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Abstract

An important requirement for the reliable de-
ployment of pre-trained large language models
(LLMs) is the well-calibrated quantification of
the uncertainty in their outputs. While the like-
lihood of predicting the next token is a prac-
tical surrogate of the data uncertainty learned
during training, model uncertainty is challeng-
ing to estimate, i.e., due to lack of knowledge
acquired during training. Prior efforts to quan-
tify uncertainty of neural networks require spe-
cific architectures or (re-)training strategies,
which are impractical to apply to LLMs with
several billion parameters, or for black-box
models where the architecture and parame-
ters are not available. In this paper, we pro-
pose Bayesian Prompts Ensembles (BayesPE),
a novel approach to effectively obtain well-
calibrated uncertainty for the output of pre-
trained LLMs. BayesPE computes output prob-
abilities through a weighted ensemble of differ-
ent, but semantically equivalent, task instruc-
tion prompts. The relative weights of the dif-
ferent prompts in the ensemble are estimated
through approximate Bayesian variational in-
ference over a small labeled validation set.
We demonstrate that BayesPE approximates
a Bayesian input layer for the LLM, provid-
ing a lower bound on the expected model error.
In our extensive experiments, we show that
BayesPE achieves significantly superior uncer-
tainty calibration compared to several baselines
over a range of natural language classification
tasks, both in zero- and few-shot settings.

1 Introduction

Generative pre-trained large language models
(LLMs) have proven to be very effective at per-
forming a broad variety of natural language pro-
cessing (NLP) tasks in zero- and few-shot settings
(Brown et al., 2020; Touvron et al., 2023; Jiang
et al., 2023a). These capabilities make them attrac-
tive alternatives to task-specific fine-tuned models,
as they do not require large annotated data sets or

gradient updates, but simply take as input relevant
text instructions (i.e., prompts) to perform the in-
ference of interest (Petroni et al., 2019; Shin et al.,
2020; Sanh et al., 2021; Brown et al., 2020).

However, safely deploying LLMs requires well-
calibrated estimates of the uncertainty in their out-
puts (Amodei et al., 2016; Hendrycks et al., 2021;
Zhou et al., 2024). This is particularly challenging
as LLMs are normally not trained to capture their
own uncertainty and, due to their size and complex-
ity, it is difficult and expensive to fine-tune or adapt
them (Jiang et al., 2021; Kuhn et al., 2023; Osband
et al., 2022). In addition, many state-of-the-art
LLMs are proprietary and available only via APIs
with their weights and architecture hidden from
end users, leaving black-box integration as the only
option (Katz et al., 2023; Ye et al., 2023a). This
precludes the application of common model uncer-
tainty estimation methods for deep learning, i.e.,
drop-out or deep ensembles (Zhou et al., 2022a;
Gal and Ghahramani, 2016; Lakshminarayanan
et al., 2017).

To overcome these limitations, we propose
Bayesian Prompts Ensembles (BayesPE), a sim-
ple yet effective approach for estimating the uncer-
tainty of LLMs in black-box scenarios (i.e. without
access to model weights). Similarly to Wightman
et al. (2023) and Jiang et al. (2023b), we ensem-
ble the output probabilities obtained by running
the LLM classifier with different variations of the
prompt task instructions. However, instead of sim-
ply combining all prompts with equal contribu-
tion, we learn their relative importance through
approximate variational inference with a small val-
idation set. Figure 1 schematically illustrates our
approach. BayesPE adapts the use of different
prompts to the task and LLM of choice, while
obtaining well-calibrated estimates of the output
uncertainty. We further show that BayesPE ap-
proximates a Bayesian input layer to the LLM and
provides a lower bound to the reducible error of
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Figure 1: (a) BayesPE optimisation: Each validation text sample xj ∈ x is appended to each of the semantically
equivalent instruction prompts ai. The LLM is used to compute the likelihood p(y∗j |ai, xj) ∈ p(y∗|ai,x) for each
validation ground-truth label y∗j ∈ y∗. The returned likelihoods are then used to compute learned weights w∗

i

through the BayesPE objective. (b) BayesPE inference: A new test sample x is appended to each prompt and all
combinations are passed to the LLM. Each of the resulting class probability distributions p(y|ai, x) is weighted by
the respective learned weight w∗

i and aggregated to obtain the final distribution p(y|x).

the model. In our extensive empirical evaluation,
we test BayesPE with several LLMs and a range
of text classification tasks, both in zero- and few-
shot scenarios. In each case, we measure several
uncertainty estimation and calibration metrics and
compare to existing competitive baselines.

2 Background & Related Work

Model Uncertainty in Deep Learning Develop-
ing deep neural networks (DNNs) that “know when
they don’t know” is a long standing challenge in
deep learning (Amodei et al., 2016; Zhou et al.,
2022a). Unlike other machine learning models,
such as Gaussian processes (MacKay et al., 1998;
Seeger, 2004; Damianou and Lawrence, 2013) and
Markov chain Monte Carlo samplers (Andrieu
et al., 2003), DNNs are not capable to self-assess
output uncertainty originating from model mis-
specification, i.e., model or epistemic uncertainty,
often resulting in wrong inferences with high con-
fidence for out of distribution data (Gawlikowski
et al., 2023). Conversely, Bayesian neural networks
(BNNs) provide a principled way to capture this
uncertainty by assigning distributions of values to
their weights, instead of point estimates (MacKay,
1992; Goan and Fookes, 2020; Jospin et al., 2022).
BNNs then estimate epistemic output uncertainty
by sampling the weights’ distributions at inference
time.

While BNNs are arguably the most principled
way to model uncertainty, they are difficult and
often prohibitively expensive to train in practice
(Graves, 2011; Blundell et al., 2015; Gal and
Ghahramani, 2016; Wu et al., 2018). This mo-
tivated several approximations to BNNs to effi-
ciently model epistemic uncertainty. Most success-

ful approaches include drop-out, where variation
in the weights is approximated by masking ran-
dom hidden units (Gal and Ghahramani, 2016; Li
and Gal, 2017), and deep ensembles, where uncer-
tainty is estimated with multiple models trained on
the same data with different random seeds (Lak-
shminarayanan et al., 2017; Hoffmann and Elster,
2021). In this work, we aim to approximate model
uncertainty for black-box pre-trained LLMs. In this
setting, uncertainty is intractable and we assume no
access to the weights to modify or train the model.

Uncertainty Quantification for LLMs One way
to estimate uncertainty for black-box LLMs is to
use the probabilities of the generated tokens (Ott
et al., 2018; Zhao et al., 2021; Mielke et al., 2022;
Yu et al., 2022). Using relative tokens probabili-
ties is proven to provide good calibration for sev-
eral tasks (Jiang et al., 2021; Stengel-Eskin and
Van Durme, 2022). Recent work also models the
uncertainty of full sentences taking into account se-
mantic equivalence. Malinin and Gales (2020) use
input-output mutual information to capture uncer-
tainty. Kuhn et al. (2023) compute distributions and
uncertainty in a representation space specifically
trained such that distances capture semantic simi-
larity. Manakul et al. (2023) uses the LLM itself to
evaluate similarity among multiple generations.

Using the LLM token probabilities is a reli-
able estimate of the uncertainty they learn from
training data, i.e., data uncertainty. However, it
does not necessarily capture model uncertainty, i.e.,
for inputs where the model is not competent (Os-
band et al., 2022). Arguably, model uncertainty
is more critical to safety, as it assesses when we
can trust the predictions of the LLM (Hüllermeier
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and Waegeman, 2021). Analogously to approxi-
mate Bayesian approaches for deep learning, sev-
eral studies propose sampling weights with dropout
(Fomicheva et al., 2020; Wang et al., 2022). Other
approaches build and train specific components
instead, designing Bayesian transformer blocks
(Sankararaman et al., 2022) or adding an uncer-
tainty component to existing pre-trained LLMs and
fine-tuning the whole architecture (Osband et al.,
2022). While effective, these approaches need to
have access to the model weights and are computa-
tionally expensive to apply at scale. A recently pro-
posed approach for black-box scenarios is that of
prompting LLMs themselves to generate estimates
of their own confidence (Kadavath et al., 2022; Lin
et al., 2022; Zhou et al., 2023). However, it is not
trivial to construct prompts that result in accurate
confidence assessments (Zhou et al., 2024).

Prompt Ensembles Recent works have explored
aggregating prompts to improve predictive perfor-
mance of LLM prompting (Bai et al., 2022; Shi
et al., 2023). Similarly to our own work, Hou et al.
(2023) assign different weights to different prompts
in the ensemble and optimize them with a valida-
tion set. However, they train specific verbalizers
for each prompt and their objective is based on
classification accuracy maximization. In our own
work, we perform direct prompting instead and
prompts weights are optimized with a Bayesian
objective, balancing data likelihood and uniform
exploitation of the prompts for improved calibra-
tion. Prompts ensembles have also been explored to
improve calibration, studying different strategies to
generate diverse prompts for this purpose (Wight-
man et al., 2023; Jiang et al., 2023b). However,
these works aggregate all prompts in the ensem-
ble with equal importance. As LLMs are highly
sensitive to prompt engineering (Jiang et al., 2020;
White et al., 2023), this approach runs the risk of
including low performing prompts in the ensem-
ble and degrade overall performance. Conversely,
we hypothesize that by learning the importance of
different prompts with a Bayesian approach, we
can strike a balance between prompt variation and
data likelihood maximization, in analogy with the
inference of BNN weight distributions given a prior
and data.

Automatic Prompt Engineering Given the dif-
ficulty in prompt selection, recent work proposed
to automatically generate them (Shin et al., 2020;
Zhou et al., 2022b; Yang et al., 2023). While re-

lated to the scope of this work, our aim is in an or-
thogonal direction, as we focus on how to optimally
use a series of pre-defined prompts for uncertainty
estimation, rather than generating and optimizing
a prompt for improving performance in a particu-
lar task. In fact, the two approaches are comple-
mentary (see Appendix C.3). Some works in the
domain of vision-language models also propose
Bayesian treatments of automatic prompt gener-
ation, balancing out the evidence from a valida-
tion set and regularizing priors (Derakhshani et al.,
2023; Liu et al., 2023). However, these methods
specifically apply to vision-language models, as
they formulate the Bayesian combination of prior
and posterior in the common text-image embedding
space.

3 Bayesian Prompt Ensembling

Problem Description We consider the problem
of text classification with a black-box decoder-only
LLM via prompting. In a zero-shot setting, the
text input (prompt) to the LLM can be separated
into two parts: (i) task instructions a, e.g., “is the
sentiment of the following review positive or neg-
ative?”; and (ii) test input x, e.g., a movie review
in a test set. The prompt a is constant to all in-
puts for a given task, while test inputs x change,
e.g., different reviews to be classified as positive
or negative. The class probabilities p(y|x, a) for
the corresponding label y are inferred by passing
the instruction-test data point pair {a, x} as input
to the LLM, e.g., “is the sentiment of the following
review positive or negative? {review}”, to obtain
the probabilities for the next token or sequence that
correspond to the particular classes in the vocabu-
lary, e.g., ‘positive’ and ‘negative’. In a few-shot
setting, the task instructions can be accompanied
with demonstrations (i.e. a small set of labeled data
points).

We also assume that we have access to N
semantically equivalent task instruction prompts
ai ∈ a, and a small validation data set D of M
data points xj ∈ x with corresponding ground-
truth labels y∗j ∈ y∗. Our main aim is to
optimally exploit the LLM through prompting
p(y|x, a), the available labeled validation data D
and the given batch of prompt instructions a to
obtain well-calibrated classification probabilities
p(y|x,D). By well-calibrated, we mean that the
LLM assigns, on average, the same confidence to
its own prediction as the hidden ground-truth, i.e.,

12231



Ep(y|x,D) log p(y|x,D) ≃ log p(y∗|x,D) for new
test input data {x, y∗}. This results in a model
which produces high confidence when it generate
the correct class token and low confidence when
it is likely to generate the incorrect class token.
Experimentally, we measure this property with a
variety of established calibration metrics. In this
paper, we do not aim to optimize the definition or
automatic generation of the prompts a. We assume
these to be fixed and equally relevant a-priori. We
focus on the problem of how to optimally employ
them for well-calibrated inference. We study per-
formance with different existing prompt generation
strategies in Appendix C.3.

Modeling We model the batch of task in-
struction prompts a as a latent variable, result-
ing in the LLM having the form p(y|x,D) =∫
p(a|D)p(y|x, a)da. As the LLM is fixed, the

conditional p(y|x, a) is independent of the valida-
tion data D. The posterior p(a|D) is the desired
distribution of task instructions a given D which
is intractable to compute directly. We model the
batch of prompts as samples from a prior distri-
bution ai ∼ p(a) of semantically equivalent task
instruction prompts for the task of interest. We
further assume that all prompts in the batch have
approximately the same a-priori importance, i.e.,
p(ai) ≈ C,∀ai.
Approximate Variational Inference As the pos-
terior of prompts given the validation data p(a|D)
is intractable to compute, we wish to find a distribu-
tion q∗(a) to approximate it. We can formulate this
task as a KL divergence minimization using varia-
tional inference (Graves, 2011; Gal et al., 2016):

q∗(a) = argmin
q(a)

KL[q(a)|p(a|D)] =

argmax
q(a)

Eq(a)[log p(y
∗|a,x)]−KL[q(a)|p(a)].

(1)

The reformulation on the second line of Equation
1 is a standard result of variational inference, its
derivation is detailed in Appendix A.1. Once q∗(a)
has been computed, the classification likelihood for
a new input x can be estimated as:

p(y|x,D) ≃ p(y|x) =
∫

q∗(a)p(y|x, a)da. (2)

We argue that the classification likelihood can be
interpreted as the addition of a Bayesian input layer,
where a ∼ q∗(a) acts as a stochastic variable that
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Figure 2: (a) Prompt sampling as a Bayesian layer:
sampled instruction prompts a ∼ q∗(a) act as stochastic
parameters of a transformation applied to a text input
x → a, x. This operation is analogous to a Bayesian
input layer. (b) BayesPE approximation: We restrict
sampling to the existing prompts ai ∈ a and therefore
only need the values of the density q∗(a) at these points,
which we re-parameterize in the weights w∗

i ∈ w∗.

transforms the LLM input x to {a, x}, i.e., the
prompt including instructions and text input, by
appending the sampled instruction prompt. Figure
2(a) illustrates this analogy.

Fitting a parametric variational density q(a)
through the maximization of Equation 1 is chal-
lenging, as this distribution would be a generative
language model itself with parameters to be trained;
sampling a prompt a ∼ q(a) means generating text
with defined properties. While this is certainly
an interesting research direction for future work,
we aim instead to exploit the set of available pre-
defined prompts ai to efficiently build the prompt
ensemble. To this end, we estimate the likelihood
of Equation 2 using importance sampling from the
prior p(a):

p(y|x) ≈ 1

N

N∑

i

q∗(ai)
C

p(y|ai, x). (3)

A full derivation is presented in Appendix A.2.
Note that, with this importance sampling approxi-
mation, the likelihood computation only depends
on the value of the variational density q∗(a) at the
N points a = ai, i.e., the pre-defined prompts.
Figure 2(b) illustrates this approximation.

Therefore, we only need to optimize the discrete
values q(ai) in the variational inference of Equa-
tion 1. We re-parameterize these values as normal-
ized weights wi =

q(ai)
NC ∈ w, with wi ∈ [0, 1] and
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∑
wi = 1 to re-formulate Equation 1 as:

argmax
w

N∑

i

wi log p(y
∗|ai,x)

︸ ︷︷ ︸
Validation Data Likelihood

−
N∑

i

wi logwi

︸ ︷︷ ︸
Entropy

(4)

A full derivation is presented in Appendix A.3.
The BayesPE objective of Equation 4 consists
of two terms. The first term encourages high
average likelihood of validation data across the
weighted prompts. The second term is the en-
tropy of the weights wi ∈ w and pushes them
to be uniformly distributed. As log p(y∗|ai,x) =∑M

j log p(y∗j |ai, xj), the relative importance of
the validation likelihood term increases with M ,
i.e., the size of the validation data. In the limit
of M → ∞, the entropy term vanishes, leading
to always sampling the prompt with the highest
validation likelihood ai=best while the rest are dis-
carded (w∗

i=best = 1, w∗
i ̸=best = 0). Conversely,

with no validation data, i.e., M = 0, only the en-
tropy term remains, leading to uniformly sample
task instruction prompts (w∗

i = 1/N , ∀i), which
is equivalent to the standard ensembling approach
proposed by Wightman et al. (2023) and Jiang et al.
(2023b).

Once the BayesPE weights w∗
i ∈ w∗ have been

learned through the optimization of Equation 4,
we can infer class probability distributions for new
inputs x:

p(y|x) ≈
N∑

i

w∗
i p(y|ai, x) (5)

To sum up, we compute the final class proba-
bilities p(y|x,D) given a new test input x by first
prompting the LLM N times, with each of the
available instruction prompts ai ∈ a to obtain con-
ditional class probabilities p(y|ai, x). Second, we
compute the weighted sum of the class probabili-
ties using the weights w∗

i ∈ w∗, learned through
the optimization of Equation 4. BayesPE can also
be interpreted as a Bayesian mixture of experts
(Waterhouse et al., 1995), where weights are ob-
tained through approximate MAP inference (details
in Appendix A.4 and C.4).

