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Abstract

Neural Machine Translation (NMT) encounters
challenges when translating in new domains
and low-resource languages. To address these
issues, researchers have proposed methods to
integrate additional knowledge into NMT, such
as translation memories (TMs). However, find-
ing TMs that closely match the input sentence
remains challenging, particularly in specific do-
mains. On the other hand, monolingual data is
widely accessible in most languages, and back-
translation is seen as a promising approach for
utilizing target language data. Nevertheless,
it still necessitates additional training. In this
paper, we introduce Pseudo-kNN-MT, a vari-
ant of k-nearest neighbor machine translation
(kNN-MT) that utilizes target language data by
constructing a pseudo datastore. Furthermore,
we investigate the utility of large language mod-
els (LLMs) for the kNN component. Experi-
mental results demonstrate that our approach
exhibits strong domain adaptation capability in
both high-resource and low-resource machine
translation. Notably, LLMs are found to be
beneficial for robust NMT systems.

1 Introduction

Neural Machine Translation (NMT) has witnessed
significant progress with the adoption of deep
learning techniques(Sutskever et al., 2014; Bah-
danau et al., 2015), particularly the transformer
model(Vaswani et al., 2017). Despite these ad-
vancements, challenges still exist in translating un-
common words and adapting NMT systems to dif-
ferent domains(Koehn and Knowles, 2017; Saun-
ders, 2022).

To tackle these challenges, researchers have
proposed various methods to incorporate external
knowledge into NMT. One such approach involves
imposing constraints from terminology dictionar-
ies(Dougal and Lonsdale, 2020; Hasler et al., 2018),
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or the incorporating fuzzy matches retrieved from
translation memories (TMs)(Eriguchi et al., 2019;
Xu et al., 2020; Khandelwal et al., 2021; He et al.,
2021; Reheman et al., 2023).

These methods enhance NMT systems by lever-
aging bilingual knowledge. However, due to the
limitations in the scale and domain coverage of
bilingual data, it is highly challenging to find sen-
tences that closely match the input sentence, es-
pecially in specific domains or for low-resource
languages. One natural idea is to utilize the vast
amount of monolingual data, which can provide a
pool of highly relevant sentences in terms of mean-
ing. As a promising method, back translation (Sen-
nrich et al., 2016) has been proven to be helpful
for utilizing monolingual data in NMT systems.
However, it requires additional training, including
training a reverse NMT model and retraining an
NMT model with the augmented training data.

In this paper, we introduce pseudo-kNN-MT,
a training-free approach that leverages target lan-
guage data for translation. Specifically, given an in-
put sentence, we retrieve its top-k similar target sen-
tences using a cross-lingual retriever. Our primary
objective is to effectively utilize these retrieved
sentences. Initially, we pair the retrievals with
the input sentence to create pseudo sentence pairs,
then perform k-nearest neighbor machine transla-
tion (kNN-MT) following Khandelwal et al. (2021).
Additionally, LLMs are known for their strong text
compression capabilities of mapping texts into the
representation space (Brown et al., 2020; Radford
et al., 2019), and their training paradigm endows
them with good generalization, which might be
effective in handling low-frequency patterns. Be-
sides, LLMs also demonstrate strong translation
capabilities (Zhang et al., 2023; Zhu et al., 2023a;
Xu et al., 2023). Therefore, we take a step fur-
ther to investigate the potential of utilizing LLMs
for the kNN component, where the datastore and
the context representation vectors are derived from
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LLMs rather than the NMT model itself. Further-
more, we explore the integration of LLMs with
NMT without relying on target retrieval, focusing
on leveraging the translation ability of LLMs and
enhancing translation fluency. Experimental results
on multi-domain test sets demonstrate that our ap-
proach improves the translation results with a great
margin, achieving an average improvement of 4.51
sacreBLEU points. In low resource MT scenarios,
our method’s performance is comparable to or even
superior to back-translation in certain domains.

2 Background

In this section, we provide background information
on kNN-MT and cross-lingual retrieval.

2.1 kNN-MT

The kNN-MT Khandelwal et al. (2021) is a non-
parametric method that utilizes nearest neighbor
retrievals from a vector datastore of translation con-
text representation. It involves two main steps:
datastore creation and inference.

