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Abstract
This paper introduces EmoTransKG, an in-
novative Emotion Knowledge Graph (EKG)
that establishes connections and transforma-
tions between emotions across diverse open-
textual events. Compared to existing EKGs,
which primarily focus on linking emotion key-
words to related terms or on assigning senti-
ment dimension ratings to emotion words by
humans, EmoTransKG aims to represent the
general knowledge involved in emotion trans-
formations. Specifically, in conversations, suc-
cessive emotions expressed by a single speaker
are temporally considered as the head and tail
entities, with open-text utterances (events) oc-
curring between them representing the relation.
To explore the knowledge of emotion trans-
formations described in EmoTransKG, we de-
velop a Transformer-based translational model
called EmoTransNet, which predictively trains
tail entities by interpreting the relation as an op-
eration that transforms the source emotion into
the target emotion. Particularly, our designed
EmoTransNet serves as a plug-in module that
seamlessly integrates with any conversational
emotion recognition (CER) models for emotion
retrofitting. Experimental results on two CER
datasets demonstrate that the incorporation of
EmoTransNet with baseline models results in
substantial improvements, and the qualitative
visualization of entities and relations clearly
clarify their unique roles in emotion transfor-
mations. These experiments confirm the quality
and effectiveness of EmoTransKG.1

1 Introduction

In recent years, Knowledge Graphs (KGs)2, such
as WordNet (Fellbaum, 1998), Google KG (Sing-
hal, 2012), or ConceptNet 5.5 (Speer et al., 2017),

*Corresponding authors.
1Available at https://github.com/XP-ZHA/EmoTransKG
2In 2012, Google introduced the “Knowledge Graph”, em-

phasizing its structure around vertices and edges. In the con-
text of knowledge graphs, any knowledge resource that can
be converted into such a structure is viewed as a knowledge
graph.

(a) A segment of conversation (b) An emotion triple graph

[joyful]

[scared]

Actually, I'm reading 
it to the baby.

What, you don't think they 
can hear sounds in there?

You're not serious, I mean, 
you really talk to it?

Hey, Yertle the 
Turtle. A classic.
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Hey, Yertle the Turtle. A 
classic.  Actually, I'm 
reading it to the baby. 
What, you don't think they 
can hear sounds in there? 
You're not serious, I mean, 
you really talk to it?

joyful
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Hey, Yertle the Turtle. A 
classic.  Actually, I'm 
reading it to the baby. 
What, you don't think they 
can hear sounds in there? 
You're not serious, I mean, 
you really talk to it?

Figure 1: An authentic example of a conversation seg-
ment from EmoryNLP dataset (Zahiri and Choi, 2018)
and its corresponding emotion triple: the head entity
is joyful, the relation is “Hey, Yertle the Turtle. A
classic. Actually, I’m reading it to the baby. What, you
don’t think they can hear sounds in there? You’re not
serious, I mean, you really talk to it?” and the tail entity
is scared. Both joyful and scared are conveyed by
the same speaker.

have emerged as influential repositories and con-
veyors of knowledge, with a growing expectation to
endow computers with human-like cognitive abil-
ities by providing a wealth of world knowledge,
including general commonsense knowledge (Liu
and Singh, 2004; Matuszek et al., 2006) and emo-
tional knowledge (Bradley and Lang, 1999; Steven-
son et al., 2007). Unlike commonsense knowledge,
emotions are abstract concepts that resist direct
quantification, characterized by fuzzy boundaries
and significant variation in personal expression and
experience, making the construction of the emotion
knowledge graph (EKG) an inherent challenge.

Emotions and sentiments are pervasive in text,
which refers to written language and transcriptions
of communication. Currently, the development of
EKGs relies heavily on these textual sources. In
written language, where words serve as the smallest
utterances of meaning in a language, many projects
strive to rate word lexicons3 (Bradley and Lang,

3The word lexicon can be converted into an EKG by
linking words and their annotations through the use of the
RelatedTo relation.
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1999; Warriner et al., 2013; Mohammad, 2018a) in
a fine-grained dimensional space of emotion, such
as the three-dimensional VAD (Valence, Arousal,
and Dominance) space (Osgood et al., 1957; Rus-
sell, 2003), arguing that individual emotions can
be effectively conveyed through word meanings.
However, word-based EKGs have limitations, in-
cluding inconsistent annotations from different an-
notators, challenges associated with fixed granular-
ity, and rating scales that may inadequately capture
the intended sentiment. Additionally, there are text-
based EKGs (Gill et al., 2008) that involve seman-
tic analysis of context, going beyond simple word
mapping. One such example is COMET (Bosselut
et al., 2019), which expresses individual intentions
and reactions toward textual events. Transcriptions
of communication are mainly used for tasks related
to emotion recognition or analysis, such as Conver-
sational Emotion Recognition (CER) (Zhang et al.,
2019), however, the study of how to make them
work in EKGs is still open. Furthermore, these
efforts concentrate on the expression of emotions
rather than their transformations or connections.

