts, and summaries, as queries, and their
corresponding longer texts as documents. Consis-
tent with the typical pre-training goal of LLMs, we
employ the NTP task on weakly supervised text
pairs. The loss function Lntp(q, d) is as follows:

Lntp(q, d) = −
∑

j

log p (qj | P(d), q<j) , (2)

which is equivalent to the log-likelihood of the
relevance score defined in Eq.1.

2.3 Supervised Fine-tuning (SFT)
The second stage of our method is SFT, which
helps further align the LLM for text ranking. SFT
has been a common technique to accurately adapt
LLMs for specific tasks (Ma et al., 2023a). Here we
describe the supervised data first and then introduce
the objectives for effective fine-tuning.

Supervised Training Data. We leverage the
MS MARCO dataset for SFT, which comprises
8.8 million documents and 53,000 positive query-
document pairs. Almost all positive text pairs in
MS MARCO have been manually annotated, so
this dataset is often used to train ranking mod-
els (Nogueira et al., 2019, 2020). In our work, we
first employ the BGE model (Xiao et al., 2023) to
retrieve the top 1000 negative document candidates
(i.e., the most relevant documents) for each query.
Following this, we construct the training dataset
by randomly sampling corresponding positive and
negative documents from the retrieved candidates.

The Ranking Objective. As demonstrated in pre-
vious text ranking studies (Ma et al., 2023a; Zhuang
et al., 2023b), the ranking loss (Chen et al., 2020)
based on a query q and the associated list of positive
and negative documents D = {d+, d−1 , . . . , d−m}
can effectively align LLMs with ranking tasks. The
ranking loss is formulated as:

Lrank(q,D) = − log
exp(S(q, d+)/τ)∑
d∈D exp(S(q, d)/τ) , (3)

where τ denotes the temperature parameter, and
S(.) is the relevance scoring function.

Our objective differs from that of Ma et al.
(2023a) as we use score(.) in Eq. 1 as the scoring
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function S(.) rather than exploiting the last-token
representation for relevance scoring. score(.) in-
corporates more scoring evidence by considering
all query tokens. More importantly, our objective
is to directly optimize NTP probabilities, a key
property of LLMs, to fit the ranking goal. In this
way, we can benefit from the strong generalization
capabilities of pre-trained LLMs.

Auxiliary Objectives. LLMs have potential for
better handling out-domain scenarios as they are
pre-trained on a large and diverse corpora (OpenAI,
2023). Yet the large-scale parameters of LLMs
might cause overfitting to the training dataset. To
avoid this problem, we supplement the ranking op-
timization with two additional objectives. The first
one is the NTP objective Lntp, which is consistent
with CPT and utilizes positive text pairs in SFT
data. The second one is newly designed by us,
namely Differential Penalty (DP) as follows:

Ldp(Mcpt,Msft) =
1

∥T∥

∥T∥∑

j

∥V ∥∑

k

KL(pj,kcpt , p
j,k
sft ),

(4)
where KL is the Kullback-Leibler (KL) diver-
gence, V is the model vocabulary, and T is all
query tokens. pj,kcpt and pj,ksft denote the token prob-
abilities calculated by the model Mcpt and the
model Msft respectively. The DP objective actu-
ally constrains the generation difference between
the adapted model and the initialized model.

Overall, our mixed objective loss function during
SFT is as follows:

Lsft = αLrank + (1− α)(Lntp + Ldp), (5)

where α is the trade-off hyper-parameter.

3 Experiments

3.1 Experimental Settings

Test Datasets. We use the same experimental
settings as Ma et al. (2023a), covering both in-
domain and out-domain scenarios.

For the in-domain scenario, we test on MS
MARCO (Nguyen et al., 2016), DL19 (Craswell
et al., 2020) and DL20 (Craswell et al., 2021)
benchmarks, and construct candidate documents
based on the top 1000 documents retrieved by
BM25 (Robertson and Zaragoza, 2009) and the
top 200 documents retrieved by BGE (Xiao et al.,
2023) respectively.

For the out-domain scenario, we test on BEIR
benchmark (Thakur et al., 2021) and use the top
1000 documents retrieved by BM25 as candidate
documents. The BEIR benchmark covers a variety
of domains and ranking tasks, and therefore could
be used to measure the generalization ability of
ranking models.