Datastore Creation The datastore D comprises
a collection of key-value pairs, where the key
is a high-dimensional representation of a transla-
tion context. This key is computed by an auto-
regressive MT decoder, and the value is the cor-
responding ground-truth target token. Here, the
combination of source language tokens and the
generated target tokens is called translation con-
text. Let (X ,Y) be a set of bilingual sentences,
and let f(·) be a mapping function that transfers
the translation context into the high-dimensional
representation using a translation model. For all
examples in (X ,Y), the key-value datastore is cre-
ated as:

D = {(f(x, y1:t−1), yt), ∀yt ∈ y|
(x, y) ∈ (X ,Y)}. (1)

Inference During the inference phase, the trans-
lation context representation of each time-step is
used as a query, q = f(x, ŷ1:t−1), to retrieve k-
nearest neighbors N from D, employing vector
distance measuring techniques likes L2 distance.
Subsequently, a probability distribution, pkNN, over
the target vocabulary is then generated from N by
applying a softmax with temperature to the neg-
ative distances and aggregating the same tokens,

defined as:

pkNN(yt|x, ŷ1:t−1) =∑
(kj ,vj)∈N 1yj=vjexp(−d(q, kj)/T )∑

(kj ,vj)∈N exp(−d(q, kj)/T )
, (2)

where d(·, ·) represents a distance function that cal-
culates the distance between the two vectors, specif-
ically the query vector and the retrieved neighbors.

In the end, the final probability distribution is ob-
tained by linear interpolating the two distributions,
pkNN and pNMT, using a tuned hyperparameter λ:

p(yt|x, ŷ1:t−1) = λpkNN(yt|x, ŷ1:t−1) +

(1− λ)pNMT(yt|x, ŷ1:t−1). (3)

2.2 Cross-lingual Retrieval
Cross-lingual retrieval is the process of retrieving
information from multilingual sources (Feng et al.,
2022a; Li et al., 2023; Gao et al., 2023). Its core
is a pretrained cross-lingual sentence embedding
model, which maps the sentences from different
languages into a shared semantic space. During
application, it returns the embedding of "CLS" to-
ken or employs a mean pooling strategy on all to-
ken embeddings within the sentence to capture the
sentence’s representation. This technique proves
valuable in various cross-lingual applications, such
as information retrieval and machine translation
(MT). In this paper, we utilize it to retrieve similar
sentences from the target language by taking the
source sentence as a query.

3 Methodology

In this section, we will introduce retrieving similar
sentences from target dataset (§3.1), as well as
the proposed method of pseudo kNN-MT (§3.2)
and the large language model integration (§3.3 and
§3.4) in detail.

3.1 Retrieving Similar Sentences from Target
Language Dataset

Given an input sentence x, a target language dataset
Y = {y1, y2, ..., yn}, and a cross-lingual sen-
tence embedding model e. First of all, the dis-
tributed representation of the target dataset, hY =
{h1, h2, ..., hn}, is obtained by feeding Y into the
cross-lingual model, as:

hY = e(Y). (4)

Similarly, we obtain the distributed representation
of x as hx = e(x). Subsequently, we calculate the
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Figure 1: pseudo datastore creation process. Function f(·) returns the last hidden state of MT decoder at every
time-step.

distances between each item in hY and hx using
the distance function d(·):

D = d(hx, hY), (5)

where D = {d1, d2, ..., dn} represents the distance
of each sentence in y from x in the vector space.
Finally, we acquire the top-k similar sentences by
ranking them based on their distances and selecting
the k-nearest ones as the final retrieval. Our work is
focused on the utilization of these target retrievals.

3.2 kNN-MT with Pseudo Datastore

After obtaining similar sentences from the target
dataset, we aim to construct bilingual dataset in
order to align with the decoding behavior of the
NMT model. Due to the semantic resemblance
between the retrieved sentences and the input sen-
tence, we pair them up to form bilingual dataset.
After this, we explore whether this pseudo bilin-
gual dataset can effectively facilitate the translation,
following the approach of kNN-MT (Khandelwal
et al., 2021).

Specifically, we build a key-value datastore Dpse

based on the pseudo bilingual dataset. Suppose
Ysim = {y1, y2, ..., yk} is the target retrieval for
the input sentence x, the pseudo bilingual dataset
is constructed by pairing x with each sentence
in Ysim, as (X ,Y)pse = {(x, yi)|yi ∈ Ysim, i ∈
[1, k]}. The kNN datastore on (X ,Y)pse is built
using the equation 1, as defined below:

Dpse = {(f(x, y1:t−1), yt), ∀yt ∈ y|
(x, y) ∈ (X ,Y)pse}, (6)

where f(·) also is the mapping function from trans-
lation context to the last hidden state of the NMT

decoder, and t is the decoding time-step. The cre-
ation process of the pseudo datastore is illustrated
in Figure 1.

During the inference phase, we construct the tar-
get token distribution from Dpse and interpolate it
with the NMT model’s distribution, utilizing equa-
tion 2 and equation 3 respectively, in the same way
as kNN-MT (Khandelwal et al., 2021).