Emotion transformation, as outlined by Green-
berg (2002), is a process of changing emotions
with emotions only through new experiences. Nat-
ural language emotion transformation tasks aim to
rephrase input sentences to satisfy a given affective
label. Some approaches (Helbig et al., 2020) use
word-emotion lexicons, like WordNet (Fellbaum,
1998), to reverse the sentiment polarity of the text
through word substitution techniques. Recent stud-
ies (Luo et al., 2019; Shen et al., 2017; Li et al.,
2018) suggest that deep learning approaches, espe-
cially encoder-decoder models, have the potential
to generate fluent and natural language. Nonethe-
less, the resulting text often lacks contextual con-
sistency due to the absence of parallel data for su-
pervision. Essentially, these approaches focus on
altering the emotions expressed in the text, rather
than exploring emotion transformation and its fun-
damental patterns and regularities. Access to emo-
tion transformation holds benefits for a number of
fields, including psychology (e.g., developing inter-
ventions for emotion regulation), natural language
processing (e.g., understanding the interplay of lan-
guage and emotion to enhance human-computer in-
teractions), and neuroscience (e.g., understanding
the dynamic mapping of neural circuitry underlying
emotion experience).

In this paper, we describe how we construct
and evaluate EmoTransKG, an emotion knowledge

graph designed to address the aforementioned gap
in emotion transformation using communication
transcripts. Specifically, we collect real-world con-
versation segments in which a speaker delivers ini-
tial and final utterances (referred to as "events")
that are manually annotated with emotion keywords
(e.g., happy, sad, and angry). For each segment,
we define the emotions annotated in the one utter-
ance and its successive one as head and tail entities
respectively, and all textual utterances (a.k.a. emo-
tional events (Scherer, 1993)) within them as a rela-
tion, resulting in the creation of an emotion knowl-
edge triple. This construction is inspired by the
cognitive theory proposed by Ortony et al. (1988),
which views emotions as reactions to events. An
example of converting a conversation segment into
an EmoTransKG triple is illustrated in Figure 1. To
evaluate EmoTransKG and analyze the underlying
patterns and regularities in emotion transformation,
we introduce EmoTransNet, a Transformer-based
translational model that learns distributional repre-
sentations of emotion knowledge triples. We then
employ EmoTransNet for emotion retrofitting in
CER to validate the effectiveness of EmoTransKG
and the learned representations for visual analysis
to uncover the impact of the head entity and the
relation on the tail entity.

The primary contributions of this work can be
summarized as follows:

• We propose a brand new emotion knowl-
edge graph called EmoTransKG, which es-
tablishes connections among emotion entities
and by defining unstructured, open-text event
sequences as their relations. To the best of
our knowledge, we are the first to construct
emotion relations in such a knowledge graph
framework.

• We introduce EmoTransNet, a Transformer-
based translational model that captures the
complex knowledge of emotion transforma-
tions embedded in the triples of EmoTransKG
and the relatedness among relations.

• We apply EmoTransNet to retrofit the pre-
dicted emotions in CER baseline models
and to visually analyze emotion knowledge
triples. Experiments conducted on two bench-
marking collections demonstrate that emotion
retrofitting consistently enhances the perfor-
mance of the models, and that EmoTransKG
successfully establishes meaningful transfor-
mations and connections between emotions.
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2 Related Works

2.1 Emotion Knowledge Graph

In the current literature, EKGs typically rely on
two different representations of emotion: one rep-
resents emotions as points in a multidimensional
appraisal space, and the other relies on predefined
emotion keywords (Calvo and D’Mello, 2010).
The former approach involves developing lexi-
cons (Bradley and Lang, 1999; Warriner et al.,
2013; Mohammad, 2018a) that map words onto
a psychologically-based affect space. However,
these emotion words are rated in a context-free
environment, whereas in reality they are gathered
in a context-dependent textual setting. In contrast,
EmoTransKG constructs emotion knowledge that
is not explicitly stated in the text and requires con-
sideration of the event context. The latter approach
focuses on text-based EKGs (Scherer, 1993; Gill
et al., 2008) that attempt to establish connections
between text and emotion keywords. However, the
success of existing text-based EKGs (Gill et al.,
2008) is limited to texts conveying fear and joy.
To circumvent this limitation, some commonsense
knowledge graphs (Bosselut et al., 2019; Zhang
et al., 2020) utilize well-defined logical relations
instead of strict matching relations. In contrast to
their definition of texts as entities and without ad-
dressing the connections between emotions, Emo-
TransKG considers texts as relations between emo-
tions, representing general knowledge of emotion
transformations. This approach lowers our expecta-
tions for text awareness. In addition, the EmoTran-
sKG structure exhibits a unique relation pattern of
multi-edge, while also displaying common relation
patterns—antisymmetry, inversion, and composi-
tion (Sun et al., 2019)—observed in existing KGs.