Lower Bound on Model Error BayesPE pro-
vides a lower bound on the expected model error
for the LLM, even when its weights are not known.
Specifically, if prompts a ∼ q∗(a) are semantically

equivalent to each other, the following inequality
is valid:

Eq∗(a)Ep(θ|DT )KL[p(y|x, θ, a)||p(y|x, θ∗, a)] ≥
Ep(θ|DT )Eq∗(a)KL[p(y|x, θ, a)||p(y|x, θ)]

(6)

A full derivation is presented in Appendix A.5. In
the notation above, we have added the weights θ
of the pre-trained LLM which are not available
in black-box settings. p(θ|DT ) is the posterior of
these weights, given the data set that was used to
train the LLM DT . We assume the pre-trained
LLM weights to be a sample from this posterior
θ ∼ p(θ|DT ). θ∗ are the optimal weights for
the LLM, for which its reducible model error is
null. Equation 6 states that the expected divergence
between the output given any particular prompt
p(y|x, θ, a) and the aggregate output p(y|x, θ), i.e.,
the uncertainty with respect to the input prompts, is
a lower bound to the expected divergence between
the given LLM p(y|x, θ, a) and the LLM with op-
timal weights p(y|x, θ∗, a), i.e., the expected re-
ducible model error. This bound indicates that
BayesPE approximates the reducible model uncer-
tainty, as opposed to the data uncertainty. Bayesian
neural networks provide an analogous bound on
the expected model error (Appendix A.6).

4 Experimental Setup

Data: We evaluate BayesPE on a total of ten
tasks. Three sentiment analysis tasks: Amazon
Reviews (He and McAuley, 2016), Imdb (Pal et al.,
2020) and SST-2 (Socher et al., 2013). Three
topic modeling tasks: DBPedia 14, Yahoo Answers
(Zhang et al., 2015) and TREC (Hovy et al., 2001).
Two semantic relation tasks: MRPC (Warstadt
et al., 2018) and SNLI (Bowman et al., 2015). Fi-
nally, two spam detection tasks: SMS (Almeida
et al., 2011) and YouTube (Alberto et al., 2015).
These data sets cover a variety of common NLP
tasks, number of classes and text input lengths (de-
tails in Appendix B.1).

Models: We evaluate the BayesPE framework
with five different pre-trained and instruction fine-
tuned LLMs, spanning families and sizes: Falcon-
7b-Instruct (Penedo et al., 2023), Falcon-40b-
Instruct (Almazrouei et al., 2023), MPT-7b-Instruct
(Team, 2023b), MPT-30b-Instruct (Team, 2023a)
and Mistral-7b-Instruct (Jiang et al., 2023a). More
details in Appendix B.2.
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Figure 3: Calibration curves for few-shot classification with MPT-30b-Instruct using BayesPE and competing
baselines. A threshold on the largest class probability is varied from zero to one. For each threshold value, coverage
and accuracy are calculated and plotted against each other.

Baselines: We compare BayesPE to the follow-
ing baselines:1

• Standard: The LLM is run once with a single
prompt, drawn at random ai ∼ a.

• Ensemble: Class probabilities from all in-
structions prompts ai are summed together
(Wightman et al., 2023; Jiang et al., 2023b).

• Best: The prompt ai with the highest valida-
tion accuracy is chosen.

Uncertainty calibration metrics: We compute
five metrics: negative log-likelihood (NLL), ROC-
AUC score (AUC), expected calibration error
(ECE), maximum calibration error (MCE) and
Brier score (Brier) (Gawlikowski et al., 2023; Ab-
dar et al., 2021).

Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓) F1 (↑)
Amazon Reviews
Standard 0.356 0.981 0.069 0.307 0.083 0.926
Ensemble 0.294 0.986 0.061 0.290 0.076 0.926
Best 0.292 0.982 0.056 0.292 0.070 0.927
BayesPE 0.267 0.986 0.056 0.356 0.070 0.926
Imdb
Standard 2.112 0.966 0.375 0.536 0.374 0.921
Ensemble 1.425 0.972 0.355 0.677 0.341 0.925
Best 1.356 0.973 0.277 0.342 0.289 0.925
BayesPE 1.203 0.974 0.260 0.333 0.277 0.935
Yahoo Answers
Standard 4.024 0.687 0.462 0.527 0.110 0.300
Ensemble 3.279 0.700 0.328 0.391 0.098 0.333
Best 4.512 0.683 0.450 0.494 0.112 0.332
BayesPE 3.223 0.690 0.271 0.410 0.096 0.332

Table 1: Few-shot classification with MPT-30b-Instruct
using BayesPE and competing baselines. Metric val-
ues which are best within statistical significance (two-
sample p > 0.05) are printed in bold.

1In early experiments, we also tested confidence self-
assessing, following Kadavath et al. (2022), but found the
probabilities to be consistently less calibrated than the tokens
probabilities of the class words themselves (Appendix B.4).

Prompts and Validation Data: We consider a
fixed set of N initially provided prompts ai for each
task. We do not aim to investigate prompt definition
or engineering and, unless stated otherwise, we sim-
ply draw these at random from a pool of prompts
generated with GPT-3.5-turbo (Ye et al., 2023b)
with no manual editing. The prompts are used to
compute Ensemble, Best and BayesPE, while Stan-
dard is computed by drawing just one prompt at
random. For few-shot experiments, the prompts
include five labeled examples from a different pool
of validation data. These are drawn at random for
each prompt in the set (details in Appendix B.3).

In each task, unless stated otherwise, we use
N = 5 initial prompts, 50 validation examples to
select the prompt for Best and train the BayesPE
weights (details in Appendix B.4), and 200 test
examples to compute metrics. The set of prompts
and validation examples are drawn at random ten
times in each of our experiments to obtain error
bars and compute statistical significance of results.

Method AUC (↑) ECE (↓) MCE (↓)
Ensemble -3.9% -20.0% -16.6%
Best +15.8% -26.3% -17.0%
BayesPE +23.7% -32.1% -23.3%

Table 2: Average relative difference in AUC score, ECE
and MCE that each methods provided compared to stan-
dard prompting over all 100 experiments in our evalua-
tion.

Method NLL AUC ECE MCE Brier
Standard 28(0) 48(0) 42(1) 53(3) 27(0)
Ensemble 37(1) 66(10) 55(3) 39 (1) 36(2)
Best 55(3) 63(7) 62(3) 73(1) 65(2)
BayesPE 96(25) 72(4) 83(16) 75(7) 96(17)

Table 3: Number of times (out of 100 experiments)
each method was the best performing or not statistical
significantly different to the best method for each met-
ric. Parenthesis denotes how many times a method was
found to be significantly better than any other.
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5 Results

Uncertainty Calibration We evaluate perfor-
mance of BayesPE and baselines on all tasks with
all LLMs in zero- and few-shot settings. Table 1
shows detailed results for three of the ten tested
tasks using the overall highest performing con-
figuration, i.e., MPT-30b-Instruct with few-shot
prompting. While we are primarily interested in
uncertainty quantification, we also report macro
F1-Score, to verify that predictive performance is
not hindered by our approach. Full results are re-
ported in Appendix C.5. Figure 3 shows calibration
curves (accuracy vs. coverage) for the same three
experiments.

In Table 1, we observe that BayesPE is competi-
tive or better (within statistical significance) across
all tasks and all metrics, with the exception of AUC
score in Yahoo Answers, for which it is only 0.01
lower than the best baseline. The calibration curves
of figure 3 also show BayesPE clearly outperform-
ing competing baselines. For example, on the Imdb
data set, BayesPE achieves 97% accuracy at 80%
coverage, while competing methods need to reduce
coverage to 45 − 55% to achieve the same. We
also see that, among competing baselines, the best
approach varies with the task (Ensemble for Yahoo
Answers and Best for Amazon Reviews and Imdb),
meaning no single best baseline can be selected
a-priori. Contrarily, BayesPE is always compet-
itive, making it a far more reliable method. We
further note that BayesPE often gives a substan-
tial improvement in calibration (NLL and ECE)
compared to standard prompting, e.g., NLL of 3.2
vs. 4.0 and ECE of 0.27 vs. 0.46 for the Yahoo
Answers data set. Our approach is also competi-
tive or best across the three tasks also in F1-score,
meaning that it maintains or improves predictive
performance as well.

The trends described above are observed across
all experiments. While inspecting all results in
detail is difficult (included in Appendix C.5), we
present aggregate results, both in terms of aver-
age differences in calibration and statistical signif-
icance. Table 2 reports the average difference in
AUC score, ECE and MCE each method provided
across all 100 experiments (ten tasks × and five
LLMs in × zero- and few-shot settings), compared
to standard prompting2. BayesPE provides substan-

2NLL and Brier score are not comparable across experi-
ments, as their values depend on the number of classes and
is not bounded. Therefore, differences are meaningful only

tial improvement in calibration, with appreciably
larger reductions in errors than Ensemble and Best,
e.g., −32% in ECE vs. −20-26%.

Table 3 reports in how many of our 100 ex-
periments each method was found to be the best,
or within statistical significance of the best (two-
sample p> 0.05 across ten repeats of each experi-
ment). The number in parenthesis reports in how
many experiments each method was significantly
better than any other (two-sample p< 0.05 with
second best). Overall, BayesPE is significantly bet-
ter or competitive for every metric in the majority
of experiments and in more experiments than any
competing baseline. In particular, for metrics tied
to expected calibration performance (NLL, ECE
and Brier) it is substantially more consistent than
the baselines, giving best or competitive NLL and
Brier score in 96% of the experiments and ECE
in 83% of the experiments. In comparison, other
baselines were found competitive for these metrics
in only 30− 65% of the experiments.

Inference Efficiency The driving factor for the
run-time cost of prompting an LLM is the number
of forward passes needed to obtain class probabili-
ties (inference). With our approach, after finding
the optimal weights w∗ for a set of N ensembles
through a validation set, we can fix a forward passes
budget at run-time L <= N . We apply a simple
greedy approach to select the run-time prompts and
their weights by simply taking the L prompts with
the highest weights w∗

i to construct the weighted
ensemble. Using three data sets and Mistral-7b-
Instruct as the base LLM in few-shot operation,
we evaluate NLL with respect to the number of
run-time forward passes. We use N = 20 initial
prompts to compute the BayesPE weights and the
best prompt (Best) baseline with a validation set
and then test with a varying budget of L = 1 : 10
prompts at run-time. Experimental details are given
in Appendix B.5. Figure 4 shows the results (addi-
tional results in supplementary C.2).

Ensemble and BayesPE display a common trend
of decreasing NLL as the forward passes budget
is increased. This is expected, as in both cases
different prompts are increasingly added to the en-
semble at increasing LLM forward passes, which
results in increasingly better calibration of the final
class probabilities. BayesPE is consistently better
than or competitive with Ensemble for all experi-
mental settings and all inference budgets. Even for

within the same experiment and not aggregated.
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tasks such as Amazon Reviews in few-shot, where
performance with a single prompt is comparable
across methods (NLL∼ 0.189), as the budget is
increased, BayesPE results in a substantially bet-
ter improvement in calibration (NLL ∼ 0.169 vs.
178 for Ensembles). This means that BayesPE is
a more efficient and effective method of obtaining
well-calibrated class probabilities with the LLM at
any run-time costs constrain. Note that, at a budget
of L = 1, BayesPE is equivalent to picking the
best performing prompt on validation (Best). As
the budget is increased, BayesPE consistently im-
proves performance (lower NLL). This means that,
compared to picking the best prompt on validation,
BayesPE consistently utilizes additional computa-
tional spend to improve calibration performance,
e.g. NLL ∼ 0.169 on the Amazon Reviews task
for BayesPE with a budget of 5 forward passes,
compared to an NLL of 1.89 for picking the best
prompt on validation.

Labeled Data Efficiency The second substantial
cost factor in prompting LLMs with BayesPE is
the number of labeled examples needed in the val-
idation set. We study NLL as a function of the
number of validation examples used to estimate
LLM uncertainty. As in the experiments above, we
use three data sets and Mistral-7b-Instruct as the
base LLM in few-shot operation. Experimental de-

tails are given in Appendix B.5. Figure 5 shows the
results (additional results in supplementary C.2).

As expected, we observe that with no validation
examples, BayesPE is equivalent to Ensemble, as
the likelihood term in Equation 4 is null. BayesPE
is competitive or better than any baselines for any
budget of validation labeled data, e.g., for DBPe-
dia 14 in Zero-Shot we report an NLL of 0.28 for
BayesPE with 50 validation examples vs. 0.31 for
for both Best and Ensemble. With the Amazon
Reviews task, adding five validation examples ini-
tially causes to over-fit and degrade performance.
However, as the validation data set increases to tens
of examples, this over-fitting is mitigated and the
BayesPE NLL matches or improves on that of the
Ensemble baseline. BayesPE is also consistently
better than the Best baseline in all experiments at
all values of labeled data budget, e.g., NLL of 2.13
vs. 2.3 with 20 validation examples and 2.1 vs. 2.2
with 90 validation examples for Yahoo Answers.
This means that BayesPE provides consistently bet-
ter uncertainty quantification, independently of the
available amount of validation examples.

6 Conclusion

We proposed Bayesian Prompt Ensembles
(BayesPE), an effective method to approximately
estimate the model uncertainty for classification
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with black-box LLMs. We showed that BayesPE
constitutes a discrete approximation to a Bayesian
input layer and that its uncertainty gives a lower
bound on the model error, analogous to that
of BNNs. BayesPE is significantly better or
comparable to competitive baselines across the
majority of experiments. In our analysis, we
showed how BayesPE improves uncertainty
quantification over baselines as both the inference
and labeled data budget increase.

Limitations

Semantic Equivalence Assumption: To develop
the theory of BayesPE, we make the assumption
that starting prompt are semantically equivalent.
This is challenging to ensure in practice, and even
to define. For the purpose of prompting, we for-
mulate this property as stated in Equation 7, but as
this definition involves a model with no reducible
error, it is impossible to ensure in practice with
generated prompts. In our experiments, prompts
obtained with automatic rephrasing (a-priori or
with validation using APE) proved to be a good
enough approximation to obtain good calibration
from BayesPE. However, better defining seman-
tic equivalence, testing it and ensuring it for input
prompts remains to be studied.

Classification Tasks Only: In our extensive ex-
perimental benchmark, we evaluate and compare
BayesPE for several classification tasks using LLM
prompting, but not with text generation. This is
because of computational cost of experiments and
complexity of comparing with ground-truth. With
classification tasks, we can measure several well-
established calibration and uncertainty metrics that
can be readily computed given the output class
probability, while in text generation these measures
are only recently emerging and are much more
computationally expensive to compute and with
high variance, as they inevitably involve repeated
sampling.

Access to Words Probabilities: In the evalua-
tions presented in this paper we use different LLMs
in black-box implementation, i.e, with no access to
the weights, but we do use words probabilities to
build classification distributions. However, some
proprietary LLMs, e.g., GPT-4, do not even make
these available and only return text answers to in-
put prompts. BayesPE and other ensemble methods
can still be applied, but require sampling multiple

times, extracting classes from the resulting text
outputs and aggregating the results to build output
probabilities for each prompt. This is more com-
putationally expensive and less robust than using
directly class words probabilities when available.

Prompt Ensemble Generation: In this work, we
focus on how to optimally exploit a set of prompts
assumed to be semantically equivalent, but we do
not propose a specific method to generate suitable
prompts to build this ensemble. This is an im-
portant problem to be investigated in future work,
as prompts automatically generated in the differ-
ent ways we consider in this paper may introduce
biases and be overall sub-optimal for the down-
stream task.
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A Detailed Derivations

A.1 Derivation of Variational Inference for
prompts distribution

We derive here the variational inference maximisa-
tion formula of equation 1. Starting from the KL
divergence to be minimised:

KL[q(a)|p(a|D)] = KL[q(a)|p(a|x,y∗)] =
∫

q(a) log
q(a)

p(a|x,y∗)
da =

∫
q(a) log

q(a)p(y∗)
p(y∗|a,x)p(a)da =

∫
q(a) log

q(a)

p(a)
da+ log p(y∗)

−
∫

q(a) log p(y∗|a,x)da.

Because the log probability log p(y∗) does not de-
pend on q(a), we can re-formulate the minimisa-
tion as:

argmin
q(a)

∫
q(a) log

q(a)

p(a)
da+ log p(y∗)

−
∫

q(a) log p(y∗|a,x)da =

argmax
q(a)

−
∫

q(a) log
q(a)

p(a)
da

+

∫
q(a) log p(y∗|a,x)da =

argmax
q(a)

Eq(a)[log p(y|a, x)]−KL[q(a)|p(a)]

A.2 Derivation of Importance Sampling
Approximation of Classification
Likelihood

We derive here the importance sampling approxi-
mation of equation 3. After performing variational
inference optimisation for the distribution q(a) in
equation 1, obtaining the optimised q∗(a), the final
classification likelihood is approximated as folows:

p(y|x,D) =

∫
p(a|D)p(y|x, a)da

≃
∫

q∗(a)p(y|x, a)da.

We can now perform importance sampling with the
prior p(a):

∫
q∗(a)p(y|x, a)da =

∫
p(a)

q∗(a)
p(a)

p(y|x, a)da

≈ 1

N

N∑

i

q∗(ai)
p(ai)

p(y|x, ai)

≈ 1

N

N∑

i

q∗(ai)
C

p(y|x, ai)

The last line follows as all propmts are assumed to
have the same importance a-priori, i.e., p(ai) ≈ C
∀ai.

A.3 Derivation of Importance Sampling
Approximation of Variational Inference
Objective

We derive here the importance sampling approxi-
mation of equation 4. Starting from the variational
inference objective function:

Eq(a)[log p(y
∗|a,x)]−KL[q(a)|p(a)]

=

∫
q(a) log p(y∗|a,x)da

−
∫

q(a) log
q(a)

p(a)
da

=

∫
p(a)

q(a)

p(a)
log p(y∗|a,x)da

−
∫

p(a)
q(a)

p(a)
log

q(a)

p(a)
da

≈
N∑

i

q(ai)

p(ai)
log p(y∗|ai,x)

−
N∑

i

q(ai)

p(ai)
log

q(ai)

p(ai)
da.