3.3 kNN-MT with LLM Pseudo Datastore

As a dual-model approach, kNN-MT is the com-
bination of an NMT model and a non-parametric
kNN translation model sourced from a datastore.
Unlike the naive implementation that relies on the
NMT model’s own hidden states for constructing
the key-value datastore and retrieving during infer-
ence, any MT model can be used for this process.
Here, we explore the potential of using LLMs for
the kNN component. Firstly, we construct the key-
value datastore using an LLM. Specifically, we feed
the pseudo bilingual sentences into the LLM with
a specific prompt and extract the hidden states of
the translation context at each time step as the key
and the corresponding target token as the value.
Due to the differences between utilizing LLMs for
translation tasks and NMT, where LLMs require
instructions to specify the desired translation task,
including the support for zero-shot and few-shot
learning, the translation context here differs from
that in NMT. For zero-shot, the translation context
will be:

Translate this from [source language]
into [target language] and return the
translation results only.

[source language]: [source sentence]
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Figure 2: Illustration of decoding using LLM datastore. Here, we take zero shot prompt as an example. The kNN
datastore is constructed offline using the LLM on the pseudo bilingual dataset.

[target language]: [previously generated
target tokens]

In the few-shot scenario, few-shot examples come
after the instruction. It is worth mentioning that
when constructing the key-value datastore, we
should use the same prompt that was used dur-
ing the inference to maintain key representation
consistency.

At each time step of inference phase, we first
construct the translation context using the same
prompt as mentioned above. The translation con-
text is then fed into the LLM to extract the hidden
state. Subsequently, we take this hidden state as a
query to search for the k-nearest neighbors from the
datastore and obtain the kNN probability, which
is interpolated with NMT probability afterwards.
The illustration of the inference phase is given in
Figure 2.

3.4 LLM Integration

As a language model, LLMs have strong capabil-
ities in next token prediction. Additionally, they
also can process multilingual information, such as
machine translation, with proper human instruc-
tions. With this knowledge, we further explore
LLM integration without additional data. For an
input sentence x and previously generated target
tokens y1:t−1, our method operates as follows.

LLM Translator Interpolation In this method,
we make use of the translation abilities of LLMs.
At each time-step of inference, we utilize both x
and y1:t−1 to construct the prompt for the LLM.
The prompt here is the same with the translation
context for LLM as outlined in Section 3.3. Subse-
quently, the prompt is fed into the LLM and then
the LLM generates its probability distribution for
yt. Finally, we combine the LLM probability pLLM

with the NMT probability pNMT through interpola-
tion using a hyperparameter λ:

p(yt|x, ŷ1:t−1) = λpNMT(yt|x, ŷ1:t−1) +

(1− λ)pLLM(yt|x, ŷ1:t−1, pr), (7)

where pr represents the prompt template.

LLM Continuation Generator Fusion In this
method, we leverage the LLM’s capabilities for
generating continuations without relying on the
source language information. This means that the
generation of the next token is only conditioned
on y1:t−1. At each time step of inference, we feed
y1:t−1 into the LLM to obtain its next token prob-
ability pLLM. The final translation probability for
yt is calculated by adding this probability with the
generation probability of NMT, pNMT, using a hy-
perparameter λ as:

p(yi|x, ŷ1:t−1) = pNMT(yt|x, ŷ1:t−1) +

λpLLM(yt|yi|ŷ1:t−1). (8)

4 Experiments

In this section, we will introduce our experiments,
including the main experiment, LLM integration,
low-resource machine translation and a comprehen-
sive analysis from various perspectives.

Datasets and Evaluation Metrics We evaluated
the effectiveness of our proposed method on pub-
licly available datasets. For domain adaptation, we
performed experiments on IT, Koran, Law, and
Medical domains of multi-domain datasets pro-
vided by Aharoni and Goldberg (2020). To mea-
sure translation quality, we used sarcreBLEU (Post,
2018) and COMET (Rei et al., 2022). The data
statistics are given in table 1.
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Split
Multi-domain

WMT19
IT Koran Law Medical

Train 223K 17K 467K 248K 33M
Valid 2000 2000 2000 2000 6002
Test 2000 2000 2000 2000 2000

Table 1: Statistics of datasets.