2.2 KG Representation Learning

In recent years, there have been significant ad-
vances in learning KG representations (Wang et al.,
2017) for KG inference, with the translational ap-
proach gaining considerable popularity. This ap-
proach interprets relations as transformations from
head entities to tail entities. TransE (Bordes et al.,
2013), a seminal model in this family, assesses
the plausibility of the triple by computing the se-
mantic correlations of the triple items in a con-
tinuous feature space. To capture more complex
structures in KGs, several variants of TransE, such
as TransH (Wang et al., 2014), TransR (Lin et al.,
2015), and TransD (Ji et al., 2015), have been de-

veloped. We also note that some works employ
deep learning models to learn representations for
KGs and formulate non-linear scoring functions
for plausibility assessment. Notable works in this
area include ConvKB (Nguyen et al., 2018) and
HypER (Balazevic et al., 2019), which use convo-
lutional neural networks, KEGCN (Yu et al., 2021),
which utilizes a graph neural network, and both
COMET (Bosselut et al., 2019) and KAN (Dun
et al., 2021) build on the Transformer framework.
In light of these advancements, we propose a
Transformer-based translational model called Emo-
TransNet in this work. Our model not only ef-
fectively captures emotion knowledge encoded in
event contexts (relations), but also identifies poten-
tial correlations among items within the triple.

2.3 CER Incorporating KG
CER has emerged as a crucial task in emotion
recognition and interaction, with the goal of ac-
curately predicting the emotion expressed by a
speaker with each utterance or event in a conver-
sation. Recent research in CER has focused on
integrating external knowledge to enhance the un-
derstanding of conversational context. For instance,
COSMIC (Ghosal et al., 2020), SKAIG (Li et al.,
2021), and CauAIN (Zhao et al., 2022) integrate
the commonsense knowledge graph COMET to
strengthen the logic of contextual interactions. Sim-
ilarly, KET (Zhong et al., 2019) introduces the
emotion lexicon NRC VAD (Mohammad, 2018b)
to enrich event representations. These efforts aim
to enhance the perception of language and compre-
hension of event interactions, distinguishing them
from the function of our EmoTransKG in CER;
EmoTransKG aims to improve the transformation
of the speaker’s emotions during a conversation.

3 Methodology

In this section, we first outline the construction pro-
cess of EmoTransKG and its characteristics (§3.1).
Next, we present the EmoTransNet model for train-
ing the EmoTransKG base (§3.2). Finally, we ap-
ply the EmoTransNet for emotion retrofitting in
CER (§3.3).

3.1 Construction of EmoTransKG
EmoTransKG is an EKG designed to construct
emotion transformations and connections by
extracting segments from communication tran-
scripts. In particular, in a conversation consist-
ing of a sequence of N utterances/events U =
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{u1, u2, . . . , uN} paired with corresponding emo-
tion labels {y1, y2, . . . , yN} ∈ S, where S is a
predefined set of basic emotions consisting of emo-
tion keywords, a segment denoted as Ui−j =
{ui, ui+1, . . . , uj} is extracted, such that i < j,
along with two emotion labels {yi, yj}. It is essen-
tial to ensure consistent speaker identities for ui
and uj , while distinguishing them from the rest of
the events U(i+1)−(j−1). This one-hop link struc-
ture within the same speaker facilitates stronger
connections between emotions, as the psychologi-
cal interactions between events are locally effective,
as claimed by Shen et al. (2021) and Li et al. (2021).
Consequently, an EmoTransKG triple is created,
where the head entity is yi, the relation is Ui−j ,
and the tail entity is yj , or succinctly expressed as
(h = yi, r = Ui−j , t = yj) (Ref. Figure 1).

Notation. We define Xh ∈ S as the head
entity, a sequence of textual events Xr =
{xr1, xr2, . . . , xr|r|} as the relation, and Xt ∈ S as
the tail entity in the EmoTransKG triple. Clearly,
in this definition, the EmoTransKG triple is instan-
tiated with two symbolic entities and a natural lan-
guage relation.

Relation Pattern. EmoTransKG possesses a
unique graph structure characterized by a closed
class of entities and an open class of relations, set-
ting it apart from other KGs. The relations in Emo-
TransKG are temporally directed and linguistically
irreversible, align with certain logical relations,
such as Causes and MadeOf in COMET (Bosselut
et al., 2019), while differing from certain seman-
tic relations, such as RelatedTo and SimilarTo in
ConceptNet 5.5 (Speer et al., 2017). Therefore, it
is essential to discuss the relation patterns in Emo-
TransKG:

• Antisymmetry: As the relation in EmoTran-
sKG is directed and irreversible, for any given
triples (h, r, t) and (t, r, h), it holds that:

(h, r, t) ∧ (t, r, h) ⇒ h = t

• Inversion: EmoTransKG forms a strongly
connected graph, where for any given triple
(h, r1, t), there exist a relation r2 such that:

(h, r1, t) ⇒ (t, r2, h)

• Composition: EmoTransKG is a strongly
connected graph, with each node forming a
closed loop with its edges. For any given
triples (h, r1, t1) and (t1, r2, t2), there exist a
relation r3 such that:

(h, r1, t1) ∧ (t1, r2, t2) ⇒ (h, r3, t2)

[CLS]
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Figure 2: The proposed EmoTransNet model for Emo-
TransKG training.

• Multi-edge: In graph theory, multi-edge
refers to two or more edges incident to the
same pair of vertices. In EmoTransKG, for
any given entities h and t, we have

(h, r1, t) ∧ (h, r2, t) ⇒ r1 ̸= r2
A structure with such form is a multi-edge
relation pattern, and its definition is first pro-
posed and formalized in the domain of KGs.