Implementation Details. We train the model on
8 NVIDIA A100 GPUs with 80GB of memory.
During CPT, we train for 1 epoch on all weakly
supervised data. During SFT, we train for 1 epoch
on the MS MARCO training set. Following Eq. 3,
we set the number of negative examples m to 48
and the temperature parameter τ to 0.001. The
trade-off hyper-parameter α in Eq. 5 is set to 0.6.
Similar to previous work (Ma et al., 2023a), we
fine-tune the top 16 transformer layers and freeze
other parameters to reduce GPU memory of SFT.

Baselines and Metric. We compare text ranking
models with different structures in previous works,
including encoder-only MonoBERT (Nogueira
et al., 2019), encoder-decoder MonoT5 (Nogueira
et al., 2020) and RankT5 (Zhuang et al., 2023b),
and decoder-only RankLLaMA (Ma et al., 2023a).
Following standard practice, we adopt NDCG@10
as the evaluation metric.

3.2 Main Results

To verify the broad effectiveness of our method,
we compare its performance with other adaptation
approaches on four foundation LLMs of different
types and sizes: BLOOM 560M-7B (Scao et al.,
2022), LLaMA-7B (Touvron et al., 2023b), Qwen-
7B (Bai et al., 2023) and Baichuan-7B (Yang et al.,
2023). Our two-stage adaptation of LLMs for text
ranking is denoted as TSARankLLM.

In-Domain Evaluation. Table 2 summarizes the
in-domain performance of our models as well as
several previous works. We find that decoder-
only LLMs exhibit substantial ranking capabilities.
The proposed TSARankLLM models outperform
MonoT5 models of similar scale in almost all cases.
Aligning with prior works (Nogueira et al., 2020),
we observe ranking performance generally increase
with model size. For example, increasing the size
of BLOOM from 560M to 7B improves the average
NDCG@10 score by 66.3− 64.3 = 2.0.

Following, we look into our TSARankLLM mod-
els in terms of different foundation LLMs. By
comparing these models of the same 7B-scale pa-
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Method LLM Size
Sparse Retrieval - BM25 Dense Retrieval - BGE

Average
MS MARCO DL19 DL20 MS MARCO DL19 DL20

Retrieval NA NA 22.8 50.6 48.0 40.9 71.4 70.5 50.7
MonoBERT BERT 340M 44.0 72.3 70.3 44.7 72.0 70.2 62.3

MonoT5
T5 220M 43.6 71.5 69.7 43.4 69.4 65.8 60.6
T5 770M 43.4 73.2 71.2 43.5 72.0 70.1 62.2
T5 3B 44.9 72.8 74.5 45.7 72.5 74.5 64.2

RankLLaMA LLaMA 7B 46.9 74.4 76.4 47.9 74.7 76.2 66.1

TSARankLLM

BLOOM 560M 44.0 75.3 73.2 44.8 75.0 73.7 64.3
BLOOM 1B 44.5 75.6 72.3 45.4 75.4 72.9 64.4
BLOOM 3B 45.1 76.8 73.6 45.9 76.2 74.4 65.3
BLOOM 7B 46.0 77.3 74.6 47.0 77.1 75.9 66.3
LLaMA 7B 46.6 76.2 76.3 47.7 76.7 76.8 66.7

Baichuan 7B 46.6 75.9 74.3 47.7 75.2 76.2 66.0
Qwen 7B 48.0 75.8 74.3 49.0 75.5 75.0 66.3

Table 2: In-domain results of various models.

Dataset

BM25 MonoBERT MonoT5 RankT5 TSARankLLM

NA BERT T5 T5 BLOOM
NA 340M 220M 770M 3B 770M 560M 1B 3B

Arguana 39.7 51.5 13.2 30.2 28.8 33.0 53.3 55.1 55.6
Climate 16.5 24.9 24.5 25.9 28.0 21.5 22.3 23.6 27.7
DBPedia 31.8 43.5 42.0 43.5 47.8 44.2 44.5 45.4 50.0
FEVER 65.1 81.3 80.2 82.8 85.0 83.2 83.6 82.3 83.7
FiQA 23.6 36.8 41.4 44.6 51.4 44.5 40.0 42.0 44.9

HotpotQA 63.3 73.5 69.5 73.6 75.9 71.0 75.6 75.4 76.4
NFCorpus 33.8 36.9 35.7 38.4 38.4 38.1 37.3 37.9 39.4

NQ 30.6 56.8 56.7 60.8 63.3 61.4 56.1 57.6 58.7
Quora 78.9 71.5 82.3 85.4 84.1 83.1 82.9 82.3 82.9