Models We use the winner model of the WMT19
De-En news translation task, submitted by Face-
book, as the pretrained base NMT model (Ng
et al., 2019). For LLM, we used various ver-
sions of LLAMA 2 (Touvron et al., 2023), includ-
ing the base version LLAMA-2-7B, dialogue opti-
mized version LLAMA-2-7B-chat and ALMA-7B
(Advanced Language Model-based trAnslator) Xu
et al. (2023), a translation optimized model from
LLAMA-2-7B, respectively. We encountered dif-
ficulties when integrating the NMT model with
Llama 2. Facebook’s WMT19 De-En model can-
not be interpolated with LLM directly, because the
two models have differences in tokenization strat-
egy, word granularity, and training data, leading
to differences in the dictionary of the two mod-
els. Therefore, we trained another NMT model on
WMT19 De-En training data, using the dictionary
of Llama 2. Additionally, we trained a decoder-
only transformer language model (Radford et al.,
2019) with 12 layers and a model dimension of 768
on the target data of the WMT19 De-En dataset and
Llama 2 dictionary as well to ensure a fair compar-
ison. Before training, We cleaned WMT19 training
data by applying punctuation normalization and
language identification filtering. Subsequently, we
tokenized them using llama.tokenizer.

Settings We utilize the cross-lingual embedding
model LaBSE (Feng et al., 2022b) to transfer both
the source and target language datasets into em-
bedding representations. Subsequently, we employ
the dense vector similarity search library, FAISS
(Johnson et al., 2021), to perform cross-lingual
retrieval. For k-nearest neighbor searching from
the kNN datastore, we also rely on FAISS. In all
experiments, for retrieve top 32 similar sentences
from the target dataset. For kNN model, we re-
trieve k = 8 neighbors from the vector datas-
tore. Regarding the kNN temperature, we followed
the optimized settings from Zheng et al. (2021),
setting it to 100 for Koran, and 10 for other do-
mains. For the interpolation hyperparameter λ ,

we search it from λ ∈ {0.2, 0.3, 0.4} in LLM data-
store method, and other methods searches from
λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. For
decoding, we set the beam size to 5, and length
penalty to 1.0.

We take vanilla NMT (Base-NMT) and vanilla
kNN-MT (kNN-MT) as the baselines. To simulate
the usage of monolingual data, we use the target
language training data as the monolingual dataset.
The other methods compared are as follows:

Pseudo-kNN-MT: the method that introduced
in Section 3.2.

Retrieve-bt-kNN-MT: a variant of Pseudo-
kNN-MT. In this method, the retrieved similar tar-
get sentences are back translated into the source
language sentences to construct bilingual sentence
pairs, which are then used to construct vector data-
store.

Mono-bt-kNN-MT: a variant of kNN-MT,
whose datastore is created from a bilingual dataset
whose source sentences are obtained by translating
the target dataset back into source language.

4.1 Main Experiment

In this experiment, we evaluate our method on the
test set of the multi-domain dataset. The NMT
model is Facebook’s WMT19 De-En model, while
Facebook’s WMT19 En-De model (Ng et al., 2019)
is used to translate the target dataset into source
language. The experimental results in sacreBLEU
scores are presented in Table 2. The COMET
scores for this experiment can be found in Appen-
dices B.

The experimental results indicate that although
the performance is not as good as the vanilla kNN-
MT, our method, Pseudo-kNN-MT, can improve
sacreBLEU scores by an average of 4.51 BLEU
points compared to the NMT baseline. This im-
provement seems reasonable intuitively because
the pseudo-bilingual sentences are similar or rele-
vant in semantics, although not the exact matches.
However, the datastore of kNN-MT is constructed
from ground truth bilingual dataset. Compared
to Pseudo-kNN-MT, Retrieve-bt-kNN-MT con-
structs the datastore on machine-translated bilin-
gual dataset, which can further boost average
BLEU scores by 0.75 points. Furthermore, Mono-
bt-kNN-MT can yield an additional improvement
of 0.34 BLEU points. However, this also implies a
higher computational cost.

12220



Methods IT Koran Law Medical Average

NMT 38.43 17.07 45.99 41.97 35.86
kNN-MT 46.74(0.7) 21.93(0.7) 61.92(0.9) 56.40(0.8) 46.75
Pseudo-kNN-MT 40.63(0.3) 18.46(0.4) 53.03(0.4) 49.36(0.5) 40.37
Retrieve-bt-kNN-MT 41.53(0.8) 19.44(0.8) 54.49(0.8) 49.02(0.8) 41.12
Mono-bt-kNN-MT 41.58(0.5) 20.35(0.7) 54.43(0.9) 49.47(0.7) 41.46

Table 2: SacreBLEU scores of Facebook’s WMT19 De-En model on the multi-domain test sets. The numbers
in the parentheses at the bottom-right indicate that the model yielded the best translation performance when the
hyperparameter lambda for interpolation is this value.

4.2 LLM Integration

In this experiment, we validate the efficacy of inte-
grating NMT model and LLM on the multi-domain
test sets. To maintain vocabualry consistency be-
tween NMT model and LLM for interpolation, we
utilize WMT19 De-En Llama-2 dictionary model
as the base NMT model, as detaild in Subsection 4.
We explore different LLM integration approaches,
such as interpolation via kNN-MT with a pseudo
datastore constructed by LLM, leveraging the trans-
lation capabilities of the Llama model, and fu-
sion using LLM as a continuation generator, on
Llama2, Llama2-chat, and ALMA models, respec-
tively. The experimental results are presented in
Table 3.