3.2 EmoTransNet: Training EmoTransKG
Having created EmoTransKG, our goal is to study
the influence of initial emotion (head entity) and
events (relation) on future emotion (tail entity). To
achieve this goal, we introduce EmoTransNet, a
Transformer-based translational model designed to
take the head entity Xh and its associated relation
Xr as input and learn to generate the tail entity
Xt as output, i.e., predicting t in (h, r, ?). The pro-
posed EmoTransNet model is depicted in Figure 2.

Head Entity Representation. We represent sym-
bolic head entities using one-hot vectors in the
space R|S|. In order to enhance their expressive
power, we define and use two fully connected lay-
ers to project the entity vectors into a higher dimen-
sional feature space as follows:

hh = W h
2 (W

h
1 X

h + bh1) + bh2 . (1)

Here, W h
1 ∈ R|r|×dh , W h

2 ∈ Rdh×d, bh1 ∈ Rdh ,
and bh1 ∈ Rd are trainable parameters. The re-
sulting output, hh ∈ Rd, is considered to be the
representation of the head entity.

Relation Representation. To reduce computation
in extracting relation representations, we employ
a two-step feature extraction scheme to account
for factors such as the language length of the re-
lation. Initially, we extract the event-level feature
representation hri ∈ Rd for each event xri using
a pretrained language model. Although the event
itself is independent of the language model, we use
the RoBERTa model (Liu et al., 2019) in this work.

12101



E
m

otion C
lassifier

OR

Feature Extraction Conversational Context Modeling

Emotion Representations

1H …

Recurrence-based Model

2H

Graph-based Model

Labels

Emotion Recognition Emotion Retrofitting

    

1y

2y

3y

4y

Ny
time

1u

2u

3u

4u
            

Utterances Recurrent UnitH NodeH

    

1y

2y

3ŷ
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Figure 3: The architecture for integrating EmoTransNet, trained on EmoTransKG, with the CER model, incorpo-
rating three fundamental modules of the CER model: Feature Extraction, Conversational Context Modeling, and
Emotion Recognition, alongside a novel module introduced by EmoTransNet: Emotion Retrofitting.

Upon obtaining the event representations
{hr1, hr2, . . . , hr|r|} from RoBERTa, we proceed
to capture the relation semantics involving these
events. To achieve this, we prepend a special to-
ken, [CLS], which serves as an aggregator for the
relation information, at the beginning of the event
representations. This results in the creation of the
input sequence hr = {hr[CLS], h

r
1, h

r
2, ..., h

r
|r|} ∈

R(|r|+1)×d. In order to account for the directed na-
ture of the relation, we introduce position embed-
dings pt ∈ R(|r|+1)×d encoded by sine and cosine
functions into the input sequence:

hr,0 = hr + pt. (2)

Next, we employ a standard Transformer archi-
tecture (Vaswani et al., 2017) with L layers to en-
code the input sequence hr,0 ∈ R(|r|+1)×d. The l-th
Transformer block can be formulated as follows:

g̃r,l = MULTIATTN(hr,l−1), (3)

gr,l = LAYERNORM(g̃r,l + hr,l−1), (4)

h̃r,l = FFN(gr,l), (5)

hr,l = LAYERNORM(h̃r,l + gr,l), (6)

where MULTIATTN is a multi-head self-attention
mechanism, LAYERNORM is a layer normalization
operation, and FFN is a two-layer feed-forward
neural network with ReLU activation. After propa-
gating through L layers, the hidden state hr,L[CLS] ∈
Rd of the [CLS] token from the last layer is adopted
as the representation of the relation.

Tail Entity Representation. The head entity repre-
sentation hh and the relation representation hr,L[CLS]

are concatenated and fed into a fully connected
layer to obtain the representation of the tail entity:

ht = W t
1[h

h∥hr,L[CLS]] + bt1. (7)

Here, ∥ denotes the concatenation operation. W t
1 ∈

R2d×d and bt1 ∈ Rd are learnable parameters.

Loss Function. Finally, we utilize a fully con-
nected layer with softmax activation as the classi-
fier to predict the tail entity:

Ȳ = softmax(W t
2h

t + bt2), (8)

where W t
2 ∈ Rd×|S| and bt2 ∈ R|S|. The cross-

entropy loss utilized to train the EmoTransNet
model is calculated on all tail entities by:

L = − 1

M

M∑

i=1

|S|∑

e=1

yei log(Ȳ
e
i ), (9)

where M is the number of triples in EmoTransKG,
yei is the one-hot vector denoting the tail entity of
triple i, and e is the dimension of each entity.

3.3 CER with EmoTransNet

One way to assess the plausibility and effectiveness
of KGs is to examine the correlation and consis-
tency between entities and relations. The CER
task serves as a benchmark for evaluating emotion
propagation and transformation, testing whether
a method can accurately capture emotion interac-
tions in a conversational context. In this study, we
employ the CER task as an automatic evaluation
metric for EmoTransKG through EmoTransNet.
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Retrofitting, as redefined by Faruqui et al. (2015),
is a process of adjusting word embeddings using
a knowledge graph. Generalizing this concept,
we utilize EmoTransKG to adjust the predicted
emotion confidence vectors produced by the CER
model, which we refer to as “emotion retrofitting.”
Figure 3 illustrates the integration of EmoTransNet
with the CER model, wherein EmoTransNet’s pa-
rameters are frozen. The CER framework com-
prises three fundamental modules: Feature Extrac-
tion (FE) for encoding the semantic embeddings
of each utterance, Conversational Context Mod-
eling (CCM) for capturing interactions between
utterance units or nodes using a recurrent- or graph-
based model, and Emotion Recognition (ER) for
predicting the emotion label of each utterance. This
can be expressed as follows:

Ỹ = ER(CCM(FE(U))), (10)

where Ỹi represents the predicted emotion confi-
dence vector for utterance ui.