≈ 1

N

N∑

i

q(ai)

C
log p(y∗|ai,x)

− 1

N

N∑

i

q(ai)

C
log

q(ai)

C
.

The last line follows as all propmts are assumed to
have the same importance a-priori, i.e., p(ai) ≈ C
∀ai. As the likelihood estimation of equation 3
only depends on q(ai), we only need to optimise
these discrete values with variational inference, as
we only care about the density of our variational
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distribution q(a) at these points:

argmax
q(ai),∀ai∈a

1

N

N∑

i

q(ai)

C
log p(y∗|ai,x)

− 1

N

N∑

i

q(ai)

C
log

q(ai)

C
.

We now re-parametrise the density evaluations to
be optimised q(ai) with the normalised weights
wi = q(ai)/NC ∈ w, with wi ∈ [0, 1] and∑

wi = 1, obtaining the BayesPE optimisation:

argmax
w

N∑

i

wi log p(y
∗|ai,x)−

N∑

i

wi logwi

A.4 Relation to Bayesian Mixture of Experts

BayesPE can be viewed as a mixture of experts
(MoE) with weights obtained through a lower
bound approximation of MAP inference with an
entropy maximizing prior over the weights. In
the Bayesian MoE formulation, a target function
f(x), in our case the target predictive distribution
f(x) = p(y|x), is built with a finite sum of basis
functions ϕi(x):

f(x) =

N∑

i

wiϕi(x).

In BayesPE, the basis functions correspond to
the predictive probabilities obtained by prompt-
ing with different instructions prompts ai, i.e.,
ϕi(x) = p(y|ai, x), recovering:

p(y|x) =
N∑

i

wip(y|ai, x),

which is equivalent to equation 5. In Bayesian
MoE, the prior over the weights wi is typically
assumed to be a Gaussian. There is generally dif-
ferent ways in which to model the posterior distri-
bution of the weights. Arguably the simplest and
more closely related to BayesPE is Bayesian lin-
ear regression, where a fixed posterior of weights
p(w|x,y∗) for the linear combination of the basis
function (p(y|ai, x) in our LLM prompting sce-
nario) is learned with the validation data x and y∗.
Under the Gaussian prior and likelihood assump-
tion, the posterior is also Gaussian and tractable
to compute through matrix inversion (Mitchell and
Beauchamp, 1988).

Under this Bayesian MoE perspective, BayesPE
models the weights with a maximal entropy prior
p(w) =

∏
w−wi
i s.t.

∑
wi = 1 and wi ∈ [0, 1],

instead of a Gaussian. This results in an intractable
posterior and the objective of BayesPE is equiva-
lent to performing a lower bound approximation of
MAP inference of this posterior on the validation
set of observed data:

argmax
w

log p(w|x,y∗)

∝ log[p(y∗|w,x)p(w)]

= log[
N∑

i

wip(y
∗|ai,x)] + log[

N∏

i

w−wi
i ]

≥
N∑

i

wi log p(y
∗|ai,x)−

N∑

i

wi logwi.

The last inequality is obtained through Jensen’s
inequality, meaning that the objective of BayesPE
(equation 4) is a lower bound on the MAP objective
in the Bayesian MoE formulation. We experimen-
tally compare BayesPE to Bayesian linear regres-
sion in Appendix C.4.

There exist more advanced methods to model the
weights in Bayesian MoEs that could be applied
to prompt ensembles. One interesting possibility
is modeling the ensemble as a finite dimensional
Gaussian Processes (Ferrari-Trecate et al., 1998;
Waterhouse et al., 1995). The MoE is modeled as
a Gaussian process with Gaussian prior over the
weights w and hyper-parameters of the kernel are
learned with a validation data set. At inference
time, the learned kernel can be used to infer the
particular weights combination for the current in-
put. Applying this Gaussian process modeling ap-
proach for LLM prompt ensemble is an interesting
direction for future research. On one hand, we can
expect some advantage from the adaptive nature of
the weights at inference time through the kernel, as
opposed to the fixed weights learned by BayesPE.
On the other, having to compute the covariance
matrix at inference time implies running the LLM
with all prompts for the new example, precluding
the possibility to adjust inference budget at test
time (as we do with BayesPE in the experiments of
figure 4).

A.5 Derivation of Model Error Lower Bound
for Prompts Ensembles

We derive here the inequality of equation 6. First,
we expand the definition of our LLM of choice,
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used as a classifier p(y|a, x) to include a specifica-
tion of values for its weights θ; p(y|a, θ, x). We
assume no knowledge of the specific values of θ,
i.e., black-box scenario, but, as the model was arbi-
trarily pre-trained with some training data set DT ,
we assume these weights to be sampled from the
posterior p(θ|DT ).

Second, we define optimal weights θ∗ which
specify an optimal version of the LLM p(y|a, θ∗, x)
which has no reducible error. We can think of this
model as a version of the LLM trained with infinite
data, leading to vanishing model error. With these
definitions, we now formalise the semantic equiva-
lence property of p(a). Specifically, we state:

p(y|x, θ∗, a) = p(y|x, θ∗, a′) ∀a, a′ ∼ p(a)

=⇒ p(y|x, θ∗) = p(y|x, θ∗, a) ∀a ∼ p(a).

(7)

This means that we assume the distribution p(a)
to capture semantic equivalence, if the optimal
model p(y|x, θ∗, a) is invariant to task instructions
prompts a drawn from it. This is because the op-
timal model p(y|x, θ∗, a) is assumed to be trained
with infinite data, including all possible seman-
tically equivalent inputs for a given output. In
the limit of the BayesPE approximation, this prop-
erty transfers to the learned variational distribution
q∗(a), as we sample it only at prompts ai ∼ p(a).
With these definitions in place, we can now derive
the inequality of equation 6:

Eq∗(a)Ep(θ|DT )KL[p(y|x, θ, a)||p(y|x, θ∗, a)] =∫
q∗(a)

∫
p(θ|DT )

∫
p(y|x, θ, a)·

log
p(y|x, θ, a)
p(y|x, θ∗, a)dθdady =

∫
q∗(a)

∫
p(θ|DT )·

∫
p(y|x, θ, a) log p(y|x, θ, a)p(y|x, θ)

p(y|x, θ∗, a)p(y|x, θ)dθdady =

∫
p(θ|DT )

∫
q∗(a)

∫
p(y|x, θ, a)·

log
p(y|x, θ, a)
p(y|x, θ) dadθdy+

∫
p(θ|DT )

∫
q∗(a)

∫
p(y|x, θ, a)·

log
p(y|x, θ)

p(y|x, θ∗, a)dadθdy

Following the condition of equation 7, we can set
p(y|x, θ∗, a) = p(y|x, θ∗). Replacing this term in

the second component on the last line above results
in:
∫

p(θ|DT )

∫
q∗(a)

∫
p(y|x, θ, a)·

log
p(y|x, θ, a)
p(y|x, θ) dadθdy+

∫
p(θ|DT )

∫ ∫
q∗(a)p(y|x, θ, a)da·

log
p(y|x, θ)
p(y|x, θ∗)dθdy =

∫
p(θ|DT )

∫
q∗(a)

∫
p(y|x, θ, a)·

log
p(y|x, θ, a)
p(y|x, θ) dadθdy+

∫
p(θ|DT )

∫
p(y|x, θ) log p(y|x, θ)

p(y|x, θ∗)dθdy =

Ep(a|a0)Eq(θ)KL[p(y|x, θ, a)||p(y|x, θ∗, a)] =
Ep(θ|DT )

[
Eq∗(a)KL[p(y|x, θ, a)||p(y|x, θ)]

+KL[p(y|x, θ)||p(y|x, θ∗)]
]

The inequality of equation 6 follows as the second
KL divergence is non-negative. The lower bound of
equation 6 means that the uncertainty from aggre-
gating output probabilities from different semanti-
cally equivalent prompts, as defined in 7, is a lower
bound to the expected model error, defined as the
KL divergence between the LLM output probability
and the output probability of the optimal LLM with
no model error (with weights θ∗). This property
actually applies to any method ensembling seman-
tically equivalent prompts, including Wightman
et al. (2023) and Jiang et al. (2023b). Therefore,
this theoretical finding validates prompt ensemble
approaches in general as LLM model error approx-
imators. This lower bound generalizes a property
which is intuitive to understand with two prompts;
If I know the answer to two prompts must be the
same (semantic equivalence condition) and I ob-
tain two different answers, at least one of the two
answers is wrong. Equation 6 generalizes this to
continuous class probabilities and any number of
prompts.

A.6 Derivation of Model Error Lower Bound
for Bayesian NNs

The lower bound of equation 6 is analogous to the
bound on model error we get with Bayesian neural
networks. Consider a Bayesian neural network,
with posterior weights distribution p(θ|DT ) and
optimal weights θ∗, for which the resulting model
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p(y|x, θ∗) has no reducible error.

Ep(θ|DT )KL[p(y|x, θ)||p(y|x, θ∗)] =
∫

p(θ|DT )

∫
p(y|x, θ) log p(y|x, θ)

p(y|x, θ∗)dθ =

∫
p(θ|DT )

∫
p(y|x, θ) log p(y|x, θ)p(y|x)

p(y|x, θ∗)p(y|x)dθ =

∫
p(θ|DT )

∫
p(y|x, θ) log p(y|x, θ)

p(y|x) dθ+

∫
p(y|x) log p(y|x)

p(y|x, θ∗)dθ =

Ep(θ|DT )KL[p(y|x, θ)||p(y|x)]+
KL[p(y|x)||p(y|x, θ∗)]

As the second KL divergence in the equation above
is non-negative, we can derive the following bound:

Ep(θ|DT )KL[p(y|x, θ)||p(y|x, θ∗)] ≥
Ep(θ|DT )KL[p(y|x, θ)||p(y|x)].

Which is analogous to the bound of equation 6,
with the difference that the average divergence is
with respect to the change in model’s weights θ
instead of prompts a.

B Details of Experiments

B.1 Details of Data Sets
For our evaluation, we test on 10 different NLP
classification tasks with the respective test sets:

• Amazon Reviews (Appliances): Sentiment
analysis on Amazon reviews of appliances.
Two classes; positive and negative.

• DBPedia 14: Topic modeling on a data set
of encyclopedia descriptions corresponding to
14 categories.

• Glue (mrpc): Binary equivalence judgment
on pairs of sentences.

• Imdb: Sentiment analysis on a data set of
movie reviews on Imdb. Two classes; positive
and negative.

• SNLI: Entailment classification on a data set
of pairs of sentences, where the first sentence
implies, contradicts or does not imply the sec-
ond (3 classes).

• SST-2: Sentiment analysis on a Data set of
segments from movie reviews. Two classes;
positive and negative.

• TREC: Topic modeling on a data set of ques-
tions labeled with type of information re-
quested. We are using only the coarse labels
(6 classes, reduced to 5 for class balance).

• Yahoo Answers: Topic modeling on a data
set of Questions and answers on Yahoo an-
swers. 10 classes.

• YouTube: Spam detection on comments left
under YouTube videos. Two classes; Spam
and Ham.

• SMS: Spam detection on text messages. Two
classes; Spam and Ham.

In all our experiments, we balance the test sets
we use to evaluate metrics across classes. This
is to ensure that all metrics are meaningful mea-
sure of performance in each case, as for heavily
unbalanced sets accuracy/likelihood based metrics,
such as negative log-likelihood, are not meaningful
measures of model performance.

B.2 Details of LLMs
We use 5 different open-source LLMs, across dif-
ferent families and sizes. They are listed in Table
4:

B.3 Details of Initial Prompts Generation
For each task, we manually write one prompt in-
struction, which we then automatically rephrase
multiple times with gpt-3.5-turbo. The initial man-
ually defined prompt is not validated on any data
and the generated prompts are not manually edited.
While better prompts can certainly be defined in
more principled engineering ways with validation
data sets (e.g. Shin et al. (2020)), we are interested
in the optimal exploitation of given prompts and
avoiding prompt engineering ensures that our find-
ings are not biased to certain manual fine-tuning
choices or particular prompt generation methods.
The initial prompts for each data set are as follows:

• Amazon Reviews: classify the sentiment of
the Amazon review below into one of the fol-
lowing classes:

• DBPedia 14: The following is a description
of something on Wikipedia. Which of the
following categories does the description fall
in?

• Glue (mrpc): Do the two sentences given
below have the same meaning?
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Model Name Huggingface Name Hardware Used
Falcon-7b-Instruct tiiuae/falcon-7b-instruct 1 A10 GPU
Falcon-40b-Instruct tiiuae/falcon-40b-instruct 4 A10 GPUs (bfloat16)
MPT-7b-Instruct mosaicml/mpt-7b-instruct 1 A10 GPU
MPT-30b-Instruct mosaicml/mpt-30b-instruct 4 A10 GPUs
Mistral-7b-Instruct mistralai/Mistral-7B-Instruct-v0.1 1 A10 GPU

Table 4: LLMs with which we tested BayesPE and baselines. We list above the name with which they will appear
in result tables, the Huggingface name, i.e., the string to give as argument to AutoModelForCausalLM, and the
hardware that was used to run inference.

• Imdb: classify the below movie review into
one of the following classes:

• SNLI: Classify the relation between the hy-
pothesis and thesis below into one of the fol-
lowing classes:

• SST-2: classify the sentiment of the movie
review extract below into one of the following
classes:

• TREC: Classify the question below into one
of the following type of information classes:

• Yahoo Answers: classify the question and
answer below into one of the following topics:

• YouTube: Is the following Youtube comment
spam?

• SMS: Is the following text message spam?

In each case, the above is followed by a numbered
list of the class words. The initial prompt for each
task is then used to formulate a re-phrasing promt
to be given to gpt-3.5-turbo. For the first gener-
ated prompt, gpt-3.5-turbo is given the prompt
"Rephrase the following task instructions such
that the meaning remains unchanged. /n {initial
prompt}". For all subsequent prompts, the already
generated prompts are provided in a list with the
prompt ’Provide one more example of rephrased
task instructions, such that the meaning is the same
as the original task instructions. /n {list of exam-
ples} /n Original instructions: {initial prompt}’.
For the experiments of section 5, we generate 10
total prompts, from which we draw 5 in each rep-
etition of the experiments. For few-shot, we also
draw at random a different set of 5 labeled exam-
ples from a held-out set (different from the set we
use as validation in the experiments) and append it
to each different re-phrasing of the instructions, in
order to obtain the final different prompts ai.

B.4 Details of BayesPE training

the BayesPE weights are trained by performing the
maximisation of equation 4, with validation data
D = {x,y∗} with the LBFGS optimiser with 100
maximum iterations. The learning rate is set to
10−3, however, if the cost becomes NaN or Inf, the
optimisation is restarted with halfed learning rate
and the process is repeated until succesful conver-
gence. This occured for a few LLM-task combi-
nations in our experiments. Other than this error
recovery strategy, the BayesPE optimisation pa-
rameters are constant to all experiments. BayesPE
optimisation is inexpensive (1-2 seconds on CPU),
as it only needs to optimise a few linear weights
for class probabilities with 2-15 dimensions.

B.5 Details of Samples Efficiency Experiments

To test performance at varying budget of LLM
forward passes, we use Mistral7bInstruct as the
base LLM and evaluate performance on three tasks:
Amazon Reviews, DBPedia 14 and Yaho Answers.
For these experiments, as in the full benchmark,
we use a validation set of 50 examples, approxi-
mately balanced across classes. This validation set
is used to train the weights for BayesPE and select
the prompt with the highest validation accuracy for
Best. We test with 400 examples, also balanced
across classes. We consider a pool of 50 initial
prompts. For every repetition of the experiments,
we draw a set of N = 20 at random from them
and use them to optimise the BayesPE weights w∗

and determine the highest accuracy prompt for the
Best baseline. The forward passes budget L is then
varied between 1 and 10. Best and Standard only
operate with a single prompt, therefore they only
appear as single points at L = 1 in Figure 4. For
the baseline Ensemble, L prompts are sampled at
random and aggregated to obtain output probabil-
ities. For BayesPE, the prompts corresponding to
the top L weights w∗

i are taken and aggregated,
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Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Amazon Reviews
Standard 0.249 ± 0.021 0.972 ± 0.004 0.040 ± 0.006 0.103 ± 0.041 0.067 ± 0.005
Self-Assess 0.708 ± 0.035 0.601 ± 0.123 0.122 ± 0.101 0.257 ± 0.316 0.251 ± 0.008
DBPedia 14
Standard 0.946 ± 0.074 0.98 ± 0.005 0.051 ± 0.008 0.096 ± 0.034 0.027 ± 0.001
Self-Assess 2.980 ± 0.684 0.502 ± 0.004 0.169 ± 0.296 0.170 ± 0.341 0.075 ± 0.018
Imdb
Standard 0.290 ± 0.026 0.964 ± 0.0038 0.055 ± 0.010 0.137 ± 0.077 0.083 ± 0.009
Self-Assess 0.616 ± 0.098 0.695 ± 0.197 0.0829 ± 0.094 0.219 ± 0.252 0.220 ± 0.038
Yahoo Answers
Standard 2.202 ± 0.063 0.6933 ± 0.008 0.161 ± 0.052 0.313 ± 0.037 0.083 ± 0.002
Self-Assess 3.387 ± 1.336 0.495 ± 0.007 0.345 ± 0.416 0.356 ± 0.436 0.123 ± 0.040

Table 5: Probabilistic metrics over different data sets comparing the performance of using the class words probabili-
ties from the LLM directly to compute class probability distribution (Standard) and using the self-assess method
(Self-Assess).

weighted by the corresponding weights. The result-
ing probabilities are re-normalised.