The results from the base models indicate that
all three Llama models exhibit weaker translation
performance compared to the NMT model, includ-
ing the translation-optimized ALMA model. Due
to the utilization of the Llama dictionary in training
the base NMT model, its performance showed an
average decrease of 1.67 BLEU points compared to
Facebook’s WMT19 model. In this study, to ensure
a fair comparison with the kNN-MT method using
LLM pseudo datastore, we also validate Pseudo-
kNN-MT. Pseudo-kNN-MT demonstrate a signifi-
cant enhancement compared to the base NMT, with
an average improvement of 4.37 BLEU points on a
slightly less robust NMT model. Retrieve-bt-kNN-
MT and Mono-bt-kNN-MT further enhance the
performance over Pseudo-kNN-MT.

Although the performance did not reach that of
pseudo-kNN-MT, the utilization of LLMs in the
kNN component generally outperform its NMT
baseline. This validates the effectiveness of kNN-
MT with LLM pseudo datastore. Moreover, it is ev-
ident that the performance enhancement becomes
more significant with "strong" LLMs. This sug-
gests that the performance of the kNN component

is related to the translation capability of the LLM;
more robust translation models demonstrate supe-
rior translation context compressing ability, leading
to greater performance enhancements.

Within the interpolation of the LLM translators,
all three models can improve NMT translation to
varying extents on zero-shot and few-shot scenar-
ios, with such enhancement being notably obvious
in the more advanced ALMA model. Concurrently,
optimal translation results are achieved on larger λ
values for the stronger LLM translators, indicating
that latter can provide more translation knowledge
to the NMT.

In the experimentation of fusing language mod-
els as text continuators, the Llama2 model, owing
to its strong generative capability, assists in gener-
ating better translations, exhibiting an average im-
provement of 1.07 BLEU points over the base NMT.
Conversely, conventional generative language mod-
els decrease the average BLEU score by 0.83 points
compared to the base NMT. These results indicate
that a language model solely trained for next token
generation, if powerful enough, can be directly in-
tegrated during decoding and contribute to better
translation. Furthermore, fine-tuned language mod-
els on validation sets in each domain also demon-
strate effectiveness in achieving a similar impact.

4.3 Low Resource Machine Translation

All the experiments mentioned above are conducted
using a high-resource NMT model. However, it is
well known that monolingual data is more advanta-
geous in low-resource MT scenarios. To evaluate
the effectiveness of our method in such scenarios,
we carried out the main experiment by replacing the
De-En NMT model with a low-resource one. This
low resource NMT model was trained on a subset
of the training dataset from the WMT21 De-En
news translation task. First, the training data was
cleaned using language detection operation and by
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Methods IT Koran Law Medical Average

Base Models

NMT 36.39 16.76 44.29 39.34 34.19
+ kNN-MT 45.46(0.7) 21.68(0.6) 60.24(0.9) 55.17(0.8) 45.64
+ Pseudo-kNN-MT 38.97(0.3) 18.14(0.4) 51.14(0.4) 47.19(0.5) 38.56
+ Retrieve-bt-kNN-MT 39.59(0.5) 19.26(0.5) 52.14(0.6) 46.71(0.6) 39.43
+ Mono-bt-kNN-MT 40.22(0.7) 20.14(0.6) 52.40(0.7) 46.85(0.7) 39.90
Llama2 34.19 11.71 37.52 33.96 29.35
Llama2-chat 29.03 12.97 28.54 33.83 26.09
ALMA 36.20 15.66 36.25 40.05 32.04

kNN-MT with LLM Pseudeo Datastore

+Llama2-zero-shot 36.32(0.2) 18.08(0.3) 45.53(0.4) 42.17(0.4) 35.53
+Llama2-three-shot 38.38(0.3) 17.81(0.2) 45.61(0.3) 42.17(0.4) 35.99
+Llama2-chat-zero-shot 38.85(0.4) 17.85(0.3) 45.49(0.3) 42.46(0.3) 36.16
+Llama2-chat-three-shot 38.61(0.3) 17.96(0.3) 45.49(0.2) 42.43(0.4) 36.12
+ALMA-zero-shot 38.40(0.3) 18.11(0.3) 45.95(0.3) 42.74(0.4) 36.30
+ALMA-three-shot 38.64(0.3) 17.95(0.3) 45.63(0.3) 42.61(0.4) 36.20