The emotion retrofitting function can be repre-
sented as follows:-

Ŷj = γỸj+(1−γ)EmoTransNet(Yi, Ui−j), (11)

where γ is a hyper-parameter that controls the
preservation of emotion confidence in the predicted
vector space. Note that, (1) the turns i and j corre-
spond to the same speaker; (2) Yi = One-Hot(Ỹi),
where One-Hot(·) is a one-hot assignment opera-
tion: the predicted emotion confidence vector of the
first utterance of each speaker is not adjusted; and
(3) Yi = One-Hot(Ŷi): the adjusted emotion confi-
dence vector Ŷi will replace the original Ỹi as the
input of EmoTransNet. This replacement is made
because Ŷi is more robust than Ỹi, even though the
effect of this robustness on future emotions decays
exponentially with sequence turns. The emotion
retrofitting described above is a plug-in module;
it can refine emotion confidence vectors predicted
by any CER model, as the updates in Eq. 11 are
agnostic to the CER model.

Another task of entity prediction in EmoTran-
sKG is to predict h in (?, r, t). This facilitates the
development of a bi-directional emotion retrofitting
scheme similar to Bi-LSTM, although it is not cur-
rently operational. It is evident that our designed
EmoTransNet is conceived as a single approach for
extracting knowledge concerning emotion transfor-
mation within EmoTransKG.

Dataset
# Conversations # Utterances

Train Valid Test Train Valid Test

IEMOCAP 100 20 31 4,810 1,000 1,623
EmoryNLP 713 99 85 9,934 1,344 1,328

Dataset
# Classes # Relations

Avg. U. PR.# Entities Train Valid Test

IEMOCAP 6 4,947 623 1,561 2.97
EmoryNLP 7 5,347 689 739 3.52

Table 1: Dataset and derived EmoTransKG statistics.
“Avg. U. PR.” is the average number of utterances/events
per relation.

4 Experiments

4.1 Experimental Setup

Dataset and Evaluation Metrics. EmoTransKG
uses segments from conversation transcripts to
create emotion knowledge triples. In this work,
we use the IEMOCAP (Busso et al., 2008) and
EmoryNLP (Zahiri and Choi, 2018) resources as
conversation transcripts, but other conversation re-
sources could have been used as well, since the
ambiguity surrounding the definition of basic emo-
tions. IEMOCAP is a collection of dyadic con-
versations that defines basic emotions as happy,
sad, neutral, angry, excited, and frustrated,
based on conversational content, facial expressions,
and hand movements. EmoryNLP consists of tex-
tual transcripts from multi-speaker conversations in
the TV show Friends and defines basic emotions as
follows: positive: {joyful, peaceful, powerful},
negative: {scared, sad, mad}, neutral: {neutral}.

Table 1 presents the statistics of all datasets and
their corresponding EKGs. Following recent CER
works (Ghosal et al., 2020; Li et al., 2021), we use
only the textual data from the above datasets and
choose weighted-F1 as the evaluation metric for
CER tasks. For both the creation of EmoTransKG
and the training of EmoTransNet, the training set of
each dataset is used. Additionally, to test the statis-
tical significance of the performance improvement,
we perform a paired t-test (Kim, 2015).

Baseline Models. Given that emotion retrofitting
is a model-agnostic plug-in that facilitates the inte-
gration of various CER models, we select ten CER
models to test whether EmoTransKG can improve
their performance. Please refer to Appendix A for
a comprehensive list of the baseline models and to
Appendix B for implementation details.
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Method IEMOCAP EmoryNLP

Recurrence-based methods
DialogueRNN (Majumder et al., 2019) 66.03 38.25
DialogueRNN+EmoTransKG 67.19 (↑ 1.16) 38.90 (↑ 0.65)
COSMIC⋆ (Ghosal et al., 2020) 67.35 38.59
COSMIC⋆+EmoTransKG 68.39 (↑ 1.04) 39.06 (↑ 0.47)
BiERU (Li et al., 2022) 64.59 36.72
BiERU+EmoTransKG 66.25 (↑ 1.66) 37.27 (↑ 0.55)