B.6 Details of Labeled Data Efficiency
Experiments

To test performance at varying number of labeled
validation examples, we use Mistral7bInstruct as
the base LLM and evaluate performance on three
tasks: Amazon Reviews, DBPedia 14 and Yaho
Answers. For each task, we use a test set of 400
examples to evaluate performance and vary the
available validation data set size from M = 0 to
M = 100. Similarly to the samples efficiency ab-
lations, for each value of validation set size M , we
draw N = 20 prompts from a pool of 50 at random
and use them on the validation set to choose the
prompt with highest accuracy (Best) and to opti-
mise the BayesPE weights w∗. At run time, we
use an inference budget of L = 10 LLM forward
passes and hence 10 prompts. For each method,
these are chosen from the total N = 20 in the
same way as in the samples efficiency experiments
(Appendix B.5).

C Additional Results

C.1 Early Experiments with LLM
Self-Assessing of Confidence

We initially considered the self-assessing of con-
fidence by the LLM itself as a baseline for uncer-
tainty estimation ad calibration of output probabili-
ties. This method consists in feeding the LLM the

original prompt and its original answer and then
prompting again to assess if the answer is correct.
The probability of the next word confirming correct-
ness is taken as the probability of the class given
in the answer, e.g., ’is the above answer correct?’
p(next word = ’yes’) = p(y = chosen class) (Ka-
davath et al., 2022). In the binary case, the probabil-
ity distribution is directly derived; if chosen class
is 1 p(y = 1) = p(next word = ’yes’) and p(y =
0) = 1 − p(next word = ’yes’). However, in the
multi class case, there is not direct mapping. In
these cases, we assign the chosen class the confirm-
ing word probability (p(next word = ’yes’)) and
distribute the remaining probability mass uniformly
amongst the remaining classes. We tested this ap-
proach in initial ablations with Mistral7bInstruct in
zero-shot mode with four tasks. Results are shown
in table 5.

We found the standard approach of using the
LLM probabilities assigned to classes words (Stan-
dard in table 5 and rest of the paper) to consistently
and substantially outperform this approach of re-
evaluating confidence in the given answer (Self-
Assess in table 5). As a result, we ruled out this
approach as a competitive baseline for BayesPE in
all further experiments.

C.2 Additional Efficiency results

Inference Efficiency We show in figure 6 an ex-
tended version of the results of figure 4, including
zero-shot results. Trends for zero-shot are analo-
gous to those observed in few-shot experiments,
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Figure 7: Negative log likelihood (NLL) vs. number of labeled validation examples. Using any prompt (Standard)
and aggregating all prompts equally (Ensemble) does not require any validation set and are shown as single points
at zero validation examples. Choosing the highest accuracy prompt on validation (Best) and BayesPE benefit from
increased number of validation examples.

with BayesPE being consistently better than or
competitive with Ensemble for all experimental set-
tings and all inference budgets and providing con-
sistent improvement compared to picking the best
prompt on validation. For instance, on DBPedia
14 and a budget of 5 forward passes in zero-shot,
BayesPE achieves an NLL of 0.65, while standard
ensembling can only achieve an average of 0.77.

Labelled Data Efficiency We show in figure 7
an extended version of the results of figure 5, in-
cluding zero-shot results. Trends are analogous to
those observed in the few-shot results, e.g., for DB-
Pedia 14 in Zero-Shot we report an NLL of 0.67
for BayesPE with 50 validation examples vs. 0.75
for Best and 0.80 for Ensemble. In some cases,

most evidently for Yahoo Answers in zero-shot,
adding very few validation examples (5-10) ini-
tially causes to over-fit and degrade performance
(from NLL 2.17 with no validation to 2.25 with
five validation examples). However, as the valida-
tion data set increases to several tens of examples,
this over-fitting is mitigated and the BayesPE NLL
matches or improves on that of the Ensemble base-
line (e.g. NLL back to 2.17 with 90 validation
example for Yahoo Answers in zero-shot).

C.3 Prompt Definition

In all experiments presented above, we have tested
the utilization of given prompts independently of
any particular engineering, as the set of initial
prompts was pre-defined. We investigate here
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how different generation strategies for the prompts
ai ∈ a affect performance. First, we evaluate per-
formance for different templated prompt augmen-
tation strategies, adopting the different alterations
detailed in Jiang et al. (2023b). Second, we test
BayesPE in combination with automatic prompt en-
gineering (APE) (Zhou et al., 2022b), which uses
the validation set to refine the definition of the ini-
tial prompts.

Prompt Augmentation Strategies We adopt the
augmentation strategies proposed by Jiang et al.
(2023b), adding them one at a time in our experi-
ments to increase prompt variation in each exper-
iment. For these experiments, we use the Yahoo
Answers data set, Mistral-7b-Instruct as the base
LLM and operate in a few-shot scenarion, provid-
ing 5 5 examples in the input prompts. We use 10
prompts to build the ensemble and 50 validation
examples. The in-context examples are taken from
a separate set of 50 examples. We test with initial
prompts defined in the following three ways:

• Rephrase Only: We use GPT-3.5-Turbo to
rephrase the task instructions (see Appendix
B.3), but in-context examples for few shot and
order of multiple choices is fixed.

• Rephrase+Examples: Instructions are
rephrased as described above and the 5
in-context examples for few-shot operations
are sampled and ordered at random in each of
the 10 prompts.

• Rephrase+Examples+MC: Rephrasing and
random sampling of the examples are applied
as described above and, in addition, multi-
ple choices for the classes presented in the
prompts are permuted at random.

The diversity of the prompts icreases with the ad-
dition of each included augmentation strategy. We
repeat each experiment 10 times, each time draw-
ing at random the 50 validation examples, the in-
context examples and the set of 10 re-phrased in-
structions. Results are shown in table 6. Note that,
in these experiments, the Ensemble baseline cor-
responds to the approach proposed in Jiang et al.
(2023b).

In the results of table 6, BayesPE is consis-
tently better or competitive to baselines, provid-
ing 48-63% reduction in ECE compared to stan-
dard prompting and 4-12% compared to Ensemble,
which is the most competitive baseline. We also

Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓) F1 (↑)
Rephrase Only
Standard 2.466 0.670 0.158 0.208 0.087 0.249
Ensemble 2.089 0.697 0.092 0.156 0.080 0.286
Best 2.098 0.691 0.099 0.226 0.081 0.284
BayesPE 2.072 0.692 0.081 0.128 0.080 0.299
Rephrase+Examples
Standard 2.520 0.680 0.213 0.267 0.091 0.251
Ensemble 2.073 0.696 0.088 0.151 0.080 0.285
Best 2.151 0.693 0.119 0.138 0.083 0.281
BayesPE 2.047 0.696 0.080 0.141 0.080 0.302
Rephrase+Examples+MC
Standard 2.499 0.675 0.222 0.322 0.091 0.242
Ensemble 2.035 0.704 0.084 0.140 0.080 0.272
Best 2.233 0.687 0.155 0.215 0.084 0.249
BayesPE 2.021 0.696 0.081 0.116 0.0799 0.286

Table 6: Few-shot classification with Mistral-7B-
Instruct on the Yahoo Answers data set and initial
prompts generated with different strategies. Metrics
values which are best within statistical significance (two-
sample p-value>0.05) are printed in bold.

note that, unlike all competing strategies, BayesPE
is less reliant on the prompt definition strategy. For
example the ECE is ∼ 8% for all prompt defini-
tions, while for ensembles it reduces from 9.2% to
8.4% as prompt diversity is increased. This means
that BayesPE is more robust to the initial engineer-
ing of the set of prompts in the ensemble, alleviat-
ing the burden of designing effective and diverse
prompts for calibration.

Automatic Prompt Engineering and BayesPE
Given a validation set of labeled examples, recent
work has proposed different strategies to automat-
ically generate suitable prompts for a given task
(Shin et al., 2020; Zhou et al., 2022b; Yang et al.,
2023). To test the combination of BayesPE with
automatic prompts, we follow Zhou et al. (2022b)
and use automatic prompt engineering (APE) to de-
fine the initial prompts. We run APE 10 times with
the validation set to obtain the initial set of prompts
and then apply BayesPE and all baselines, using
the same validation set where relevant. For these
experiments, we consider the same three tasks as
for the efficiency experiments (Amazon Reviews,
DBPedia 14 and Yahoo Answers) and use Mis-
tral7BInstruct as the base LLM. We perform exper-
iments in zero-shot format only, as it is not trivial
to adapt the APE approach to few-shot scenarios.
We run APE (Zhou et al., 2022b) 90 times to ob-
tain an initial pool of prompts. We then select the
top 30 based on validation log likelihood. From
these, we sample 10 at random and use them for
BayesPE, Ensemble and Best. The standard APE
baseline is tested by selecting one of the 30 prompts
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at random. Prompt sampling is repeated 10 times
to obtain error bars and compute statistical signif-
icance. In these experiments, the validation set is
fixed and is composed of 100 labeled examples for
each task. The test set is also fixed and is composed
of 400 examples. Table 7 reports results of these
experiments.

Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓) F1 (↑)
Amazon Reviews
APE 0.212 0.978 0.029 0.096 0.060 0.933
APE+Ensemble 0.192 0.983 0.03 0.088 0.053 0.932
APE+Best 0.18 0.982 0.019 0.060 0.050 0.938
APE+BayesPE 0.187 0.982 0.020 0.052 0.052 0.934
DBPedia 14
APE 0.850 0.984 0.047 0.091 0.028 0.755
APE+Ensemble 0.718 0.991 0.057 0.082 0.025 0.756
APE+Best 0.756 0.988 0.039 0.102 0.024 0.763
APE+BayesPE 0.696 0.991 0.045 0.090 0.024 0.783
Yahoo Answers
APE 2.327 0.667 0.126 0.616 0.088 0.258
APE+Ensemble 2.186 0.682 0.090 0.984 0.084 0.292
APE+Best 2.210 0.681 0.110 0.502 0.084 0.259
APE+BayesPE 2.151 0.681 0.090 0.262 0.083 0.285

Table 7: Zero-shot classification with Mistral-7B-
Instruct and initial prompts generated with APE (Zhou
et al., 2022b). Metrics values which are best within
statistical significance (two-sample p-value>0.05) are
printed in bold.

Using BayesPE in combination with APE
(APE+BayesPE), was found to consistently im-
prove calibration performance over APE alone. In
particular, for the Amazon Reviews and Yahoo An-
swers data sets, we observed substantial reduction
of about 30% in ECE and 45− 55% in MCE. We
also confirm that the deterministic performance,
measured by F1-score, is not negatively affected by
using BayesPE in combination with APE, remain-
ing competitive or better (difference in F1 from 0 to
+0.03) with respect to this metric as well. We also
observe that BayesPE remains competitive or better
than other baselines methods to exploit multiple
prompts and validation data.

C.4 Comparison to Bayesian Mixture of
Experts

As described in Appendix A.4, BayesPE can be in-
terpreted as a strategy for Bayesian Mixture of Ex-
perts (MoE), using the LLM with different prompts
as basis functions. We perform some experiments
to compare BayesPE to linear Bayesian regression
over the weights of the Bayesian MoE. In particular,
we preform Ridge regression, where the prior over
the weights is a Gaussian with diagonal covariance.
To introduce a regularisation which encourages uni-
form exploitation of the prompts a-priori, we set
the means of the prior over the weights to 1/N and

the diagonal variances to 1. We then infer the pos-
terior using the available validation examples. We
compare this approach to BayesPE and the other
baselines (Standard, Ensemble and Best). For these
experiments, we use the Amazon Reviews, Imdb
and Yahoo Answer data sets, an initial ensemble
of ten few-shot prompts, designed as described in
Appendix B.3, 50 validation examples and Mistral-
7b-Instruct as the base LLM. Each experiment is
repeated 10 times for statistical significance.

Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓) F1 (↑)
Amazon Reviews
Standard 0.187 0.981 0.032 0.197 0.054 0.930
Ensemble 0.174 0.982 0.020 0.107 0.051 0.929
Best 0.187 0.981 0.010 0.032 0.053 0.930
Bayes MoE 0.173 0.982 0.023 0.089 0.050 0.930
BayesPE 0.173 0.983 0.010 0.034 0.052 0.930
Imdb
Standard 0.196 0.983 0.038 0.271 0.058 0.922
Ensemble 0.172 0.985 0.026 0.203 0.054 0.925
Best 0.182 0.983 0.030 0.251 0.058 0.925
Bayes MoE 0.175 0.983 0.022 0.235 0.054 0.920
BayesPE 0.159 0.984 0.022 0.188 0.50 0.925
Yahoo Answers
Standard 2.491 0.711 0.180 0.238 0.086 0.303
Ensemble 2.185 0.710 0.111 0.284 0.081 0.333
Best 2.060 0.722 0.094 0.142 0.078 0.331
Bayes MoE 2.059 0.709 0.121 0.205 0.079 0.331
BayesPE 2.039 0.722 0.096 0.133 0.078 0.325

Table 8: Few-shot classification with Mistral-7B-
Instruct comparing baselines and BayesPE to a Bayesian
MoE approach to infer the weights w for the ensemble
(Bayes MoE). Metrics values which are best within
statistical significance (two-sample p-value>0.05) are
printed in bold.

As shown in table 8, BayesPE is competitive
or better than using linear regression to train the
weights w in a Bayesian MoE formulation, with
ECE being equal (Imdb) to 20− 56% lower (Ama-
zon Reviews and Yahoo Answers).

C.5 Detailed Results of Benchmark
Evaluation

Tables 9-18 report the results of our extensive
benchmark evaluations for zero-shot classification
in full. Errorbars were obtained by repeating the
experiments 10 times, drawing a set of 5 prompts
as described in Appendix B.3 each repeat. Tables
19-28 report results for the equivalent few-shot ex-
periments.

C.6 Additional Statistical Significance Results

We report here analogous summary results of our
benchmark experiments to those presented in table
3, separated for zero-shot and few shot and then
for each individual LLM. Tables 29 and 30 report
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summary results for zero-shot and few shot experi-
ments respectively. Tables 31 to 35 reprt summary
results for each LLM tested separately. In all tables
29 to 35, numbers in each cell report in how many
experiments out of the ones performed each ap-
proach was found to be best performing or within
statistical significance of the best performing (two-
sample p-value> 0.05 over the repetitions of each
experiment) for each measured metric. The number
in parenthesis reports how many times the method
was found to be significantly better than any other
(p-value< 0.05).
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 0.298 ± 0.032 0.967 ± 0.004 0.09 ± 0.014 0.143 ± 0.041 0.087 ± 0.012
Falcon7bInstruct
+ Ensemble 0.286 ± 0.014 0.969 ± 0.001 0.102 ± 0.01 0.155 ± 0.022 0.081 ± 0.005
Falcon7bInstruct
+ Best 0.296 ± 0.036 0.966 ± 0.003 0.089 ± 0.013 0.181 ± 0.046 0.086 ± 0.014
Falcon7bInstruct
+ BayesPE 0.29 ± 0.01 0.969 ± 0.001 0.101 ± 0.007 0.139 ± 0.01 0.083 ± 0.004
Falcon40bInstruct
+ Standard 0.264 ± 0.044 0.982 ± 0.002 0.105 ± 0.033 0.158 ± 0.026 0.072 ± 0.016
Falcon40bInstruct
+ Ensemble 0.255 ± 0.009 0.983 ± 0.001 0.118 ± 0.012 0.17 ± 0.005 0.067 ± 0.003
Falcon40bInstruct
+ Best 0.266 ± 0.054 0.982 ± 0.002 0.117 ± 0.036 0.166 ± 0.018 0.072 ± 0.017
Falcon40bInstruct
+ BayesPE 0.242 ± 0.005 0.983 ± 0.001 0.105 ± 0.009 0.166 ± 0.002 0.063 ± 0.002
MPT7bInstruct
+ Standard 0.394 ± 0.045 0.956 ± 0.008 0.16 ± 0.016 0.18 ± 0.012 0.117 ± 0.018
MPT7bInstruct
+ Ensemble 0.393 ± 0.01 0.962 ± 0.001 0.193 ± 0.009 0.208 ± 0.01 0.115 ± 0.004
MPT7bInstruct
+ Best 0.383 ± 0.028 0.963 ± 0.005 0.16 ± 0.018 0.185 ± 0.009 0.112 ± 0.011
MPT7bInstruct
+ BayesPE 0.381 ± 0.006 0.964 ± 0.001 0.178 ± 0.008 0.2 ± 0.004 0.111 ± 0.003
MPT30bInstruct
+ Standard 0.465 ± 0.099 0.955 ± 0.008 0.094 ± 0.043 0.167 ± 0.098 0.142 ± 0.036
MPT30bInstruct
+ Ensemble 0.407 ± 0.016 0.96 ± 0.002 0.06 ± 0.012 0.101 ± 0.022 0.124 ± 0.006
MPT30bInstruct
+ Best 0.361 ± 0.046 0.96 ± 0.002 0.047 ± 0.027 0.121 ± 0.059 0.104 ± 0.015
MPT30bInstruct
+ BayesPE 0.361 ± 0.024 0.961 ± 0.001 0.04 ± 0.016 0.078 ± 0.046 0.106 ± 0.009
Mistral7bInstruct
+ Standard 0.247 ± 0.019 0.973 ± 0.003 0.039 ± 0.008 0.088 ± 0.052 0.066 ± 0.004
Mistral7bInstruct
+ Ensemble 0.246 ± 0.008 0.973 ± 0.001 0.041 ± 0.004 0.115 ± 0.055 0.067 ± 0.002
Mistral7bInstruct
+ Best 0.238 ± 0.014 0.974 ± 0.001 0.038 ± 0.005 0.093 ± 0.052 0.064 ± 0.001
Mistral7bInstruct
+ BayesPE 0.235 ± 0.003 0.975 ± 0.001 0.037 ± 0.005 0.093 ± 0.023 0.065 ± 0.001