SCIDOCS 14.9 15.7 16.5 19.1 19.7 18.1 18.1 18.7 19.2
SciFact 67.9 72.0 73.6 75.5 77.7 75.0 77.1 76.3 78.0
COVID 59.5 65.0 77.8 82.3 79.5 80.7 78.9 81.7 83.3
Touche 44.2 27.7 27.7 28.5 30.0 44.0 28.2 29.7 30.2

Average 48.3 50.5 49.3 53.1 54.6 53.7 53.7 54.5 56.2

Table 3: Out-domain results of 220M-3B models.

rameter size, we can see that LLaMA-7B achieves
the best performance overall, surpassing BLOOM,
Baichuan and Qwen. While other foundation
LLMs occasionally surpass LLaMA-7B on certain
datasets (e.g. BLOOM-7B on DL19 and Qwen-7B
on MS MARCO), LLaMA-7B appears to be the
most effective foundation LLM of those examined.

Finally, we compare TSARankLLM and Ran-
kLLaMA adaptations on the same LLaMA-7B
foundation. As shown, our two-stage adapta-
tion approach surpasses the single-stage SFT of
RankLLaMA, yielding average improvements of
66.7 − 66.1 = 0.6 NDCG@10. Overall, our
TSARankLLM method can provide state-of-the-
art performance for the in-domain setting.

Out-Domain Evaluation. Table 3 shows the re-
sults of models within 3B scale, while Table 4
provides the results of 7B models. In general, out-

domain performance significantly lags behind that
of the in-domain, with a gap around 10 points, indi-
cating that out-domain text ranking is challenging.

After examining the results in Table 3, we find
that the overall tendency is consistent with that
of in-domain results. Increased model size gener-
ally improves performance. Notably, our TSARan-
kLLM model based on BLOOM-3B outperforms
the monoT5-3B of the same model size, demon-
strating its strong text ranking capability.

Further, we analyze the out-domain results of
7B-scale models in Table 4. We can see that our
TSARankLLM models exhibit much better perfor-
mance than RankLLaMA. With the same LLaMA-
7B as backend, our method gets higher NDCG@10
scores on all the datasets, and the averaged increase
reaches 57.8− 52.5 = 5.3. Among the foundation
models, Qwen achieves the highest average score
with our TSARankLLM approach, while LLaMA
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Dataset RankLLa. TSARankLLM

LLa. BLO. LLa. Bai. Qwen

Arguana 47.0 56.1 51.2 54.1 56.8
Climate 19.1 28.1 31.6 32.2 37.2
DBPedia 48.6 47.8 49.2 50.0 48.5
FEVER 74.5 84.1 84.5 83.0 85.6
FiQA 42.2 46.4 50.2 49.4 49.6

HotpotQA 75.2 77.4 80.7 80.0 80.4
NFCorpus 35.8 39.5 40.2 39.8 40.4

NQ 62.1 60.4 63.6 63.1 62.7
Quora 80.5 83.8 85.9 85.0 82.6

SCIDOCS 19.0 20.3 19.8 20.0 19.8
SciFact 70.1 77.8 78.3 77.6 77.6
COVID 77.4 82.9 84.0 82.4 83.7
Touche 31.0 31.0 32.0 30.6 32.6

Average 52.5 56.6 57.8 57.5 58.3

Table 4: Out-domain results of 7B models. “RankLLa.”,
“BLO.”, “LLa.” and “Bai.” represent RankLLaMA,
BLOOM, LLaMA and Baichuan respectively.

excels on most out-domain datasets. Overall, all
the results indicate that LLMs provide a promising
solution for out-domain text ranking if pre-trained
LLM knowledge can be effectively explored.

3.3 Ablation Analysis

In this subsection, our ablation analysis quantifies
the contribution of each part of our two-stage adap-
tation to the overall performance improvements of
the TSARankLLM model.

The Two-Stage Training. Table 5 shows the
individual contributions of CPT and SFT based
on BLOOM-560M and LLaMA-7B. As shown,
both training stages exhibit significant performance
gains, validating their importance to optimal final
results. In particular, the influence of SFT is highly
remarkable. This is unsurprising given its use of
high-quality training data from MS MARCO to ac-
curately align LLMs with ranking objectives. With-
out both stages, our models degenerate to out-of-
the-box LLMs with unsatisfactory ranking capabil-
ities, whose in-domain performance can be even
worse than direct retrieval without ranking. This
directly indicates that the misalignment between
out-of-the-box LLMs and text ranking objectives
results in suboptimal performance.