Graph-based methods
DialogueGCN (Ghosal et al., 2019) 65.88 38.13
DialogueGCN+EmoTransKG 67.11 (↑ 1.23) 38.80 (↑ 0.67)
RGAT (Ishiwatari et al., 2020) 65.59 37.84
RGAT+EmoTransKG 66.79 (↑ 1.20) 39.01 (↑ 1.17)
SKAIG⋆ (Li et al., 2021) 66.71 38.40
SKAIG⋆+EmoTransKG 67.59 (↑ 0.88) 38.93 (↑ 0.53)
DAG-ERC (Shen et al., 2021) 67.74 38.84
DAG-ERC+EmoTransKG 68.32 (↑ 0.58) 39.48 (↑ 0.64)
CauAIN⋆ (Zhao et al., 2022) 65.20 38.31
CauAIN⋆+EmoTransKG 66.38 (↑ 1.18) 38.89 (↑ 0.58)
SUNET (Song et al., 2023) 66.98 38.79
SUNET+EmoTransKG 67.52 (↑ 0.54) 39.32 (↑ 0.53)
DualGATs (Zhang et al., 2023) 65.22 37.79
DualGATs+EmoTransKG 65.89 (↑ 0.67) 38.28 (↑ 0.49)

Table 2: The overall results on different methods on
two CER datasets. The marker “⋆” indicates the incor-
poration of external knowledge. All “+EmoTransKG”
methods show significant test p-value < 0.05 compared
to their corresponding baseline models.

4.2 Evaluation Results and Analysis

The overall results are showcased in Table 2, where
“X+EmoTransKG” indicates the combination of
model X with the emotion transformation knowl-
edge obtained from our proposed EmoTransKG.
EmoTransKG shows consistent improvement in
performance with high confidence (p<0.05) on
both the IEMOCAP and EmoryNLP datasets when
evaluated within the same CER framework. These
improvements on CER highlight the effectiveness
of our EmoTransKG and the applicability of emo-
tion retrofitting. In particular, the performance im-
provements achieved by EmoTransKG on mod-
els modeling intra-speaker dependencies demon-
strate the breadth and depth of its understanding of
emotion transformations. Implementing EmoTran-
sKG on the external knowledge-introduced models
also enhances their performance, emphasizing that
the emotion transformations constructed by Emo-
TransKG differ from logical interactions and pro-
vide improved performance in emotion interactions
from a new perspective.

Although our approach performs acceptably on
EmoryNLP, it does not yield results as remark-
able as those on IEMOCAP. Table 1 provides two
reasons for this discrepancy. One reason is that

the ratio of the number of relations to the number
of utterances in the IEMOCAP test set is nearly
twice that of the EmoryNLP test set. This im-
plies that our EmoTransNet model runs emotion
retrofitting about twice as frequently in IEMOCAP
as in EmoryNLP during testing. Additionally, con-
suming fewer utterances per relation (2.97<3.52)
leads to more robust emotion transformations.

4.3 Visualization Analysis

To intuitively assess the semantic relatedness of re-
lations and the impact of the head entity and the re-
lation on the tail entity in EmoTransKG, we project
the learned relation representations (hr,L[CLS]) and
tail entity representations (ht) from EmoTransNet
into a 2D space using t-SNE (Maaten and Hinton,
2008). The resulting visualizations are presented
in Figures 4 and 5, where each color represents a
different head or tail entity category that is assigned
in the EmoTransKG triples.

As you can see in Figures 4(a) and 5(a), Emo-
TransNet invariably generates similar relation rep-
resentations for EmoTransKG triples with identical
head and tail entities, demonstrating their semantic
affinity. However, while Figure 4(a) reflects the
categories of both head and tail entities, Figure 5(a)
only shows the categories of tail entities. The differ-
ence in the EmoryNLP-derived EmoTransKG can
be attributed to the strong correlation between tail
entities and relations, which masks the weak corre-
lation with head entities. Figure 4(b) demonstrates
the separability of tail entity representations based
on head entities (e.g., region shown in the dashed
red ellipse for the same tail entity "frustrated")
and relations (e.g., region shown in the dashed blue
ellipse for the same head entity "neutral"). Such
a visualization suggests that the head entities deter-
mine the intra-class distribution of tail entities, and
the relations determine the inter-class distribution.
Similarly, Figure 5(b) shows a comparable distribu-
tion; however, with more blurred boundaries in the
left figure and clearer boundaries in the right figure.
This discrepancy indicates that, compared to the
IEMOCAP-derived EmoTransKG, the head entity
has less influence, while the relation has a stronger
impact on the tail entity in the EmoryNLP-derived
EmoTransKG. These separable distributions ex-
plain the effectiveness of our EmoTransNet in ex-
tracting emotional knowledge and the plausibility
of emotion transformations within EmoTransKG.
To further support the differences in visualizations
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(a) Relation (b) Tail entity

Figure 4: t-SNE visualization of relation and tail entity representations from IEMOCAP-derived EmoTransKG.

(a) Relation (b) Tail entity

Figure 5: t-SNE visualization of relation and tail entity representations form EmoryNLP-derived EmoTransKG.

between the two EmoTransKGs, we provide their
quantitative analyses in Appendix C.

4.4 Ablation study

We present the following ablations of the EmoTran-
sKG construction, without considering the model
structure and training techniques for EmoTransNet.
Firstly, we investigate how varying the amount of
relations available for the construction of EmoTran-
sKG affects the diversity of emotion transforma-
tions. Secondly, in our initial notation of EmoTran-
sKG, head entities are represented as separate one-
hot vectors, which requires EmoTransNet to learn
emotion-specific semantic representations from
scratch. As an ablation, we train a model by map-
ping head entities to natural language and initial-
izing them with Word2vec embeddings (Mikolov
et al., 2013) to incorporate knowledge from lan-
guage, which we denote EmoTransKG-WE. We
report the ablation results of COSMIC and Dia-
logueGCN in Table 3.