Table 9: Amazon Reviews zero-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE
approach and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 2.603 ± 0.305 0.917 ± 0.017 0.184 ± 0.092 0.219 ± 0.114 0.061 ± 0.008
Falcon7bInstruct
+ Ensemble 2.598 ± 0.106 0.924 ± 0.006 0.182 ± 0.036 0.227 ± 0.02 0.062 ± 0.002
Falcon7bInstruct
+ Best 2.455 ± 0.153 0.927 ± 0.004 0.139 ± 0.02 0.174 ± 0.042 0.056 ± 0.003
Falcon7bInstruct
+ BayesPE 2.316 ± 0.105 0.929 ± 0.003 0.114 ± 0.016 0.118 ± 0.028 0.054 ± 0.002
Falcon40bInstruct
+ Standard 2.385 ± 0.029 0.937 ± 0.006 0.103 ± 0.02 0.363 ± 0.066 0.057 ± 0.001
Falcon40bInstruct
+ Ensemble 2.334 ± 0.019 0.948 ± 0.004 0.125 ± 0.024 0.355 ± 0.031 0.056 ± 0.0
Falcon40bInstruct
+ Best 2.324 ± 0.039 0.939 ± 0.006 0.08 ± 0.026 0.295 ± 0.087 0.056 ± 0.001
Falcon40bInstruct
+ BayesPE 2.315 ± 0.025 0.944 ± 0.004 0.106 ± 0.024 0.324 ± 0.024 0.056 ± 0.001
MPT7bInstruct
+ Standard 1.819 ± 0.115 0.965 ± 0.006 0.103 ± 0.02 0.211 ± 0.049 0.043 ± 0.002
MPT7bInstruct
+ Ensemble 1.755 ± 0.036 0.966 ± 0.002 0.07 ± 0.015 0.143 ± 0.029 0.041 ± 0.0
MPT7bInstruct
+ Best 1.734 ± 0.06 0.962 ± 0.002 0.071 ± 0.008 0.171 ± 0.058 0.04 ± 0.002
MPT7bInstruct
+ BayesPE 1.709 ± 0.011 0.966 ± 0.001 0.068 ± 0.01 0.147 ± 0.012 0.04 ± 0.001
MPT30bInstruct
+ Standard 1.638 ± 1.233 0.964 ± 0.025 0.238 ± 0.251 0.32 ± 0.311 0.044 ± 0.032
MPT30bInstruct
+ Ensemble 1.213 ± 0.198 0.976 ± 0.003 0.202 ± 0.102 0.325 ± 0.16 0.043 ± 0.009
MPT30bInstruct
+ Best 0.717 ± 0.069 0.983 ± 0.001 0.034 ± 0.012 0.096 ± 0.021 0.018 ± 0.001
MPT30bInstruct
+ BayesPE 0.667 ± 0.061 0.984 ± 0.001 0.032 ± 0.008 0.104 ± 0.018 0.018 ± 0.001
Mistral7bInstruct
+ Standard 0.946 ± 0.09 0.979 ± 0.005 0.06 ± 0.016 0.111 ± 0.032 0.026 ± 0.001
Mistral7bInstruct
+ Ensemble 0.905 ± 0.029 0.982 ± 0.002 0.066 ± 0.004 0.126 ± 0.021 0.024 ± 0.001
Mistral7bInstruct
+ Best 0.89 ± 0.103 0.984 ± 0.004 0.06 ± 0.028 0.105 ± 0.043 0.024 ± 0.002
Mistral7bInstruct
+ BayesPE 0.808 ± 0.026 0.986 ± 0.0 0.056 ± 0.025 0.126 ± 0.04 0.023 ± 0.0

Table 10: DBPedia 14 zero-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE
approach and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 0.853 ± 0.053 0.272 ± 0.018 0.274 ± 0.015 0.619 ± 0.114 0.321 ± 0.018
Falcon7bInstruct
+ Ensemble 0.837 ± 0.017 0.263 ± 0.012 0.235 ± 0.021 0.546 ± 0.03 0.315 ± 0.007
Falcon7bInstruct
+ Best 0.83 ± 0.032 0.305 ± 0.034 0.22 ± 0.024 0.489 ± 0.04 0.312 ± 0.013
Falcon7bInstruct
+ BayesPE 0.84 ± 0.007 0.259 ± 0.018 0.237 ± 0.021 0.539 ± 0.028 0.316 ± 0.003
Falcon40bInstruct
+ Standard 0.886 ± 0.054 0.361 ± 0.011 0.276 ± 0.023 0.484 ± 0.219 0.332 ± 0.02
Falcon40bInstruct
+ Ensemble 0.858 ± 0.022 0.354 ± 0.009 0.285 ± 0.007 0.378 ± 0.018 0.322 ± 0.008
Falcon40bInstruct
+ Best 0.862 ± 0.029 0.365 ± 0.007 0.289 ± 0.025 0.374 ± 0.052 0.324 ± 0.012
Falcon40bInstruct
+ BayesPE 0.845 ± 0.027 0.356 ± 0.008 0.285 ± 0.009 0.378 ± 0.022 0.318 ± 0.01
MPT7bInstruct
+ Standard 1.435 ± 0.137 0.38 ± 0.046 0.441 ± 0.016 0.539 ± 0.064 0.453 ± 0.017
MPT7bInstruct
+ Ensemble 1.431 ± 0.03 0.368 ± 0.021 0.443 ± 0.004 0.523 ± 0.017 0.455 ± 0.004
MPT7bInstruct
+ Best 1.438 ± 0.086 0.386 ± 0.045 0.443 ± 0.007 0.51 ± 0.02 0.455 ± 0.009
MPT7bInstruct
+ BayesPE 1.357 ± 0.029 0.397 ± 0.006 0.433 ± 0.005 0.64 ± 0.086 0.444 ± 0.004
MPT30bInstruct
+ Standard 1.083 ± 0.076 0.486 ± 0.02 0.277 ± 0.036 0.491 ± 0.029 0.351 ± 0.016
MPT30bInstruct
+ Ensemble 0.973 ± 0.067 0.486 ± 0.012 0.241 ± 0.028 0.482 ± 0.029 0.333 ± 0.016
MPT30bInstruct
+ Best 1.048 ± 0.03 0.479 ± 0.017 0.274 ± 0.012 0.508 ± 0.03 0.348 ± 0.009
MPT30bInstruct
+ BayesPE 0.961 ± 0.032 0.484 ± 0.009 0.242 ± 0.013 0.48 ± 0.028 0.332 ± 0.008
Mistral7bInstruct
+ Standard 0.834 ± 0.023 0.446 ± 0.04 0.215 ± 0.017 0.379 ± 0.068 0.306 ± 0.008
Mistral7bInstruct
+ Ensemble 0.808 ± 0.019 0.438 ± 0.016 0.2 ± 0.023 0.702 ± 0.268 0.298 ± 0.005
Mistral7bInstruct
+ Best 0.827 ± 0.014 0.437 ± 0.045 0.218 ± 0.017 0.38 ± 0.065 0.306 ± 0.007
Mistral7bInstruct
+ BayesPE 0.811 ± 0.006 0.401 ± 0.024 0.214 ± 0.008 0.447 ± 0.057 0.303 ± 0.001

Table 11: Glue (mrpc) zero-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE
approach and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 0.669 ± 0.179 0.909 ± 0.014 0.166 ± 0.133 0.266 ± 0.264 0.236 ± 0.069
Falcon7bInstruct
+ Ensemble 0.714 ± 0.046 0.927 ± 0.006 0.262 ± 0.032 0.43 ± 0.052 0.263 ± 0.019
Falcon7bInstruct
+ Best 0.566 ± 0.017 0.904 ± 0.007 0.085 ± 0.02 0.124 ± 0.034 0.197 ± 0.008
Falcon7bInstruct
+ BayesPE 0.552 ± 0.017 0.916 ± 0.004 0.076 ± 0.026 0.12 ± 0.045 0.191 ± 0.008
Falcon40bInstruct
+ Standard 2.352 ± 0.344 0.923 ± 0.035 0.49 ± 0.008 0.759 ± 0.173 0.484 ± 0.012
Falcon40bInstruct
+ Ensemble 2.205 ± 0.136 0.958 ± 0.01 0.49 ± 0.002 0.567 ± 0.151 0.484 ± 0.004
Falcon40bInstruct
+ Best 2.288 ± 0.341 0.936 ± 0.03 0.489 ± 0.008 0.688 ± 0.194 0.482 ± 0.012
Falcon40bInstruct
+ BayesPE 1.813 ± 0.126 0.922 ± 0.041 0.478 ± 0.005 0.875 ± 0.008 0.465 ± 0.006
MPT7bInstruct
+ Standard 2.393 ± 0.163 0.764 ± 0.038 0.492 ± 0.004 0.531 ± 0.114 0.489 ± 0.006
MPT7bInstruct
+ Ensemble 2.154 ± 0.109 0.838 ± 0.019 0.488 ± 0.002 0.488 ± 0.002 0.483 ± 0.003
MPT7bInstruct
+ Best 2.231 ± 0.364 0.805 ± 0.054 0.486 ± 0.011 0.605 ± 0.171 0.481 ± 0.016
MPT7bInstruct
+ BayesPE 1.889 ± 0.304 0.84 ± 0.036 0.477 ± 0.011 0.754 ± 0.173 0.467 ± 0.016
MPT30bInstruct
+ Standard 1.912 ± 0.269 0.946 ± 0.016 0.478 ± 0.012 0.821 ± 0.111 0.461 ± 0.019
MPT30bInstruct
+ Ensemble 1.734 ± 0.081 0.961 ± 0.004 0.474 ± 0.004 0.859 ± 0.005 0.455 ± 0.006
MPT30bInstruct
+ Best 1.967 ± 0.294 0.937 ± 0.012 0.479 ± 0.013 0.864 ± 0.019 0.464 ± 0.021
MPT30bInstruct
+ BayesPE 1.484 ± 0.146 0.961 ± 0.006 0.456 ± 0.009 0.834 ± 0.008 0.425 ± 0.015
Mistral7bInstruct
+ Standard 0.289 ± 0.025 0.958 ± 0.01 0.045 ± 0.019 0.108 ± 0.068 0.086 ± 0.01
Mistral7bInstruct
+ Ensemble 0.257 ± 0.008 0.965 ± 0.003 0.034 ± 0.009 0.158 ± 0.051 0.078 ± 0.003
Mistral7bInstruct
+ Best 0.268 ± 0.018 0.966 ± 0.003 0.052 ± 0.007 0.101 ± 0.051 0.076 ± 0.002
Mistral7bInstruct
+ BayesPE 0.247 ± 0.01 0.966 ± 0.004 0.034 ± 0.004 0.17 ± 0.067 0.076 ± 0.003

Table 12: Imdb zero-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE approach
and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 3.769 ± 0.16 0.547 ± 0.02 0.681 ± 0.002 0.681 ± 0.002 0.454 ± 0.002
Falcon7bInstruct
+ Ensemble 3.808 ± 0.082 0.561 ± 0.009 0.682 ± 0.001 0.682 ± 0.001 0.454 ± 0.001
Falcon7bInstruct
+ Best 3.679 ± 0.162 0.549 ± 0.017 0.68 ± 0.002 0.68 ± 0.002 0.453 ± 0.002
Falcon7bInstruct
+ BayesPE 3.554 ± 0.051 0.542 ± 0.01 0.678 ± 0.001 0.678 ± 0.001 0.452 ± 0.0
Falcon40bInstruct
+ Standard 1.248 ± 0.192 0.468 ± 0.031 0.227 ± 0.114 0.29 ± 0.163 0.255 ± 0.036
Falcon40bInstruct
+ Ensemble 1.294 ± 0.061 0.493 ± 0.018 0.305 ± 0.047 0.315 ± 0.048 0.27 ± 0.014
Falcon40bInstruct
+ Best 1.219 ± 0.202 0.457 ± 0.032 0.175 ± 0.13 0.196 ± 0.173 0.248 ± 0.039
Falcon40bInstruct
+ BayesPE 1.185 ± 0.024 0.456 ± 0.009 0.2 ± 0.032 0.262 ± 0.019 0.243 ± 0.006
MPT7bInstruct
+ Standard 1.22 ± 0.064 0.499 ± 0.017 0.226 ± 0.056 0.348 ± 0.178 0.251 ± 0.015
MPT7bInstruct
+ Ensemble 1.208 ± 0.016 0.491 ± 0.01 0.224 ± 0.016 0.318 ± 0.147 0.249 ± 0.004
MPT7bInstruct
+ Best 1.208 ± 0.065 0.503 ± 0.013 0.213 ± 0.059 0.328 ± 0.184 0.248 ± 0.015
MPT7bInstruct
+ BayesPE 1.19 ± 0.016 0.489 ± 0.011 0.209 ± 0.011 0.233 ± 0.022 0.245 ± 0.004
MPT30bInstruct
+ Standard 1.223 ± 0.079 0.464 ± 0.015 0.2 ± 0.069 0.505 ± 0.225 0.251 ± 0.018
MPT30bInstruct
+ Ensemble 1.17 ± 0.011 0.462 ± 0.006 0.152 ± 0.03 0.636 ± 0.173 0.239 ± 0.003
MPT30bInstruct
+ Best 1.196 ± 0.01 0.477 ± 0.005 0.158 ± 0.025 0.712 ± 0.124 0.244 ± 0.002
MPT30bInstruct
+ BayesPE 1.172 ± 0.009 0.46 ± 0.005 0.156 ± 0.021 0.722 ± 0.014 0.24 ± 0.002
Mistral7bInstruct
+ Standard 1.246 ± 0.177 0.517 ± 0.025 0.222 ± 0.107 0.366 ± 0.2 0.254 ± 0.034
Mistral7bInstruct
+ Ensemble 1.258 ± 0.063 0.532 ± 0.011 0.275 ± 0.056 0.38 ± 0.115 0.261 ± 0.015
Mistral7bInstruct
+ Best 1.413 ± 0.245 0.524 ± 0.03 0.334 ± 0.134 0.476 ± 0.118 0.288 ± 0.047
Mistral7bInstruct
+ BayesPE 1.178 ± 0.017 0.527 ± 0.009 0.196 ± 0.019 0.427 ± 0.235 0.242 ± 0.004

Table 13: SNLI zero-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE approach
and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 0.308 ± 0.029 0.975 ± 0.002 0.143 ± 0.013 0.166 ± 0.011 0.083 ± 0.011
Falcon7bInstruct
+ Ensemble 0.328 ± 0.012 0.978 ± 0.001 0.176 ± 0.013 0.197 ± 0.013 0.088 ± 0.004
Falcon7bInstruct
+ Best 0.309 ± 0.035 0.978 ± 0.001 0.151 ± 0.006 0.184 ± 0.004 0.083 ± 0.015
Falcon7bInstruct
+ BayesPE 0.326 ± 0.013 0.978 ± 0.001 0.176 ± 0.006 0.194 ± 0.008 0.088 ± 0.005
Falcon40bInstruct
+ Standard 0.657 ± 0.118 0.995 ± 0.002 0.26 ± 0.07 0.726 ± 0.126 0.235 ± 0.041
Falcon40bInstruct
+ Ensemble 0.57 ± 0.078 0.995 ± 0.0 0.212 ± 0.046 0.719 ± 0.063 0.207 ± 0.026
Falcon40bInstruct
+ Best 0.386 ± 0.062 0.994 ± 0.001 0.084 ± 0.044 0.283 ± 0.196 0.134 ± 0.026
Falcon40bInstruct
+ BayesPE 0.387 ± 0.041 0.996 ± 0.001 0.09 ± 0.03 0.274 ± 0.158 0.138 ± 0.018
MPT7bInstruct
+ Standard 1.473 ± 0.113 0.935 ± 0.014 0.398 ± 0.005 0.768 ± 0.185 0.388 ± 0.008
MPT7bInstruct
+ Ensemble 1.402 ± 0.027 0.947 ± 0.003 0.396 ± 0.002 0.803 ± 0.079 0.384 ± 0.003
MPT7bInstruct
+ Best 1.424 ± 0.097 0.941 ± 0.013 0.396 ± 0.004 0.789 ± 0.137 0.385 ± 0.007
MPT7bInstruct
+ BayesPE 1.37 ± 0.03 0.949 ± 0.004 0.394 ± 0.002 0.816 ± 0.067 0.381 ± 0.003
MPT30bInstruct
+ Standard 1.748 ± 0.313 0.979 ± 0.012 0.394 ± 0.014 0.828 ± 0.015 0.377 ± 0.019
MPT30bInstruct
+ Ensemble 1.605 ± 0.076 0.989 ± 0.003 0.394 ± 0.004 0.827 ± 0.011 0.374 ± 0.007
MPT30bInstruct
+ Best 1.596 ± 0.296 0.979 ± 0.009 0.373 ± 0.025 0.768 ± 0.075 0.358 ± 0.025
MPT30bInstruct
+ BayesPE 1.427 ± 0.036 0.99 ± 0.004 0.373 ± 0.012 0.833 ± 0.009 0.355 ± 0.005
Mistral7bInstruct
+ Standard 0.159 ± 0.044 0.99 ± 0.002 0.03 ± 0.01 0.192 ± 0.037 0.047 ± 0.015
Mistral7bInstruct
+ Ensemble 0.138 ± 0.012 0.991 ± 0.001 0.031 ± 0.014 0.142 ± 0.085 0.04 ± 0.005
Mistral7bInstruct
+ Best 0.127 ± 0.029 0.99 ± 0.004 0.03 ± 0.01 0.22 ± 0.013 0.034 ± 0.009
Mistral7bInstruct
+ BayesPE 0.135 ± 0.009 0.991 ± 0.001 0.026 ± 0.005 0.159 ± 0.072 0.038 ± 0.003