LLM Translator Interpolation

+Llama2-zero-shot 37.89(0.2) 17.39(0.2) 44.87(0.2) 39.83(0.1) 35.00
+Llama2-three-shot 37.88(0.1) 18.06(0.4) 44.89(0.2) 39.84(0.1) 35.17
+Llama2-chat-zero-shot 38.10(0.1) 17.16(0.2) 44.89(0.1) 40.04(0.3) 35.05
+Llama2-chat-three-shot 38.39(0.3) 17.51(0.2) 45.26(0.2) 40.39(0.3) 35.39
+ALMA-zero-shot 38.93(0.5) 17.70(0.4) 45.50(0.3) 41.78(0.5) 35.98
+ALMA-three-shot 38.62(0.5) 18.20(0.6) 45.25(0.5) 41.83(0.5) 35.98

Language Model Continuation Generator Fusion

+Llama2-7B 37.15(0.2) 18.38(0.7) 45.10(0.3) 40.41(0.5) 35.26
+LM 34.20(0.1) 17.00(0.1) 43.37(0.1) 38.89(0.1) 33.36
+fine-tuned-LM 35.79(0.1) 18.35(0.3) 47.03(0.2) 42.69(0.2) 35.96

Table 3: SacreBLEU scores of WMT19 Llama-dictionary De-En model on the test sets of multi-domain data. The
numbers in the parentheses at the bottom-right indicate same meaning as in Table 2.

removing too long sentences. Then, we uniformly
sampled 500K bilingual data from the cleaned data
as the training dataset. The news-test 2019 De-En
dataset was used as validation set. To translate
the target data into the source language, an En-De
NMT model was trained using the same training
dataset. The experimental results are given in Table
4, where BT denotes the standard back-translation
method proposed in (Sennrich et al., 2016).

Experimental results indicate that Pseudo-kNN-
MT outperforms base NMT significantly, with an
average increase of 5.36 BLEU points. Surpris-
ingly, its performance is comparable to the strong
BT method, with only 1.11 BLEU points lower
on average, and even superior to BT in Koran do-

main. This is mainly because Pseudo-kNN-MT
relies more on the retrieval similarity, while BT
depends more on the data scale. Despite the Ko-
ran dataset containing only 17K sentence pairs, it
offers relatively similar sentences, resulting in lim-
ited performance improvement for BT. In contrast,
the Law dataset, with 467K bilingual domain sen-
tence pairs, greatly enhances BT’s performance,
while Pseudo-kNN-MT shows less improvement
compared to BT. Another interesting finding is that
Pseudo-kNN-MT performs better than Retrieve-bt-
kNN-MT, as the latter depends on a low-resource
reverse NMT model for obtaining pseudo bilin-
gual data. For additional low-resource experiments,
please see Appendix A.1.
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Methods IT Koran Law Medical Average

NMT 28.69 10.68 28.42 30.17 24.49
BT 31.72 12.73 41.32 38.08 30.96
Pseudo-kNN-MT 30.61(0.3) 13.97(0.5) 36.75(0.4) 38.06(0.4) 29.85
Retrieve-bt-kNN-MT 31.91(0.4) 12.76(0.4) 36.09(0.6) 37.00(0.6) 29.44
Mono-bt-kNN-MT 32.35(0.5) 13.28(0.6) 36.65(0.7) 37.41(0.6) 29.92

Table 4: SacreBLEU scores of low resource MT experiment on the multi-domain test sets. The numbers in the
parentheses at the bottom-right indicate same meaning as in Table 2.
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Figure 3: Impact of nearest neighbor numbers on the
translation.

4.4 Influence of Nearest Neighbors Numbers
for Per Query

The performance of kNN-MT is sensitive to the
value of k, representing the number of nearest
neighbors retrieved. To analyze the impact of k
on our approach, we conducted experiments on the
Medical and Law test sets using different k val-
ues. In this experiment, the cross-lingual retrieval
remains at 32, while we vary the number of neigh-
bors retrieved from the kNN datastore. The results
from the experiment depicted in 3 indicate that both
approaches show an initial improvement as k in-
creases, followed by a decline. This trend aligns
with the observations in kNN-MT (Khandelwal
et al., 2021), suggesting that increasing the number
of neighbors appropriately benefits translation, but
an excessive number introduces noise and degrades
translation quality.