We observe that increasing the number of rela-
tion facts can be increased to allow the model to
learn a greater diversity of emotion transformation
knowledge, thus improving its generalization abil-
ity. When using word embedding initialization, it
has been noticed that there is inferior performance
in CER models. One hypothesis is that this occurs
because the inaccuracy of the provided Word2vec
embeddings. To validate this hypothesis, we com-
pute the cosine similarity between Word2vec em-

Method % # Rel IEMOCAP EmoryNLP
COSMIC - 67.35 38.59

+EmoTransKG
10% 67.54 (↑ 0.19) 38.62 (↑ 0.03)
50% 67.82 (↑ 0.47) 38.77 (↑ 0.18)
FULL 68.39 (↑ 1.04) 39.06 (↑ 0.47)

+EmoTransKG-WE - 67.07 (↓ 0.28) 38.71 (↑ 0.12)
DialogueGCN - 65.88 38.13

+EmoTransKG
10% 66.04 (↑ 0.16) 38.04 (↓ 0.09)
50% 66.33 (↑ 0.45) 38.34 (↑ 0.21)
FULL 67.11 (↑ 1.23) 38.80 (↑ 0.67)

+EmoTransKG-WE - 65.66 (↓ 0.22) 38.33 (↑ 0.20)

Table 3: Effect of the amount of relations (# Rel) and
emotion entity initialization using word embeddings
(EmoTransKG-WE) on emotion transformations.

beddings of basic emotions on EmoryNLP, and find
that the cosine similarity between Joyful and Sad
is higher than that between Joyful and Powerful,
consistent with Agrawal et al. (2018)’s observa-
tions. This result corroborates that word embed-
dings derived from textual corpora are inadequate
for accurately capturing emotion semantics, pre-
senting a significant challenge for word embedding
learning. In contrast, the entity representations (hh)
learned from EmoTransNet demonstrate that emo-
tions with the same polarity exhibit higher cosine
similarity compared to those with different polar-
ities, indicating more effective semantic learning
of emotions. In addition, we observe a steeper
performance degradation in IEMOCAP due to the
stronger influence of head entities on tail entities in
the IEMOCAP-derived EmoTransKG, as revealed
through our visualization analysis (§4.3).
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#13: I'm fine. #13: I'm fine. 

#16: I wonder if they can hear me talk.#16: I wonder if they can hear me talk.

#17: I'm cold.#17: I'm cold.

#14: Oh yeah, I'm so excited right now I'm like a kid.#14: Oh yeah, I'm so excited right now I'm like a kid.

#15: I can't believe I got out of the house without my fly zipped up even.#15: I can't believe I got out of the house without my fly zipped up even.

#18: Do you want my jacket?#18: Do you want my jacket?

#12: You know what we should've brought a blanket too.  Man, our 

blanket, our blanket. Wish I had six-pack too, a six-pack would be just 

the ticket right about now, huh, six-pack.

#12: You know what we should've brought a blanket too.  Man, our 

blanket, our blanket. Wish I had six-pack too, a six-pack would be just 

the ticket right about now, huh, six-pack.

Label of #16: happy

Our prediction: happy  (√)

COSMIC's prediction: excited (×)

Label of #18: frustrated

Our prediction: frustrated  (√)

COSMIC's prediction: neutral (×)

Emotion transformation: 

neutral (#13) → happy (#16)

Emotion transformation: 

excited (#15) → frustrated (#18)

excited 
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excited 
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Figure 6: Two real cases that our EmoTransNet gives the correct predictions while COSMIC fails. Emotion
transformations are illustrated within EmoTransNet.

4.5 Case Study

In Figure 6, we present two cases (#13 → #16
and #15 → #18) of emotion prediction, where
our EmoTransNet yields accurate predictions while
COSMIC falls short. In both conversation seg-
ments, the continuous emotions conveyed in the
individuals’ first and last utterances are transferred
due to the experienced events. Therefore, the model
must consider both emotional inertia resulting from
prior emotions and the perception of events.

Specifically, EmoTransNet assigns the emo-
tion label "excited" to #16, despite events #14
and #15 conveying the positive semantic polarity
"happy." This suggests that emotion transforma-
tion is influenced by the initial emotion (the head
entity) rather than solely by the experienced events
(the relation). Conversely, COSMIC’s prediction
for #16 merely replicates or empathizes with the
speaker M’s emotion. For the prediction of #18,
despite its sequential modeling, COSMIC struggles
to capture or comprehend historical information
necessary for accurate prediction. This highlights
COSMIC’s limitations in emotional interaction and
contextual modeling, despite the presence of con-
textual utterances providing effective cues for emo-
tion prediction. Our EmoTransNet, which adopts

an emotion transformation perspective, predicts
future emotions based on initial emotions and expe-
rienced events. This approach mitigates potential
misjudgments resulting from emotional contagion
and from information loss during long-distance
transmission.