Table 14: SST-2 zero-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE approach
and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 2.558 ± 0.291 0.67 ± 0.024 0.47 ± 0.108 0.527 ± 0.084 0.221 ± 0.026
Falcon7bInstruct
+ Ensemble 2.395 ± 0.063 0.704 ± 0.009 0.444 ± 0.032 0.557 ± 0.028 0.209 ± 0.006
Falcon7bInstruct
+ Best 2.229 ± 0.022 0.688 ± 0.012 0.353 ± 0.019 0.538 ± 0.01 0.194 ± 0.002
Falcon7bInstruct
+ BayesPE 2.25 ± 0.111 0.7 ± 0.022 0.383 ± 0.045 0.535 ± 0.052 0.199 ± 0.007
Falcon40bInstruct
+ Standard 2.227 ± 0.847 0.658 ± 0.019 0.32 ± 0.167 0.903 ± 0.045 0.199 ± 0.041
Falcon40bInstruct
+ Ensemble 2.035 ± 0.046 0.669 ± 0.011 0.34 ± 0.035 0.924 ± 0.006 0.194 ± 0.005
Falcon40bInstruct
+ Best 1.924 ± 0.047 0.664 ± 0.005 0.265 ± 0.039 0.912 ± 0.027 0.183 ± 0.006
Falcon40bInstruct
+ BayesPE 1.883 ± 0.021 0.672 ± 0.004 0.233 ± 0.022 0.872 ± 0.052 0.178 ± 0.003
MPT7bInstruct
+ Standard 5.106 ± 0.457 0.711 ± 0.015 0.77 ± 0.045 0.802 ± 0.046 0.307 ± 0.017
MPT7bInstruct
+ Ensemble 4.968 ± 0.14 0.717 ± 0.006 0.777 ± 0.012 0.792 ± 0.027 0.307 ± 0.006
MPT7bInstruct
+ Best 5.053 ± 0.559 0.714 ± 0.016 0.753 ± 0.064 0.798 ± 0.051 0.302 ± 0.022
MPT7bInstruct
+ BayesPE 4.76 ± 0.264 0.717 ± 0.016 0.743 ± 0.044 0.767 ± 0.02 0.295 ± 0.014
MPT30bInstruct
+ Standard 2.989 ± 0.091 0.775 ± 0.018 0.575 ± 0.037 0.7 ± 0.034 0.242 ± 0.011
MPT30bInstruct
+ Ensemble 2.898 ± 0.103 0.787 ± 0.006 0.572 ± 0.023 0.735 ± 0.019 0.242 ± 0.006
MPT30bInstruct
+ Best 2.912 ± 0.04 0.794 ± 0.004 0.521 ± 0.012 0.661 ± 0.008 0.226 ± 0.002
MPT30bInstruct
+ BayesPE 2.67 ± 0.169 0.794 ± 0.005 0.516 ± 0.023 0.666 ± 0.02 0.222 ± 0.007
Mistral7bInstruct
+ Standard 1.238 ± 0.384 0.839 ± 0.078 0.14 ± 0.074 0.191 ± 0.082 0.123 ± 0.027
Mistral7bInstruct
+ Ensemble 1.04 ± 0.026 0.872 ± 0.006 0.076 ± 0.012 0.208 ± 0.142 0.108 ± 0.002
Mistral7bInstruct
+ Best 1.026 ± 0.02 0.876 ± 0.001 0.118 ± 0.014 0.186 ± 0.026 0.107 ± 0.002
Mistral7bInstruct
+ BayesPE 0.983 ± 0.013 0.878 ± 0.001 0.087 ± 0.013 0.121 ± 0.016 0.104 ± 0.002

Table 15: TREC zero-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE approach
and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 3.081 ± 0.134 0.577 ± 0.014 0.358 ± 0.058 0.477 ± 0.122 0.107 ± 0.004
Falcon7bInstruct
+ Ensemble 3.083 ± 0.054 0.584 ± 0.007 0.378 ± 0.016 0.409 ± 0.015 0.108 ± 0.001
Falcon7bInstruct
+ Best 3.067 ± 0.097 0.584 ± 0.008 0.34 ± 0.002 0.355 ± 0.05 0.107 ± 0.001
Falcon7bInstruct
+ BayesPE 2.972 ± 0.023 0.588 ± 0.007 0.333 ± 0.007 0.544 ± 0.181 0.105 ± 0.001
Falcon40bInstruct
+ Standard 2.599 ± 0.063 0.6 ± 0.044 0.145 ± 0.018 0.543 ± 0.206 0.094 ± 0.001
Falcon40bInstruct
+ Ensemble 2.551 ± 0.025 0.607 ± 0.014 0.098 ± 0.013 0.406 ± 0.208 0.093 ± 0.0
Falcon40bInstruct
+ Best 2.598 ± 0.027 0.604 ± 0.021 0.156 ± 0.013 0.707 ± 0.122 0.094 ± 0.001
Falcon40bInstruct
+ BayesPE 2.539 ± 0.018 0.602 ± 0.008 0.095 ± 0.015 0.614 ± 0.125 0.092 ± 0.0
MPT7bInstruct
+ Standard 2.846 ± 0.048 0.645 ± 0.01 0.205 ± 0.03 0.942 ± 0.026 0.095 ± 0.002
MPT7bInstruct
+ Ensemble 2.817 ± 0.014 0.655 ± 0.003 0.198 ± 0.016 0.953 ± 0.007 0.095 ± 0.001
MPT7bInstruct
+ Best 2.851 ± 0.042 0.656 ± 0.004 0.209 ± 0.023 0.947 ± 0.006 0.095 ± 0.001
MPT7bInstruct
+ BayesPE 2.816 ± 0.017 0.656 ± 0.002 0.208 ± 0.013 0.953 ± 0.006 0.095 ± 0.001
MPT30bInstruct
+ Standard 3.081 ± 0.173 0.642 ± 0.02 0.421 ± 0.072 0.514 ± 0.062 0.11 ± 0.007
MPT30bInstruct
+ Ensemble 3.077 ± 0.082 0.656 ± 0.008 0.453 ± 0.032 0.536 ± 0.043 0.113 ± 0.003
MPT30bInstruct
+ Best 3.171 ± 0.082 0.663 ± 0.009 0.495 ± 0.054 0.585 ± 0.069 0.117 ± 0.005
MPT30bInstruct
+ BayesPE 2.888 ± 0.094 0.631 ± 0.011 0.346 ± 0.022 0.457 ± 0.02 0.103 ± 0.002
Mistral7bInstruct
+ Standard 2.215 ± 0.061 0.693 ± 0.008 0.179 ± 0.047 0.334 ± 0.055 0.084 ± 0.002
Mistral7bInstruct
+ Ensemble 2.164 ± 0.035 0.696 ± 0.001 0.165 ± 0.025 0.336 ± 0.025 0.082 ± 0.001
Mistral7bInstruct
+ Best 2.135 ± 0.037 0.695 ± 0.001 0.123 ± 0.02 0.318 ± 0.024 0.081 ± 0.001
Mistral7bInstruct
+ BayesPE 2.154 ± 0.03 0.694 ± 0.003 0.139 ± 0.033 0.321 ± 0.031 0.082 ± 0.001

Table 16: Yahoo Answers zero-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE
approach and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 1.136 ± 0.083 0.243 ± 0.08 0.358 ± 0.038 0.623 ± 0.189 0.399 ± 0.017
Falcon7bInstruct
+ Ensemble 1.188 ± 0.027 0.227 ± 0.021 0.379 ± 0.01 0.741 ± 0.025 0.411 ± 0.005
Falcon7bInstruct
+ Best 1.209 ± 0.045 0.228 ± 0.051 0.393 ± 0.006 0.77 ± 0.054 0.414 ± 0.008
Falcon7bInstruct
+ BayesPE 1.131 ± 0.046 0.221 ± 0.03 0.367 ± 0.013 0.667 ± 0.106 0.399 ± 0.01
Falcon40bInstruct
+ Standard 0.857 ± 0.026 0.143 ± 0.029 0.314 ± 0.05 0.684 ± 0.061 0.326 ± 0.01
Falcon40bInstruct
+ Ensemble 0.841 ± 0.006 0.131 ± 0.008 0.32 ± 0.029 0.608 ± 0.171 0.321 ± 0.002
Falcon40bInstruct
+ Best 0.865 ± 0.016 0.116 ± 0.016 0.367 ± 0.037 0.698 ± 0.054 0.331 ± 0.003
Falcon40bInstruct
+ BayesPE 0.838 ± 0.005 0.127 ± 0.011 0.324 ± 0.029 0.601 ± 0.16 0.32 ± 0.002
MPT7bInstruct
+ Standard 0.76 ± 0.053 0.585 ± 0.058 0.149 ± 0.053 0.458 ± 0.344 0.272 ± 0.019
MPT7bInstruct
+ Ensemble 0.752 ± 0.02 0.587 ± 0.02 0.173 ± 0.014 0.474 ± 0.356 0.271 ± 0.007
MPT7bInstruct
+ Best 0.712 ± 0.016 0.638 ± 0.04 0.137 ± 0.032 0.127 ± 0.035 0.256 ± 0.007
MPT7bInstruct
+ BayesPE 0.722 ± 0.009 0.623 ± 0.02 0.16 ± 0.01 0.24 ± 0.222 0.26 ± 0.004
MPT30bInstruct
+ Standard 0.684 ± 0.043 0.722 ± 0.036 0.117 ± 0.038 0.183 ± 0.071 0.232 ± 0.012
MPT30bInstruct
+ Ensemble 0.623 ± 0.009 0.737 ± 0.011 0.089 ± 0.026 0.118 ± 0.036 0.214 ± 0.004
MPT30bInstruct
+ Best 0.65 ± 0.042 0.729 ± 0.014 0.092 ± 0.013 0.149 ± 0.094 0.218 ± 0.01
MPT30bInstruct
+ BayesPE 0.616 ± 0.018 0.738 ± 0.012 0.095 ± 0.02 0.087 ± 0.023 0.212 ± 0.006
Mistral7bInstruct
+ Standard 0.696 ± 0.045 0.614 ± 0.078 0.094 ± 0.036 0.388 ± 0.213 0.249 ± 0.02
Mistral7bInstruct
+ Ensemble 0.691 ± 0.011 0.591 ± 0.023 0.078 ± 0.025 0.138 ± 0.052 0.248 ± 0.005
Mistral7bInstruct
+ Best 0.7 ± 0.0 0.599 ± 0.0 0.127 ± 0.0 0.174 ± 0.0 0.251 ± 0.0
Mistral7bInstruct
+ BayesPE 0.69 ± 0.01 0.594 ± 0.023 0.076 ± 0.024 0.148 ± 0.046 0.247 ± 0.005

Table 17: YouTube zero-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE
approach and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 1.067 ± 0.145 0.22 ± 0.095 0.326 ± 0.079 0.624 ± 0.176 0.384 ± 0.048
Falcon7bInstruct
+ Ensemble 0.964 ± 0.027 0.185 ± 0.039 0.3 ± 0.018 0.565 ± 0.094 0.357 ± 0.008
Falcon7bInstruct
+ Best 1.119 ± 0.028 0.222 ± 0.087 0.317 ± 0.025 0.696 ± 0.106 0.393 ± 0.003
Falcon7bInstruct
+ BayesPE 0.878 ± 0.048 0.243 ± 0.102 0.269 ± 0.059 0.494 ± 0.187 0.33 ± 0.022
Falcon40bInstruct
+ Standard 0.78 ± 0.034 0.388 ± 0.09 0.171 ± 0.069 0.381 ± 0.081 0.289 ± 0.016
Falcon40bInstruct
+ Ensemble 0.762 ± 0.014 0.378 ± 0.049 0.149 ± 0.041 0.5 ± 0.04 0.281 ± 0.007
Falcon40bInstruct
+ Best 0.723 ± 0.009 0.485 ± 0.018 0.085 ± 0.007 0.376 ± 0.069 0.263 ± 0.004
Falcon40bInstruct
+ BayesPE 0.741 ± 0.011 0.439 ± 0.035 0.11 ± 0.02 0.491 ± 0.065 0.271 ± 0.005
MPT7bInstruct
+ Standard 1.143 ± 0.156 0.352 ± 0.085 0.364 ± 0.043 0.628 ± 0.218 0.398 ± 0.026
MPT7bInstruct
+ Ensemble 1.073 ± 0.055 0.346 ± 0.025 0.348 ± 0.015 0.602 ± 0.181 0.385 ± 0.013
MPT7bInstruct
+ Best 0.967 ± 0.035 0.328 ± 0.039 0.3 ± 0.017 0.476 ± 0.218 0.358 ± 0.012
MPT7bInstruct
+ BayesPE 0.988 ± 0.03 0.322 ± 0.022 0.308 ± 0.013 0.525 ± 0.253 0.364 ± 0.009
MPT30bInstruct
+ Standard 0.55 ± 0.031 0.851 ± 0.011 0.078 ± 0.034 0.143 ± 0.09 0.185 ± 0.014
MPT30bInstruct
+ Ensemble 0.519 ± 0.015 0.863 ± 0.005 0.045 ± 0.009 0.095 ± 0.027 0.173 ± 0.007
MPT30bInstruct
+ Best 0.544 ± 0.021 0.849 ± 0.014 0.081 ± 0.039 0.158 ± 0.075 0.182 ± 0.009
MPT30bInstruct
+ BayesPE 0.509 ± 0.005 0.861 ± 0.004 0.066 ± 0.008 0.098 ± 0.019 0.168 ± 0.002
Mistral7bInstruct
+ Standard 0.947 ± 0.03 0.296 ± 0.033 0.304 ± 0.007 0.606 ± 0.057 0.353 ± 0.006
Mistral7bInstruct
+ Ensemble 0.942 ± 0.013 0.299 ± 0.017 0.318 ± 0.018 0.562 ± 0.028 0.354 ± 0.004
Mistral7bInstruct
+ Best 0.95 ± 0.011 0.304 ± 0.038 0.322 ± 0.005 0.778 ± 0.153 0.356 ± 0.002
Mistral7bInstruct
+ BayesPE 0.926 ± 0.013 0.304 ± 0.018 0.305 ± 0.009 0.606 ± 0.159 0.349 ± 0.003

Table 18: SMS zero-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE approach
and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 0.222 ± 0.018 0.979 ± 0.004 0.068 ± 0.011 0.108 ± 0.021 0.06 ± 0.006
Falcon7bInstruct
+ Ensemble 0.22 ± 0.006 0.981 ± 0.001 0.081 ± 0.006 0.124 ± 0.027 0.058 ± 0.001
Falcon7bInstruct
+ Best 0.21 ± 0.011 0.982 ± 0.004 0.071 ± 0.012 0.118 ± 0.029 0.056 ± 0.005
Falcon7bInstruct
+ BayesPE 0.216 ± 0.005 0.981 ± 0.001 0.075 ± 0.006 0.144 ± 0.034 0.058 ± 0.002
Falcon40bInstruct
+ Standard 0.194 ± 0.016 0.986 ± 0.002 0.055 ± 0.016 0.113 ± 0.062 0.054 ± 0.005
Falcon40bInstruct
+ Ensemble 0.184 ± 0.007 0.986 ± 0.0 0.056 ± 0.008 0.112 ± 0.037 0.051 ± 0.002
Falcon40bInstruct
+ Best 0.168 ± 0.009 0.988 ± 0.001 0.049 ± 0.007 0.128 ± 0.072 0.05 ± 0.002
Falcon40bInstruct
+ BayesPE 0.177 ± 0.004 0.987 ± 0.0 0.05 ± 0.008 0.09 ± 0.016 0.049 ± 0.001
MPT7bInstruct
+ Standard 0.295 ± 0.091 0.984 ± 0.002 0.04 ± 0.027 0.131 ± 0.067 0.09 ± 0.032
MPT7bInstruct
+ Ensemble 0.311 ± 0.03 0.985 ± 0.0 0.021 ± 0.009 0.084 ± 0.067 0.096 ± 0.011
MPT7bInstruct
+ Best 0.222 ± 0.023 0.982 ± 0.001 0.023 ± 0.009 0.121 ± 0.075 0.064 ± 0.009
MPT7bInstruct
+ BayesPE 0.26 ± 0.05 0.984 ± 0.001 0.033 ± 0.011 0.153 ± 0.065 0.077 ± 0.018
MPT30bInstruct
+ Standard 0.356 ± 0.07 0.981 ± 0.003 0.069 ± 0.011 0.307 ± 0.088 0.083 ± 0.018
MPT30bInstruct
+ Ensemble 0.294 ± 0.024 0.986 ± 0.001 0.061 ± 0.004 0.29 ± 0.148 0.076 ± 0.004
MPT30bInstruct
+ Best 0.292 ± 0.053 0.982 ± 0.002 0.056 ± 0.014 0.292 ± 0.089 0.07 ± 0.01
MPT30bInstruct
+ BayesPE 0.267 ± 0.023 0.986 ± 0.001 0.056 ± 0.002 0.356 ± 0.124 0.07 ± 0.003
Mistral7bInstruct
+ Standard 0.194 ± 0.006 0.981 ± 0.002 0.029 ± 0.014 0.161 ± 0.08 0.057 ± 0.002
Mistral7bInstruct
+ Ensemble 0.175 ± 0.002 0.982 ± 0.0 0.021 ± 0.008 0.112 ± 0.032 0.052 ± 0.001
Mistral7bInstruct
+ Best 0.177 ± 0.008 0.983 ± 0.0 0.028 ± 0.001 0.176 ± 0.015 0.052 ± 0.002
Mistral7bInstruct
+ BayesPE 0.175 ± 0.002 0.982 ± 0.0 0.021 ± 0.007 0.082 ± 0.034 0.051 ± 0.001