The Scale of Weakly-Supervised Data in CPT.
During CPT, we construct a weakly-supervised
dataset. An important question is that how the
data scale influences our model performance. Fig-
ure 3 shows the results of our method on LLaMA-
7B, illustrating trends for both in-domain and out-

Method
BLOOM-560M LLaMA-7B

In. Out. In. Out.

TSARankLLM 64.3 53.7 66.7 57.8

• Two-Stage Training
- CPT 63.8 51.0 66.3 55.7
- SFT 53.6 47.8 56.3 52.6
- CPT&SFT 43.4 43.4 47.5 48.6

• Auxiliary Objectives of SFT
- Lntp 64.3 53.2 66.6 57.0
- Ldp 64.2 52.7 66.4 56.3
- Lntp&Ldp 64.2 52.0 66.4 55.5

Table 5: Ablation results of BLOOM-560M and
LLaMA-7B in in-domain (In.) and out-domain (Out.)
scenarios.

55.5

56.1

56.7

57.3

57.9

66.2

66.4

66.6

66.8

0 2 4 6 8 10 12

In-domain
Out-domain

Figure 3: Results of TSARankLLM based on LLaMA-
7B at various CPT data sizes (millions).

domain performance. As expected, model perfor-
mance improves with greater data scale, though
the gains become insignificant after the data scale
surpasses 10M. Additionally, we can see that CPT
can benefit the out-domain performance more than
the in-domain setting, as evidenced by the steeper
curve of the out-domain case.

The Ranking Objective of SFT. As mentioned
in Section 2.3, we exploit a ranking objective dif-
ferent from that of RankLLaMA. Here we fairly
compare both ranking objectives in two settings:
with and without CPT. Both settings during SFT
only exploit the ranking objective, i.e., the auxiliary
objectives are removed. Figure 4 shows that our
ranking objective substantially outperforms that of
RankLLaMA in both settings in terms of either in-
domain or out-domain performance. The results
indicate that our SFT can better align LLM pre-
training with the ranking goal by optimizing the
full-query generation probabilities directly.

The Auxiliary Objectives of SFT. To avoid over-
fitting and better explore the potential of LLMs, we
design two auxiliary objectives (i.e., Lntp and Ldp )
during SFT. Table 5 conducts ablation analysis to
test the effectiveness of the two objectives based
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(a) In-domain66.0

66.1

66.2

66.3

66.4

66.5

66.1

66.3

66.4

(b) Out-domain52.0

53.0

54.0

55.0

56.0

52.5

54.3

55.5

RankLLaMA LLaMA+Lrank LLaMA+CPT+Lrank

Figure 4: Model results with different ranking objec-
tives. RankLLaMA is based on the last token, while two
variants of our models are based on entire query tokens
and do not involve our two auxiliary objectives.

on BLOOM-560M and LLaMA-7B. We can see
that the two objectives have negligible impact on in-
domain performance, with a maximum drop of only
0.3 point when removed. As expected, they signif-
icantly impact the out-domain performance, de-
creasing performance by (53.7−52.0)+(57.8−55.5)

2 =
2.0 points on average when omitted. Notably, re-
moving Ldp leads to a more substantial decrease,
indicating its greater impact. Moreover, we find
that LLaMA-7B is more sensitive to the auxiliary
objectives than BLOOM-560M, probably because
larger models can be more easily overfitted.

3.4 Discussion

In this subsection, we conduct detailed experimen-
tal analyses to comprehensively evaluate our two-
stage training method.

A Comparison with More Powerful LLMs.
Compared to the LLMs investigated in our work,
some recent LLMs like UL2-20B (Tay et al., 2023),
ChatGPT (OpenAI, 2022) and GPT-4 (OpenAI,
2023) have shown more superior performance on
many NLP tasks owing to their extremely large
model sizes and pre-training data. We apply our
TSARankLLM method to train the LLaMA-7B,
and compare its performance against these LLMs.
Due to the massive model sizes and even closed-
source nature of these LLMs, directly training them
is challenging. Here we apply out-of-the-box rank-
ing strategies to them: (1) the pairwise ranking
strategy of Qin et al. (2023) based on UL2-20B
and (2) the listwise ranking strategy of Sun et al.
(2023b) based on ChatGPT and GPT4. Table 6
shows the results on five out-domain datasets se-
lected for this comparison3. We can see that our

3The in-domain evaluation is unfair for out-of-the-box
ranking strategies.