4.5 Influence of Cross-retrieval Similarity on
Translation

Except for the experiments in section 4.3, we con-
ducted additional low-resource experiments in Ap-
pendix A.1. The findings revealed that Pseudo-
kNN-MT did not succeed in enhancing translation

group1 group2 group3 group4
Grouping by Similarity of Retrieval

30

40
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Law-Retrieve-bt
Medical-Baseline
Medical-Pseudo
Medical-Retrieve-bt

Figure 4: Impact of retrieval similarity on the translation
results.

quality in the universal domain. These experiments
highlighted the importance of similarity between
the retrieval and source sentence. To investigate
the impact of retrieval similarity on translation, we
perform the experiments below on Medical and
Law test sets. Specifically, We sort the retrieved
32 target sentences based on their similarity, then
divide them into four groups accordingly. The sim-
ilarity between two vectors is measured using the
L2 distance from the FAISS library, where closer
distances indicate higher similarities. Each group
consists of eight sentences, which were used as
retrievals for that group. We set the value of k for
kNN search to 4, while keeping other experimental
settings consistent with the main experiment. The
results are presented in Figure 4. The average dis-
tances of retrieval from Group 1 to Group 4 are
as follows: for Medical (0.5764, 0.6834, 0.7232,
0.7491) and for Law (0.5798, 0.6648, 0.6964,
0.7167). This progression indicated a sequential
decrease in similarity from Group 1 to Group 4,
suggesting that higher similarity in target language
retrieval led to more significant improvements in
translation performance.
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5 Related Works

As a mature and widely known method, kNN-
MT(Khandelwal et al., 2021) has various variants.
Zheng et al. (2021) propose adaptive kNN-MT,
which can dynamically select k to avoid noisy
neighbors. Deguchi et al. (2023) introduce subset
kNN-MT, which speeds up inference by retrieving
from a small subset based on source similarity. We
also leverage subset retrieval while relying cross
language similarity. Wang et al. (2022) introduces
cluster-based kNN-MT, which adopts a compact
network to prune feature datastore extremely. Mar-
tins et al. (2022) introduces chuck-based kNN-MT,
which changes retrieve granularity from single to-
kens to chunks. Dai et al. (2023) introduces a fast
kNN-MT method, which combines subset kNN-
MT and distance-aware λ together. Liu et al. (2023)
introduced kNN-TL, which explores the combi-
nation of transfer learning method and kNN-MT
in low-resource scenarios. Zhu et al. (2023b) in-
troduces INK, a training framework that refines
the representation space of an NMT model accord-
ing to the extracted kNN knowledge to avoid the
high inference cost of the kNN-MT. Additionally,
Wang et al. (2023) explores how non-parametric
kNN-MT method can improve machine transla-
tion models at the fine-tuning stage. Cao et al.
(2023) introduces a method to address the gap be-
tween the upstream NMT model and downstream
domains datastores, making kNN-MT more suit-
able for downstream tasks by reconstructing datas-
tore.

6 Conclusion

In this paper, we propose pseudo-kNN-MT to ex-
ploit target language data to NMT. Experimental
result show its strong domain adaptation capability
on both high-resource and low-resource MT sce-
narios, validating the effectiveness of incorporating
target monolingual data in the kNN-MT. Within
this method, we employ a cross-lingual retrieval
model to retrieve similar sentences from the target
language dataset and pair them with the input sen-
tences to construct pseudo-bilingual data, which is
then used to build a key-value datastore. We also
explore methods of incorporating LLMs to NMT
from various perspectives and find that LLMs are
beneficial for robust NMT systems.

7 Limitations

Our proposed pseudo-kNN-MT method is heavily
influenced by the similarity of the retrieved target
language sentence. If the retrieved target sentence
matches the source sentence semantically, it can
enhance the translation; otherwise, it may not, and
could even degrade translation performance. There-
fore, its applicability is limited. Specifically, when
translating in a particular domain, the target lan-
guage data used should also belong to that domain
to ensure similarity in retrieval. If this target lan-
guage data can cover the domain extensively, then
our method can perform even better.
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A Other Experiments

A.1 Low Resource Settings
To verify the performance of our method in low-
resource scenarios, we conducted experiments on
the datasets from Is-En and Cs-En news translation
tasks of WMT 21. For data selection, we com-
bined all datasets except for the bilingual obtained
from machine translation, and then performed uni-
form sampling on the cleaned bilingual data to
obtain a bilingual dataset. The monolingual tar-
get language data utilized the news2021 data from
news-crawl/en. After cleaning, we also used uni-
form sampling to obtain final monolingual data. In
the back-translation method, following Sennrich
et al. (2016), we initially trained a reverse NMT
model from bilingual data to translate target lan-
guage monolingual data back into the source lan-
guage, resulting in 1 million synthetic-bilingual
data. Subsequently, we mixed this data with the
original bilingual data and trained an NMT model
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Split Is-En Cs-En En

Train 500K 500K 1M
Valid 2004 2082 -
Test 1000 1000 -

Table 5: Statistics of datasets for low resource transla-
tion scenario.