Table 19: Amazon Reviews few-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE
approach and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 1.738 ± 0.32 0.973 ± 0.006 0.116 ± 0.046 0.191 ± 0.087 0.044 ± 0.006
Falcon7bInstruct
+ Ensemble 1.337 ± 0.185 0.984 ± 0.003 0.114 ± 0.032 0.206 ± 0.089 0.036 ± 0.002
Falcon7bInstruct
+ Best 1.524 ± 0.306 0.975 ± 0.007 0.075 ± 0.018 0.106 ± 0.033 0.035 ± 0.003
Falcon7bInstruct
+ BayesPE 1.342 ± 0.249 0.981 ± 0.006 0.067 ± 0.028 0.118 ± 0.045 0.034 ± 0.002
Falcon40bInstruct
+ Standard 0.63 ± 0.05 0.997 ± 0.001 0.092 ± 0.022 0.189 ± 0.046 0.019 ± 0.002
Falcon40bInstruct
+ Ensemble 0.59 ± 0.029 0.998 ± 0.0 0.122 ± 0.005 0.271 ± 0.018 0.018 ± 0.001
Falcon40bInstruct
+ Best 0.511 ± 0.046 0.998 ± 0.0 0.09 ± 0.012 0.251 ± 0.053 0.016 ± 0.001
Falcon40bInstruct
+ BayesPE 0.511 ± 0.048 0.998 ± 0.0 0.109 ± 0.016 0.294 ± 0.029 0.016 ± 0.001
MPT7bInstruct
+ Standard 0.684 ± 0.154 0.993 ± 0.002 0.053 ± 0.025 0.122 ± 0.09 0.021 ± 0.005
MPT7bInstruct
+ Ensemble 0.484 ± 0.034 0.996 ± 0.0 0.087 ± 0.016 0.224 ± 0.036 0.016 ± 0.001
MPT7bInstruct
+ Best 0.498 ± 0.033 0.995 ± 0.001 0.04 ± 0.012 0.073 ± 0.013 0.017 ± 0.001
MPT7bInstruct
+ BayesPE 0.466 ± 0.026 0.996 ± 0.001 0.055 ± 0.012 0.137 ± 0.025 0.016 ± 0.001
MPT30bInstruct
+ Standard 0.47 ± 0.09 0.995 ± 0.001 0.078 ± 0.026 0.204 ± 0.048 0.016 ± 0.003
MPT30bInstruct
+ Ensemble 0.314 ± 0.018 0.997 ± 0.0 0.039 ± 0.007 0.158 ± 0.024 0.011 ± 0.001
MPT30bInstruct
+ Best 0.445 ± 0.0 0.996 ± 0.0 0.077 ± 0.006 0.153 ± 0.006 0.017 ± 0.001
MPT30bInstruct
+ BayesPE 0.314 ± 0.023 0.996 ± 0.0 0.029 ± 0.009 0.144 ± 0.056 0.01 ± 0.001
Mistral7bInstruct
+ Standard 0.428 ± 0.046 0.995 ± 0.001 0.037 ± 0.006 0.128 ± 0.048 0.014 ± 0.002
Mistral7bInstruct
+ Ensemble 0.379 ± 0.024 0.995 ± 0.0 0.03 ± 0.006 0.154 ± 0.017 0.012 ± 0.001
Mistral7bInstruct
+ Best 0.403 ± 0.079 0.994 ± 0.001 0.031 ± 0.01 0.114 ± 0.049 0.013 ± 0.002
Mistral7bInstruct
+ BayesPE 0.356 ± 0.021 0.995 ± 0.0 0.032 ± 0.008 0.14 ± 0.038 0.012 ± 0.001

Table 20: DBPedia 14 few-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE
approach and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 0.918 ± 0.449 0.399 ± 0.054 0.179 ± 0.111 0.351 ± 0.055 0.3 ± 0.058
Falcon7bInstruct
+ Ensemble 0.77 ± 0.047 0.341 ± 0.024 0.163 ± 0.034 0.418 ± 0.112 0.283 ± 0.017
Falcon7bInstruct
+ Best 0.743 ± 0.024 0.412 ± 0.051 0.125 ± 0.054 0.327 ± 0.05 0.273 ± 0.012
Falcon7bInstruct
+ BayesPE 0.757 ± 0.018 0.333 ± 0.038 0.181 ± 0.051 0.347 ± 0.132 0.281 ± 0.008
Falcon40bInstruct
+ Standard 0.997 ± 0.063 0.224 ± 0.025 0.344 ± 0.034 0.683 ± 0.128 0.372 ± 0.016
Falcon40bInstruct
+ Ensemble 0.875 ± 0.021 0.212 ± 0.009 0.314 ± 0.018 0.665 ± 0.045 0.334 ± 0.009
Falcon40bInstruct
+ Best 0.967 ± 0.125 0.237 ± 0.025 0.33 ± 0.038 0.673 ± 0.098 0.362 ± 0.035
Falcon40bInstruct
+ BayesPE 0.906 ± 0.014 0.209 ± 0.007 0.306 ± 0.019 0.594 ± 0.047 0.346 ± 0.006
MPT7bInstruct
+ Standard 1.039 ± 0.378 0.485 ± 0.078 0.309 ± 0.098 0.378 ± 0.127 0.355 ± 0.065
MPT7bInstruct
+ Ensemble 0.945 ± 0.033 0.511 ± 0.03 0.318 ± 0.018 0.33 ± 0.013 0.352 ± 0.011
MPT7bInstruct
+ Best 0.787 ± 0.066 0.461 ± 0.064 0.19 ± 0.058 0.262 ± 0.031 0.292 ± 0.024
MPT7bInstruct
+ BayesPE 0.869 ± 0.072 0.509 ± 0.051 0.269 ± 0.048 0.301 ± 0.037 0.324 ± 0.025
MPT30bInstruct
+ Standard 2.236 ± 0.559 0.329 ± 0.034 0.434 ± 0.041 0.651 ± 0.027 0.489 ± 0.037
MPT30bInstruct
+ Ensemble 1.27 ± 0.122 0.328 ± 0.012 0.368 ± 0.024 0.678 ± 0.024 0.42 ± 0.018
MPT30bInstruct
+ Best 1.58 ± 0.231 0.386 ± 0.016 0.39 ± 0.045 0.609 ± 0.042 0.437 ± 0.031
MPT30bInstruct
+ BayesPE 1.253 ± 0.149 0.348 ± 0.01 0.354 ± 0.038 0.635 ± 0.025 0.41 ± 0.025
Mistral7bInstruct
+ Standard 1.078 ± 0.058 0.199 ± 0.013 0.409 ± 0.044 0.786 ± 0.154 0.407 ± 0.019
Mistral7bInstruct
+ Ensemble 0.966 ± 0.04 0.188 ± 0.003 0.368 ± 0.019 0.61 ± 0.104 0.371 ± 0.014
Mistral7bInstruct
+ Best 1.164 ± 0.086 0.19 ± 0.012 0.418 ± 0.041 0.756 ± 0.048 0.432 ± 0.027
Mistral7bInstruct
+ BayesPE 0.95 ± 0.059 0.19 ± 0.007 0.358 ± 0.016 0.689 ± 0.147 0.363 ± 0.022

Table 21: Glue (mrpc) few-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE
approach and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 0.434 ± 0.055 0.974 ± 0.011 0.102 ± 0.062 0.151 ± 0.049 0.138 ± 0.022
Falcon7bInstruct
+ Ensemble 0.431 ± 0.015 0.977 ± 0.002 0.215 ± 0.058 0.225 ± 0.048 0.128 ± 0.008
Falcon7bInstruct
+ Best 0.429 ± 0.063 0.965 ± 0.012 0.194 ± 0.064 0.219 ± 0.048 0.131 ± 0.022
Falcon7bInstruct
+ BayesPE 0.429 ± 0.026 0.977 ± 0.002 0.24 ± 0.02 0.245 ± 0.019 0.127 ± 0.01
Falcon40bInstruct
+ Standard 1.515 ± 0.347 0.973 ± 0.003 0.431 ± 0.052 0.796 ± 0.048 0.405 ± 0.053
Falcon40bInstruct
+ Ensemble 1.351 ± 0.088 0.98 ± 0.001 0.434 ± 0.012 0.812 ± 0.017 0.394 ± 0.014
Falcon40bInstruct
+ Best 1.136 ± 0.214 0.975 ± 0.002 0.373 ± 0.035 0.748 ± 0.028 0.345 ± 0.033
Falcon40bInstruct
+ BayesPE 1.072 ± 0.05 0.978 ± 0.002 0.371 ± 0.018 0.758 ± 0.031 0.339 ± 0.011
MPT7bInstruct
+ Standard 1.392 ± 0.238 0.945 ± 0.017 0.447 ± 0.021 0.831 ± 0.034 0.419 ± 0.03
MPT7bInstruct
+ Ensemble 1.487 ± 0.09 0.955 ± 0.004 0.46 ± 0.007 0.852 ± 0.008 0.437 ± 0.01
MPT7bInstruct
+ Best 1.577 ± 0.3 0.944 ± 0.019 0.46 ± 0.018 0.802 ± 0.106 0.437 ± 0.027
MPT7bInstruct
+ BayesPE 1.216 ± 0.123 0.955 ± 0.006 0.432 ± 0.012 0.812 ± 0.01 0.397 ± 0.016
MPT30bInstruct
+ Standard 2.112 ± 0.598 0.966 ± 0.006 0.375 ± 0.078 0.536 ± 0.201 0.374 ± 0.068
MPT30bInstruct
+ Ensemble 1.425 ± 0.119 0.972 ± 0.001 0.355 ± 0.034 0.677 ± 0.054 0.341 ± 0.02
MPT30bInstruct
+ Best 1.356 ± 0.347 0.973 ± 0.004 0.277 ± 0.071 0.342 ± 0.163 0.289 ± 0.059
MPT30bInstruct
+ BayesPE 1.203 ± 0.157 0.974 ± 0.001 0.26 ± 0.056 0.333 ± 0.162 0.277 ± 0.041
Mistral7bInstruct
+ Standard 0.21 ± 0.009 0.984 ± 0.002 0.032 ± 0.009 0.189 ± 0.106 0.061 ± 0.002
Mistral7bInstruct
+ Ensemble 0.167 ± 0.004 0.985 ± 0.001 0.022 ± 0.006 0.223 ± 0.073 0.052 ± 0.001
Mistral7bInstruct
+ Best 0.193 ± 0.01 0.983 ± 0.001 0.036 ± 0.005 0.288 ± 0.037 0.06 ± 0.001
Mistral7bInstruct
+ BayesPE 0.164 ± 0.006 0.985 ± 0.001 0.025 ± 0.006 0.246 ± 0.094 0.052 ± 0.002

Table 22: Imdb few-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE approach
and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 3.823 ± 0.148 0.451 ± 0.01 0.682 ± 0.002 0.682 ± 0.002 0.454 ± 0.001
Falcon7bInstruct
+ Ensemble 3.76 ± 0.036 0.453 ± 0.004 0.681 ± 0.0 0.681 ± 0.0 0.454 ± 0.0
Falcon7bInstruct
+ Best 3.734 ± 0.107 0.458 ± 0.011 0.68 ± 0.001 0.68 ± 0.001 0.454 ± 0.001
Falcon7bInstruct
+ BayesPE 3.697 ± 0.016 0.452 ± 0.005 0.68 ± 0.0 0.68 ± 0.0 0.453 ± 0.0
Falcon40bInstruct
+ Standard 1.575 ± 0.07 0.483 ± 0.016 0.452 ± 0.025 0.534 ± 0.084 0.326 ± 0.012
Falcon40bInstruct
+ Ensemble 1.565 ± 0.036 0.478 ± 0.006 0.451 ± 0.014 0.578 ± 0.103 0.325 ± 0.006
Falcon40bInstruct
+ Best 1.57 ± 0.071 0.493 ± 0.013 0.451 ± 0.026 0.522 ± 0.093 0.325 ± 0.012
Falcon40bInstruct
+ BayesPE 1.474 ± 0.055 0.483 ± 0.014 0.411 ± 0.025 0.46 ± 0.038 0.308 ± 0.011
MPT7bInstruct
+ Standard 1.764 ± 0.14 0.408 ± 0.017 0.505 ± 0.051 0.829 ± 0.152 0.355 ± 0.022
MPT7bInstruct
+ Ensemble 1.653 ± 0.055 0.405 ± 0.006 0.475 ± 0.019 0.874 ± 0.129 0.34 ± 0.009
MPT7bInstruct
+ Best 1.682 ± 0.186 0.414 ± 0.014 0.48 ± 0.056 0.667 ± 0.188 0.342 ± 0.027
MPT7bInstruct
+ BayesPE 1.522 ± 0.08 0.41 ± 0.004 0.423 ± 0.033 0.621 ± 0.194 0.317 ± 0.014
MPT30bInstruct
+ Standard 1.493 ± 0.127 0.461 ± 0.045 0.369 ± 0.05 0.65 ± 0.204 0.304 ± 0.021
MPT30bInstruct
+ Ensemble 1.374 ± 0.02 0.458 ± 0.016 0.337 ± 0.014 0.521 ± 0.039 0.286 ± 0.004
MPT30bInstruct
+ Best 1.352 ± 0.052 0.476 ± 0.018 0.31 ± 0.038 0.643 ± 0.183 0.28 ± 0.011
MPT30bInstruct
+ BayesPE 1.338 ± 0.025 0.469 ± 0.012 0.31 ± 0.022 0.525 ± 0.061 0.278 ± 0.006
Mistral7bInstruct
+ Standard 1.264 ± 0.065 0.488 ± 0.023 0.245 ± 0.068 0.562 ± 0.178 0.26 ± 0.015
Mistral7bInstruct
+ Ensemble 1.262 ± 0.019 0.484 ± 0.008 0.26 ± 0.018 0.528 ± 0.038 0.261 ± 0.004
Mistral7bInstruct
+ Best 1.224 ± 0.065 0.491 ± 0.017 0.204 ± 0.07 0.455 ± 0.042 0.252 ± 0.015
Mistral7bInstruct
+ BayesPE 1.224 ± 0.039 0.486 ± 0.008 0.219 ± 0.04 0.568 ± 0.032 0.252 ± 0.009

Table 23: SNLI few-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE approach
and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 0.414 ± 0.109 0.984 ± 0.001 0.102 ± 0.046 0.223 ± 0.106 0.129 ± 0.048
Falcon7bInstruct
+ Ensemble 0.389 ± 0.042 0.986 ± 0.001 0.094 ± 0.025 0.148 ± 0.033 0.121 ± 0.019
Falcon7bInstruct
+ Best 0.308 ± 0.035 0.984 ± 0.0 0.133 ± 0.028 0.198 ± 0.032 0.084 ± 0.015
Falcon7bInstruct
+ BayesPE 0.295 ± 0.024 0.986 ± 0.001 0.144 ± 0.009 0.197 ± 0.018 0.078 ± 0.01
Falcon40bInstruct
+ Standard 0.869 ± 0.181 0.994 ± 0.002 0.307 ± 0.028 0.772 ± 0.029 0.276 ± 0.03
Falcon40bInstruct
+ Ensemble 0.804 ± 0.063 0.994 ± 0.0 0.3 ± 0.018 0.773 ± 0.03 0.267 ± 0.016
Falcon40bInstruct
+ Best 0.693 ± 0.103 0.994 ± 0.0 0.252 ± 0.064 0.684 ± 0.148 0.234 ± 0.035
Falcon40bInstruct
+ BayesPE 0.667 ± 0.081 0.994 ± 0.0 0.233 ± 0.047 0.676 ± 0.064 0.227 ± 0.028
MPT7bInstruct
+ Standard 1.885 ± 0.568 0.992 ± 0.002 0.405 ± 0.011 0.717 ± 0.196 0.393 ± 0.021
MPT7bInstruct
+ Ensemble 1.632 ± 0.179 0.992 ± 0.002 0.404 ± 0.007 0.776 ± 0.184 0.39 ± 0.012
MPT7bInstruct
+ Best 1.696 ± 0.621 0.99 ± 0.002 0.388 ± 0.028 0.699 ± 0.186 0.371 ± 0.04
MPT7bInstruct
+ BayesPE 1.137 ± 0.08 0.99 ± 0.002 0.362 ± 0.013 0.801 ± 0.014 0.333 ± 0.014
MPT30bInstruct
+ Standard 1.354 ± 0.307 0.989 ± 0.001 0.265 ± 0.063 0.448 ± 0.141 0.266 ± 0.05
MPT30bInstruct
+ Ensemble 1.144 ± 0.082 0.992 ± 0.0 0.253 ± 0.021 0.528 ± 0.098 0.258 ± 0.012
MPT30bInstruct
+ Best 0.953 ± 0.225 0.99 ± 0.001 0.176 ± 0.031 0.244 ± 0.078 0.198 ± 0.028
MPT30bInstruct
+ BayesPE 0.892 ± 0.119 0.991 ± 0.001 0.173 ± 0.034 0.252 ± 0.13 0.198 ± 0.029
Mistral7bInstruct
+ Standard 0.15 ± 0.034 0.988 ± 0.002 0.02 ± 0.005 0.177 ± 0.065 0.04 ± 0.009
Mistral7bInstruct
+ Ensemble 0.128 ± 0.008 0.99 ± 0.001 0.033 ± 0.008 0.109 ± 0.019 0.033 ± 0.002
Mistral7bInstruct
+ Best 0.112 ± 0.023 0.992 ± 0.002 0.021 ± 0.005 0.178 ± 0.066 0.028 ± 0.007
Mistral7bInstruct
+ BayesPE 0.125 ± 0.008 0.991 ± 0.001 0.039 ± 0.006 0.206 ± 0.067 0.031 ± 0.002