Dataset
Pairwise Listwise TSARankLLM

UL2-20B ChatGPT GPT-4 LLaMA-7B

COVID 79.5 76.7 85.5 84.0
NFCorpus 36.1 35.6 38.5 40.2

Touche 37.9 36.2 38.6 32.0
DBPedia 46.5 44.5 47.1 49.2
SciFact 73.3 70.4 75.0 78.3

Average 54.7 52.7 56.9 56.7

Table 6: Comparison with more powerful LLMs. Due
to high time complexity and API call costs of pairwise
and listwise ranking strategies (Qin et al., 2023), we
only experiment with small datasets.

Method Doc-word ↑ Stop-word ↓
Base LLaMA-7B 25.1 19.7

+ CPT 27.8 16.1
+ SFT 28.3 15.7
+ CPT&SFT 31.7 14.1

GPT-4 33.6 13.6
Ground-Truth 33.3 13.3

Table 7: The proportion of document-relevant and stop
words in queries generated by various models. “Ground-
Truth” denotes manually annotated positive queries.

method is very competitive, with an average gap of
only 56.9− 56.7 = 0.2 point compared to GPT-4.
Considering the higher costs of these compared sys-
tems, our method could be preferable in practice.

Quality Assessment of Query-Generation in Our
Two-Stage Training. Query generation is a key
module in our two-stage training. To understand
this module, we conduct a human evaluation to
measure the quality of query-generation directly.
As mentioned in Figure 1, without text-ranking-
oriented alignment, the out-of-the-box LLMs com-
monly generate queries including a large propor-
tion of document-irrelevant information. As such,
we mainly measure the quality by the percentage of
document-relevant semantically-equivalent words,
while also considering adverse stop words. Table
7 shows the manual evaluation results on 500 ran-
domly selected BEIR samples. The results of GPT4
and ground-truth are also provided for reference.
We can see that by applying CPT and SFT grad-
ually, the percentage of document-relevant words
increases while that of stop words decreases, both
approaching the percentages of GPT4 and ground-
truth. However, higher percentage of document-
relevant words and lower percentage of stop words
do not necessarily indicate better performance.
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Figure 5: The perplexity (PPL) comparison of generat-
ing positive queries for a given document. “∆” denotes
PPLneg − PPLpos, which roughly indicates the model’s
ranking capability.

A Perplexity Perspective to Examine Our Two-
Stage Training. An optimal ranker based on
Eq. 1 should strongly prefer generating positive
over negative queries for a given document. There-
fore, the perplexity (denoted as PPL) difference
between negative and positive queries can roughly
estimate the ranking capability of our models. We
randomly select 5,000 positive and negative text
pairs from BEIR and test the query-generation PPL
of various rankers, as shown in Figure 5. We ob-
serve that in our two-stage training pipeline, CPT
significantly reduces the PPL of positive queries
(i.e, PPLpos), and SFT increases PPL of negative
queries (i.e., PPLneg) remarkably. The observation
is consistent with our initial expectation.

4 Related Work

Text ranking has been an active area of research
for decades (Liu et al., 2009; Zhu et al., 2023).
One widely-adopted strategy is to rank candidate
documents based on the relevance score between
a query and the document (Cossock and Zhang,
2006). This strategy is referred to as the pointwise
approach. Additionally, pairwise (Burges et al.,
2005) and listwise (Xia et al., 2008) approaches,
which consider the relative ordering of multiple
documents in response to a query, have also gained
great attention due to their strong performance. In
our work, we utilize the pointwise approach for
efficient inference and the listwise approach for
effective training, making the best use of the both.

The precise calculation of the query-document
relevance scores is the key to the pointwise in-
ference, which has been generally dominated by

supervised techniques (Guo et al., 2016). Ini-
tially, manually-crafted sparse features were em-
ployed to estimate these scores (Chapelle and
Chang, 2011). Subsequently, neural network mod-
els marked a turning point, showcasing their sub-
stantial promise (Pang et al., 2016). More recently,
the progress of PLMs has led to remarkable ad-
vances in score calculation by using a pre-training
and fine-tuning framework for text ranking (Gao
et al., 2021; Ju et al., 2021; Pradeep et al., 2021;
Zhang et al., 2023b; Li et al., 2023).