5 Conclusion

In this paper, we present EmoTransKG: an emo-
tion knowledge graph. We define basic emotions
in conversation transcripts as emotion entities, and
extract event sequences between two entities with
the same participant as emotion relations. Emo-
TransKG is the first EKG that establishes emotion
transformations and connections. We train an Emo-
TransNet model on EmoTransKG and utilize it for
emotion retrofitting in CER, as well as to visualize
the roles of entities and relations in emotion trans-
formations, thereby demonstrating the plausibility
and effectiveness of EmoTransKG. Currently, we
are extending our approach to other conversational
resources, such as DailyDialog (Li et al., 2017) and
MELD (Poria et al., 2019), and fusing these Emo-
TransKGs to achieve high coverage of emotion con-
cepts. We also investigate whether EmoTransKG
can offer recommendations for the engineering of
emotion-related word embeddings.
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Limitations

We note several limitations of our work:

(1) Our EmoTransKG is limited by the fact that
the definition of basic emotions is disputed,
which poses a challenge for future efforts to
extend and fuse emotion knowledge graphs.
Although our work has not addressed this is-
sue, our visualization results demonstrate ba-
sic emotions from different emotion theories
can be well separated from each other. These
findings provide valuable insights for advanc-
ing research in emotions and cognition.

(2) The diversity of relations requires a signifi-
cant amount of available emotional transfer
facts for successful editing, but the linguistic
richness and diversity limit its coverage.

(3) We do not currently account for data im-
balance in EmoTransKG. As shown in Fig-
ures 4(b) and 5(b), the EmoTransNet model,
trained on the target variable (tail entity) with
such a significantly skewed distribution, ex-
hibits biased, generally leading to better per-
formance for emotion triples where the head
and tail entities are the same.
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A Baseline Models

We use the following baseline models in our evalua-
tion, and their corresponding codes and parameters
are uploaded in the supplementary material:

Recurrence-based Models: Dia-
logueRNN (Majumder et al., 2019), COS-
MIC (Ghosal et al., 2020), and BiERU (Li et al.,
2022).

Graph-based Models: DialogueGCN (Ghosal
et al., 2019), RGAT (Ishiwatari et al., 2020),
SKAIG (Li et al., 2021), DAG-ERC (Shen et al.,
2021), CauAIN (Zhao et al., 2022), SUNET (Song
et al., 2023), and DualGATs (Zhang et al., 2023).

These models are chosen based on their strong
performance and prominence in the CER field, as
well as the availability of source code to ensure
the reliability and reproducibility of results. All

12109



models, except for BiERU, explicitly build intra-
speaker dependencies to facilitate the comprehen-
sion of emotion propagations and connections of
individual speakers in conversations. Additionally,
COSMIC, SKAIG, and CauAIN incorporate exter-
nal knowledge into their frameworks to enhance
the logical interactions between utterances/events.

B Implement Details

This section details the hyper-parameters and op-
timal combinations selected. Specifically, we set
dh to 300, d to 1024, and γ in Eq. 11 to 0.95. Dur-
ing the training phase of EmoTransNet, we uti-
lize the Adam optimization algorithm (Kingma and
Ba, 2014) with a batch size of 64, 100 epochs, a
learning rate of 2e-5, a dropout rate of 0.5, and a
weight decay of 3e-4. To balance performance and
computational complexity, we set the number of
Transformer blocks L to 6. Consistently, we use
the RoBERTa (Liu et al., 2019) feature extractor
to obtain utterance embeddings for the Feature Ex-
traction module in all baseline models mentioned.
For the re-implementations and emotion retrofitting
experiments, we strictly adhere to the settings re-
ported in the original papers. The experiments
are conducted on a server equipped with a 3090
GPU card and the Ubuntu operating system version
20.04. The reported results are based on the aver-
age score obtained from 20 random runs on the test
set.

C Quantitative Analysis

In this section, we perform a quantitative analyses
of emotion transformations within EmoTransKG.
We examine the two following aspects:

(1) Impact of head entities on emotion trans-
formations. Specifically, for each triple in
the validation set, we randomly select a differ-
ent emotion entity to replace its head entity,
and then input the replaced head entity and its
corresponding relation into EmoTransNet to
assess the probability of correctly predicting
the tail entity. The EmoryNLP dataset shows
a significantly higher probability of correctly
predicting the tail entity (85%) compared to
the IEMOCAP dataset (62%). This result indi-
cates that the head entities in the IEMOCAP-
derived EmoTransKG have a greater impact
on predicting the tail entities than those in the
EmoryNLP-derived EmoTransKG.

(2) Impact of relations on emotion transfor-
mations. We find that in the IEMOCAP-
derived EmoTransKG, 70% of the triples have
the same head and tail entities. However,
this proportion decreases to only 36% in the
EmoryNLP-derived EmoTransKG. These re-
sults suggest that the relations derived from
EmoryNLP are more likely to transform the
head entity into a tail entity of a different cat-
egory.

In conclusion, our quantitative analyses indicate
that both head entities and relations in EmoTran-
sKG triples have an impact on the emotional ex-
pressions of tail entities. Furthermore, the influ-
ence of head entities is relatively weaker in the
EmoryNLP-derived EmoTransKG compared to the
IEMOCAP-derived EmoTransKG, while the im-
pact of relations is stronger. These findings are
consistent with the visualization results (§4.3).
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