Table 24: SST-2 few-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE approach
and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 2.583 ± 0.603 0.769 ± 0.03 0.432 ± 0.181 0.619 ± 0.241 0.211 ± 0.039
Falcon7bInstruct
+ Ensemble 1.881 ± 0.135 0.798 ± 0.008 0.313 ± 0.05 0.744 ± 0.229 0.178 ± 0.009
Falcon7bInstruct
+ Best 1.806 ± 0.229 0.801 ± 0.008 0.134 ± 0.104 0.322 ± 0.328 0.151 ± 0.015
Falcon7bInstruct
+ BayesPE 1.603 ± 0.166 0.791 ± 0.004 0.228 ± 0.07 0.704 ± 0.278 0.162 ± 0.013
Falcon40bInstruct
+ Standard 1.405 ± 0.156 0.856 ± 0.025 0.167 ± 0.061 0.235 ± 0.068 0.141 ± 0.016
Falcon40bInstruct
+ Ensemble 1.371 ± 0.059 0.859 ± 0.007 0.128 ± 0.021 0.304 ± 0.098 0.137 ± 0.006
Falcon40bInstruct
+ Best 1.205 ± 0.018 0.876 ± 0.014 0.09 ± 0.019 0.14 ± 0.0 0.118 ± 0.005
Falcon40bInstruct
+ BayesPE 1.199 ± 0.006 0.881 ± 0.002 0.083 ± 0.013 0.134 ± 0.005 0.118 ± 0.001
MPT7bInstruct
+ Standard 2.136 ± 0.708 0.836 ± 0.027 0.361 ± 0.111 0.535 ± 0.202 0.18 ± 0.042
MPT7bInstruct
+ Ensemble 1.52 ± 0.139 0.848 ± 0.007 0.268 ± 0.034 0.418 ± 0.117 0.155 ± 0.009
MPT7bInstruct
+ Best 1.591 ± 0.41 0.856 ± 0.017 0.282 ± 0.066 0.375 ± 0.126 0.15 ± 0.025
MPT7bInstruct
+ BayesPE 1.255 ± 0.117 0.868 ± 0.007 0.222 ± 0.025 0.3 ± 0.016 0.131 ± 0.009
MPT30bInstruct
+ Standard 2.399 ± 0.564 0.875 ± 0.013 0.382 ± 0.059 0.446 ± 0.078 0.169 ± 0.022
MPT30bInstruct
+ Ensemble 1.218 ± 0.09 0.892 ± 0.006 0.177 ± 0.032 0.275 ± 0.044 0.116 ± 0.009
MPT30bInstruct
+ Best 1.294 ± 0.223 0.891 ± 0.009 0.178 ± 0.048 0.238 ± 0.08 0.103 ± 0.016
MPT30bInstruct
+ BayesPE 1.155 ± 0.178 0.893 ± 0.007 0.104 ± 0.056 0.178 ± 0.055 0.1 ± 0.014
Mistral7bInstruct
+ Standard 0.874 ± 0.116 0.907 ± 0.008 0.055 ± 0.024 0.08 ± 0.032 0.082 ± 0.007
Mistral7bInstruct
+ Ensemble 0.813 ± 0.027 0.912 ± 0.004 0.048 ± 0.017 0.088 ± 0.016 0.077 ± 0.002
Mistral7bInstruct
+ Best 0.893 ± 0.08 0.906 ± 0.007 0.043 ± 0.025 0.077 ± 0.029 0.082 ± 0.006
Mistral7bInstruct
+ BayesPE 0.802 ± 0.023 0.911 ± 0.002 0.044 ± 0.018 0.086 ± 0.015 0.076 ± 0.002

Table 25: TREC few-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE approach
and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 2.717 ± 0.236 0.665 ± 0.02 0.208 ± 0.079 0.512 ± 0.278 0.095 ± 0.006
Falcon7bInstruct
+ Ensemble 2.641 ± 0.067 0.67 ± 0.01 0.125 ± 0.024 0.132 ± 0.06 0.091 ± 0.002
Falcon7bInstruct
+ Best 2.509 ± 0.044 0.67 ± 0.006 0.148 ± 0.046 0.555 ± 0.363 0.09 ± 0.001
Falcon7bInstruct
+ BayesPE 2.517 ± 0.077 0.676 ± 0.002 0.152 ± 0.017 0.627 ± 0.342 0.089 ± 0.001
Falcon40bInstruct
+ Standard 2.601 ± 0.207 0.678 ± 0.01 0.227 ± 0.093 0.341 ± 0.083 0.094 ± 0.005
Falcon40bInstruct
+ Ensemble 2.434 ± 0.088 0.69 ± 0.004 0.196 ± 0.029 0.248 ± 0.067 0.09 ± 0.002
Falcon40bInstruct
+ Best 2.653 ± 0.146 0.68 ± 0.008 0.188 ± 0.052 0.264 ± 0.043 0.092 ± 0.002
Falcon40bInstruct
+ BayesPE 2.343 ± 0.138 0.691 ± 0.008 0.138 ± 0.042 0.252 ± 0.032 0.087 ± 0.002
MPT7bInstruct
+ Standard 3.457 ± 0.219 0.656 ± 0.013 0.415 ± 0.071 0.561 ± 0.123 0.112 ± 0.007
MPT7bInstruct
+ Ensemble 3.09 ± 0.066 0.678 ± 0.008 0.318 ± 0.042 0.51 ± 0.08 0.102 ± 0.003
MPT7bInstruct
+ Best 3.366 ± 0.086 0.652 ± 0.01 0.383 ± 0.032 0.55 ± 0.086 0.108 ± 0.004
MPT7bInstruct
+ BayesPE 3.092 ± 0.116 0.676 ± 0.008 0.325 ± 0.064 0.48 ± 0.044 0.102 ± 0.005
MPT30bInstruct
+ Standard 4.024 ± 0.397 0.687 ± 0.012 0.462 ± 0.055 0.527 ± 0.078 0.11 ± 0.007
MPT30bInstruct
+ Ensemble 3.279 ± 0.172 0.7 ± 0.008 0.328 ± 0.073 0.391 ± 0.061 0.098 ± 0.004
MPT30bInstruct
+ Best 4.512 ± 0.628 0.683 ± 0.017 0.45 ± 0.081 0.494 ± 0.079 0.112 ± 0.01
MPT30bInstruct
+ BayesPE 3.223 ± 0.076 0.69 ± 0.006 0.271 ± 0.071 0.41 ± 0.035 0.096 ± 0.004
Mistral7bInstruct
+ Standard 2.538 ± 0.4 0.692 ± 0.025 0.186 ± 0.066 0.236 ± 0.086 0.086 ± 0.006
Mistral7bInstruct
+ Ensemble 2.175 ± 0.052 0.713 ± 0.004 0.101 ± 0.014 0.144 ± 0.04 0.08 ± 0.001
Mistral7bInstruct
+ Best 2.151 ± 0.046 0.709 ± 0.008 0.119 ± 0.012 0.157 ± 0.033 0.08 ± 0.001
Mistral7bInstruct
+ BayesPE 2.117 ± 0.053 0.713 ± 0.006 0.105 ± 0.015 0.151 ± 0.044 0.079 ± 0.001

Table 26: Yahoo Answers few-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE
approach and baselines with different LLMs.

12268



Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 0.995 ± 0.258 0.675 ± 0.056 0.319 ± 0.108 0.404 ± 0.143 0.348 ± 0.066
Falcon7bInstruct
+ Ensemble 0.989 ± 0.086 0.735 ± 0.02 0.352 ± 0.032 0.473 ± 0.14 0.361 ± 0.025
Falcon7bInstruct
+ Best 0.892 ± 0.279 0.639 ± 0.104 0.214 ± 0.167 0.275 ± 0.23 0.309 ± 0.085
Falcon7bInstruct
+ BayesPE 0.794 ± 0.112 0.711 ± 0.029 0.211 ± 0.115 0.236 ± 0.129 0.291 ± 0.046
Falcon40bInstruct
+ Standard 1.245 ± 0.173 0.155 ± 0.038 0.424 ± 0.088 0.914 ± 0.013 0.451 ± 0.053
Falcon40bInstruct
+ Ensemble 1.085 ± 0.051 0.097 ± 0.01 0.483 ± 0.022 0.903 ± 0.058 0.417 ± 0.017
Falcon40bInstruct
+ Best 1.105 ± 0.076 0.174 ± 0.018 0.373 ± 0.04 0.803 ± 0.084 0.408 ± 0.021
Falcon40bInstruct
+ BayesPE 1.053 ± 0.059 0.122 ± 0.011 0.427 ± 0.033 0.888 ± 0.092 0.401 ± 0.018
MPT7bInstruct
+ Standard 0.874 ± 0.156 0.452 ± 0.184 0.224 ± 0.093 0.51 ± 0.228 0.31 ± 0.044
MPT7bInstruct
+ Ensemble 0.757 ± 0.025 0.525 ± 0.09 0.17 ± 0.03 0.236 ± 0.057 0.279 ± 0.01
MPT7bInstruct
+ Best 0.717 ± 0.077 0.578 ± 0.053 0.098 ± 0.062 0.28 ± 0.115 0.257 ± 0.026
MPT7bInstruct
+ BayesPE 0.692 ± 0.017 0.574 ± 0.049 0.069 ± 0.036 0.253 ± 0.126 0.249 ± 0.008
MPT30bInstruct
+ Standard 1.143 ± 0.189 0.526 ± 0.127 0.324 ± 0.07 0.464 ± 0.093 0.36 ± 0.041
MPT30bInstruct
+ Ensemble 0.762 ± 0.056 0.483 ± 0.044 0.165 ± 0.047 0.325 ± 0.132 0.278 ± 0.02
MPT30bInstruct
+ Best 1.221 ± 0.252 0.388 ± 0.098 0.354 ± 0.108 0.552 ± 0.149 0.391 ± 0.065
MPT30bInstruct
+ BayesPE 0.76 ± 0.056 0.537 ± 0.055 0.158 ± 0.039 0.291 ± 0.087 0.276 ± 0.019
Mistral7bInstruct
+ Standard 0.692 ± 0.017 0.668 ± 0.029 0.092 ± 0.038 0.511 ± 0.249 0.239 ± 0.011
Mistral7bInstruct
+ Ensemble 0.648 ± 0.019 0.711 ± 0.036 0.058 ± 0.024 0.519 ± 0.413 0.227 ± 0.008
Mistral7bInstruct
+ Best 0.661 ± 0.036 0.691 ± 0.03 0.063 ± 0.005 0.354 ± 0.224 0.227 ± 0.012
Mistral7bInstruct
+ BayesPE 0.63 ± 0.028 0.713 ± 0.028 0.074 ± 0.016 0.33 ± 0.348 0.218 ± 0.011

Table 27: YouTube few-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE
approach and baselines with different LLMs.
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Model+Method NLL (↓) AUC (↑) ECE (↓) MCE (↓) Brier (↓)
Falcon7bInstruct
+ Standard 1.056 ± 0.154 0.596 ± 0.113 0.35 ± 0.042 0.607 ± 0.046 0.366 ± 0.037
Falcon7bInstruct
+ Ensemble 1.031 ± 0.046 0.601 ± 0.042 0.35 ± 0.014 0.6 ± 0.016 0.366 ± 0.011
Falcon7bInstruct
+ Best 1.14 ± 0.13 0.481 ± 0.13 0.364 ± 0.042 0.661 ± 0.051 0.386 ± 0.028
Falcon7bInstruct
+ BayesPE 0.885 ± 0.012 0.677 ± 0.045 0.299 ± 0.009 0.626 ± 0.053 0.324 ± 0.003
Falcon40bInstruct
+ Standard 1.219 ± 0.255 0.208 ± 0.238 0.438 ± 0.12 0.727 ± 0.216 0.439 ± 0.082
Falcon40bInstruct
+ Ensemble 1.003 ± 0.066 0.085 ± 0.026 0.417 ± 0.068 0.702 ± 0.11 0.386 ± 0.025
Falcon40bInstruct
+ Best 0.95 ± 0.085 0.415 ± 0.159 0.298 ± 0.041 0.468 ± 0.122 0.347 ± 0.029
Falcon40bInstruct
+ BayesPE 0.985 ± 0.14 0.196 ± 0.164 0.362 ± 0.139 0.68 ± 0.173 0.374 ± 0.061
MPT7bInstruct
+ Standard 1.035 ± 0.149 0.468 ± 0.091 0.33 ± 0.058 0.424 ± 0.111 0.368 ± 0.036
MPT7bInstruct
+ Ensemble 0.894 ± 0.056 0.529 ± 0.097 0.286 ± 0.024 0.317 ± 0.036 0.332 ± 0.019
MPT7bInstruct
+ Best 0.625 ± 0.091 0.818 ± 0.134 0.064 ± 0.069 0.169 ± 0.045 0.218 ± 0.039
MPT7bInstruct
+ BayesPE 0.715 ± 0.138 0.695 ± 0.186 0.118 ± 0.113 0.195 ± 0.075 0.256 ± 0.057
MPT30bInstruct
+ Standard 1.111 ± 0.356 0.554 ± 0.173 0.325 ± 0.103 0.444 ± 0.146 0.353 ± 0.074
MPT30bInstruct
+ Ensemble 0.722 ± 0.035 0.528 ± 0.073 0.128 ± 0.056 0.178 ± 0.104 0.264 ± 0.017
MPT30bInstruct
+ Best 0.788 ± 0.1 0.614 ± 0.133 0.216 ± 0.042 0.3 ± 0.076 0.276 ± 0.046
MPT30bInstruct
+ BayesPE 0.618 ± 0.081 0.716 ± 0.156 0.092 ± 0.052 0.155 ± 0.099 0.215 ± 0.038
Mistral7bInstruct
+ Standard 0.807 ± 0.072 0.426 ± 0.156 0.199 ± 0.096 0.678 ± 0.288 0.297 ± 0.034
Mistral7bInstruct
+ Ensemble 0.709 ± 0.03 0.549 ± 0.079 0.082 ± 0.046 0.323 ± 0.093 0.257 ± 0.015
Mistral7bInstruct
+ Best 0.668 ± 0.036 0.639 ± 0.064 0.078 ± 0.008 0.159 ± 0.103 0.237 ± 0.017
Mistral7bInstruct
+ BayesPE 0.667 ± 0.021 0.652 ± 0.041 0.06 ± 0.02 0.197 ± 0.126 0.237 ± 0.01

Table 28: SMS few-shot classification. Probabilistic metrics evaluated on test set for proposed BayesPE approach
and baselines with different LLMs.
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NLL AUC ECE MCE Brier
Standard
21(0) 26(0) 28(0) 33(1) 21(0)
Ensemble
17(0) 36(4) 19(1) 31(0) 16(1)
Best
24(1) 34(3) 32(1) 38(3) 31(1)
BayesPE
49(17) 37(2) 44(7) 37(5) 48(9)

Table 29: Summary of zero-shot results obtained from
our extensive benchmark evaluation (50 total experi-
ments).

NLL AUC ECE MCE Brier
Standard
7(0) 22(0) 14(1) 20(2) 6(0)
Ensemble
20(1) 30(6) 20(0) 24(3) 20(1)
Best
31(1) 2(3) 29(4) 30(2) 34(1)
BayesPE
47(8) 35(2) 39(9) 38(2) 48(8)

Table 30: Summary of few-shot results obtained from
our extensive benchmark evaluation (50 total experi-
ments).

NLL AUC ECE MCE Brier
Standard
8(0) 11(0) 11(1) 11(2) 9(0)
Ensemble
6(0) 16(2) 6(0) 8(2) 7(0)
Best
13(0) 11(1) 13(1) 11(3) 16(0)
BayesPE
20(6) 14(2) 13(3) 12(1) 20(3)

Table 31: Summary of results for Falcon7bInstruct (20
total experiments).

NLL AUC ECE MCE Brier
Standard
4(0) 10(0) 9(0) 11(1) 5(0)
Ensemble
8(1) 11(3) 5(0) 9(2) 6(1)
Best
13(2) 11(3) 14(1) 16(1) 13(1)
BayesPE
17(4) 10(0) 16(4) 15(2) 18(5)

Table 32: Summary of results for Falcon40bInstruct (20
total experiments).

NLL AUC ECE MCE Brier
Standard
7(0) 10(0) 8(0) 12(0) 6(0)
Ensemble
4(0) 14(1) 4(0) 12(0) 4(0)
Best
11(1) 15(0) 14(1) 19(1) 13(1)
BayesPE
19(6) 17(0) 16(4) 14(1) 19(3)

Table 33: Summary of results for MPT7bInstruct (20
total experiments).

NLL AUC ECE MCE Brier
Standard
1(0) 5(0) 2(0) 6(0) 2(0)
Ensemble
9(0) 12(3) 9(1) 11(0) 8(0)
Best
8(0) 11(2) 11(0) 14(1) 11(0)
BayesPE
20(4) 14(1) 19(4) 18(2) 20(4)

Table 34: Summary of results for MPT30bInstruct (20
total experiments).
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NLL AUC ECE MCE Brier
Standard
8(0) 12(0) 12(0) 13(0) 5(0)
Ensemble
10(0) 13(1) 15(0) 15(1) 11(1)
Best
10(0) 15(1) 10(0) 13(1) 12(0)
BayesPE
20(5) 17(1) 19(1) 16(1) 19(2)

Table 35: Summary of results for Mistral7bInstruct (20
total experiments).

12272