As PLMs evolved into decoder-only LLMs, early
work explored out-of-the-box strategies for text
ranking to leverage the inherent strong reasoning
capabilities of LLMs (Sun et al., 2023b; Qin et al.,
2023; Ma et al., 2023b; Cho et al., 2023). For in-
stance, one could simply ask LLMs to determine
the relevance of a query-document pair, yielding a
rudimentary solution (Liang et al., 2022; Zhuang
et al., 2023a,c). Subsequent works (Sachan et al.,
2022; Muennighoff, 2022; Drozdov et al., 2023),
propose the use of query generation likelihood
based on a candidate document as a measure of
relevance. We follow this line of work for the rele-
vance score definition.

Nevertheless, these out-of-the-box strategies of-
ten overlook the potential misalignment between
LLMs and the specific requirements of text ranking
tasks, which is a major issue that our work aims
to address. Task-specific LLM training can help
bridge this gap (Sun et al., 2023a; Ma et al., 2023a;
Zhang et al., 2023a), as exemplified by RankL-
LaMA (Ma et al., 2023a), which uses the last token
as the ranking basis and trains with ranking losses.

While dominant LLMs typically feature a
decoder-only architecture, previous research on
adapting encoder(-decoder) PLMs to text ranking
remains highly pertinent (Nogueira et al., 2019,
2020; Zhuang et al., 2023b). The underlying prin-
ciples and core ideas of these studies underpin our
approach, and their benefits apply across diverse
model architectures.

5 Conclusion

In our work, we proposed a novel two-stage train-
ing paradigm to adapt LLMs to text ranking tasks.
Specifically, we first performed CPT on a large-
scale weakly-supervised corpus to initially align
LLMs with ranking objectives. This is then fol-
lowed by SFT on high-quality data along with full-
query generation optimization and auxiliary objec-
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tives. Through this two-stage training paradigm,
we achieved improved ranking performance on var-
ious LLMs in both in-domain and out-domain ex-
perimental settings. The significant gains exhibited
by our approach highlight its effectiveness in en-
hancing the capabilities of LLMs for text ranking.

6 Limitations

While our two-stage adaptation can effectively en-
hance LLMs’ text ranking capabilities, several lim-
itations remain. First, our CPT is actually inde-
pendent of ranking objectives. Introducing ranking
objectives similar to SFT during CPT worths fur-
ther exploration. Second, using a unified prompt
for all ranking tasks might damage model general-
ization. We generally refer to the texts of the BEIR
benchmark as “query” and “document” in prompts,
as shown in Eq. 1. In fact, these texts can be further
classified. Specifically, “query” involves “title”,
“entity”, etc, and “document” involves “argument”,
“news”, etc. Finally, we evaluate our approach only
on the BEIR benchmark. Testing it on diverse
ranking tasks, such as the demonstration ranking
of the in-context-learning scenario and knowledge
ranking to mitigate hallucinations in LLMs, would
better validate its broad applicability.
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A Appendix

The Negative Examples Size. Negative example
size m in Eq. 5 is the key to ranking loss. We test
the impact of m on in-domain and out-domain per-
formance in Figure 6. Overall, increasing negative
examples enhances ranking performance, consis-
tent with traditional conclusions (Zhuang et al.,
2023b; Ma et al., 2023a). Moreover, we find that
out-domain performance is more sensitive to nega-
tive example size. Specifically, as the m increases
from 8 to 48, the in-domain result increases by 1.3,
while the corresponding increase in the out-domain
result is 2.7.
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Figure 6: Results for various negative examples sizes m
in Eq. 5 on LLaMA-7B.

Balancing Ranking and Auxiliaries. During
SFT, the trade-off between ranking and auxiliary
objectives is controlled by α in Eq. 5. We analyze
the impact of α, as shown in Figure 7. If the α is too
low, the model would ignore the ranking objective,
which is the key to SFT. Therefore, when the α is
0.2, the model performs poorly in both scenarios.
Conversely, high α values barely affect in-domain
results. From α=0.6 to 1.0, the in-domain perfor-
mance only decreases by 0.3. However the corre-
sponding out-domain result drops significantly by
2.3. This is because over-emphasis on the rank-
ing objective leads to overfitting in the in-domain
scenario and affects model generalization.
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Figure 7: The effect of α in Eq. 5 on LLaMA-7B.
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