Split Is-En Cs-En

NMT 21.46 21.46
Back-translation 25.69 23.68
Pseudo-kNN-MT 21.20 21.40
Mono-bt-kNN-MT 22.26 22.54
Retrieve-bt-kNN-MT 21.79 21.97

Table 6: SacreBLEU scores of WMT21 low resource
NMT models on WMT 21 test sets.

on this combined dataset. Data statistics for this
section are presented in Table 5, and experimen-
tal results of these low resource NMT models on
WMT21 test sets are provided in Table 6. The
results indicated that Pseudo-kNN-MT failed to en-
hance translation quality, while Retrieve-bt-kNN-
MT can improve it slightly. As is discussed in
Section 4.5, the similarity between the retrieval
and source language is crucial. In order to retrieve
more similar sentences, we expand target data scale
to 5M, 10M, 20M, and calculated their L2 dis-
tances with the source sentences. The results in
Table 7 demonstrate a gradual improvement in our
method, although with small margins. Furthermore,
we tested our method with the same Cs-En MT
model on the JRC-Aquis Cs-En dataset used in (Mu
et al., 2023), which exhibits higher retrieval sim-
ilarity, leading to significant improvements. The
target data scale of JRC-Aquis is 681K and aver-
age L2 distance of the retrievals is 0.5768. These
results suggest that low-resource translation can
also achieve significant enhancements with highly
similar retrievals.

B COMET Scores

Here we present the COMET evaluation results
for the main experiment and the LLM integration
experiments. Specifically, Table 9 and Table 10
correspond to Table 2 and Table 3 in the main part
of the paper, respectively.

Target Data Sacale 1M 5M 10M 20M

NMT 21.46 - - -
Pseudo-kNN-MT 21.40 21.31 21.51 21.61
Retrieve-bt-kNN-MT 21.97 22.12 22.08 22.16
Average Distance 0.8785 0.8100 0.7813 0.7542

Table 7: SacreBLEU scores of WMT21 Cs-En low re-
source model on WMT21 test set with expanding target
data scale.

models SacreBLEU

NMT 32.79
Pseudo-kNN-MT 39.25
Retrieve-bt-kNN-MT 42.29

Table 8: SacreBLEU scores of WMT21 Cs-En low re-
source model on JRC-Aquis test set.
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Methods IT Koran Law Medical Average

NMT .8246 .7257 .8538 .8316 .8089
kNN-MT .8489 .7352 .8717 .8486 .8261
Pseudo-kNN-MT .8251 .7224 .8468 .8243 .8046
Retrieve-bt-kNN-MT .8264 .7314 .8611 .8384 .8143
Mono-bt-kNN-MT .8296 .7300 .8596 .8393 .8146

Table 9: COMET scores of Facebook’s WMT19 De-En model on the multi-domain test sets.

Methods IT Koran Law Medical Average

Base Models

NMT .8236 .7244 .8547 .8335 .8090
+ kNN-MT .8616 .7342 .8748 .8541 .8311
+ Pseudo-kNN-MT .8338 .7208 .8492 .8252 .8072
+ Retrieve-bt-kNN-MT .8346 .7239 .8630 .8409 .8156
+ Mono-bt-kNN-MT .8354 .7304 .8653 .8428 .8184
Llama2 .7456 .6827 .7678 .8035 .7499
Llama2-chat .7548 .7773 .7954 .7894 .7792
ALMA .7700 .7643 .7985 .8049 .7844

kNN-MT with LLM Pseudeo Datastore

+Llama2-zero-shot .7739 .7893 .8177 .8080 .7972
+Llama2-three-shot .7772 .7890 .8177 .8083 .7980
+Llama2-chat-zero-shot .7750 .7891 .8173 .8074 .7972
+Llama2-chat-three-shot .7762 .7889 .8177 .8082 .7977
+ALMA-zero-shot .7769 .7889 .8176 .8075 .7977
+ALMA-three-shot .7768 .7888 .8174 .8075 .7976

LLM Translator Interpolation

+Llama2-zero-shot .7819 .7932 .8189 .8085 .8006
+Llama2-three-shot .7823 .7933 .8189 .8087 .8008
+Llama2-chat-zero-shot .7869 .7978 .8204 .8146 .8049
+Llama2-chat-three-shot .7889 .7975 .8208 .8142 .8054
+ALMA-zero-shot .7877 .7992 .8206 .8124 .8050
+ALMA-three-shot .7866 .7977 .8204 .8144 8048

Language Model Continuation Generator Fusion

+Llama2-7B .7782 .7913 .8177 .8096 .7992
+LM .7748 .7856 .8128 .8058 .7947
+fine-tuned-LM .7772 .7891 .8165 .8093 .7980

Table 10: COMET scores of WMT19 Llama-dictionary De-En model on the test sets of multi-domain data.
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