
Findings of the Association for Computational Linguistics ACL 2024, pages 12323–12334
August 11-16, 2024 ©2024 Association for Computational Linguistics

Large Language Models are Few-Shot Training Example Generators:
A Case Study in Fallacy Recognition

Tariq Alhindi1 Smaranda Muresan2 Preslav Nakov1

1Mohamed bin Zayed University of Artificial Intelligence, UAE
2Columbia University, USA

{tariq.alhindi, preslav.nakov}@mbzuai.ac.ae

smara@columbia.edu

Abstract

Recognizing fallacies is crucial for ensuring
the quality and validity of arguments across
various domains. However, computational fal-
lacy recognition faces challenges due to the
diverse genres, domains, and types of fallacies
found in datasets. This leads to a highly multi-
class, and even multi-label, setup with substan-
tial class imbalance. In this study, we aim to
enhance existing models for fallacy recogni-
tion by incorporating additional context and by
leveraging large language models to generate
synthetic data, thus increasing the representa-
tion of the infrequent classes. We experiment
with GPT-3.5 to generate synthetic examples
and we examine the impact of prompt settings
for this. Moreover, we explore zero-shot and
few-shot scenarios to evaluate the effectiveness
of using the generated examples for training
smaller models within a unified fallacy recogni-
tion framework. Furthermore, we analyze the
overlap between the synthetic data and existing
fallacy datasets. Finally, we investigate the use-
fulness of providing supplementary context for
detecting fallacy types that need such context,
e.g., diversion fallacies. Our evaluation results
demonstrate consistent improvements across
fallacy types, datasets, and generators. The
code and the synthetic datasets are all publicly
available1.

1 Introduction

Fallacies are common errors in reasoning that can
mislead and invalidate arguments. The capacity to
discern fallacies is fundamental to sustaining the
robustness and authenticity of arguments across var-
ious domains, such as public policy, legal reason-
ing, and scientific discourse (Bailin and Battersby,
2016). In recent years, the task of automated fal-
lacy recognition has attracted significant interest
from researchers in the fields of Natural Language
Processing (NLP) and Artificial Intelligence (AI)

1https://github.com/Tariq60/fallacy-detection

(Amgoud and Besnard, 2013; Hamblin, 2022; Gof-
fredo et al., 2022; Alhindi et al., 2022; Jin et al.,
2022). However, numerous challenges persist, in-
cluding the multiplicity of genres, domains, and
fallacy types, which contribute to a complex multi-
class and multi-label task structure compounded by
class imbalances in datasets.

Existing work on fallacy recognition is still in its
early stages, with limited datasets available. These
datasets cover different types of fallacies in various
contexts, such as question and answer dialog moves
(Habernal et al., 2017), name-calling in social me-
dia debates (Habernal et al., 2018), logical fallacies
from educational websites (Jin et al., 2022), and
fallacies related to Covid-19 misinformation in so-
cial media and news (Musi et al., 2022). Previous
work has focused on detecting fallacies in indi-
vidual datasets, using techniques like fine-tuning
transformers for sequence tagging (Goffredo et al.,
2022), and training structure-aware classifiers (Jin
et al., 2022). However, fallacy recognition is chal-
lenging due to the high number of classification
labels, class imbalance in datasets, limited dataset
sizes, and poor out-of-distribution generalization.

Alhindi et al. (2022) proposes a multitask frame-
work using T5, which converts fallacy types into
natural language instructions, and thus approaches
the differences between fallacy datasets as different
tasks, but their approach does not detect infrequent
classes effectively. Goffredo et al. (2022) incor-
porate argumentation features to detect fallacies
in political debates, while Jin et al. (2022) trains
a structure-aware classifier on fallacies from edu-
cational websites; however, they both focus on a
single fallacy scheme from one dataset while we
include multiple fallacy schemes.

Current state-of-the-art models struggle with the
recognition of underrepresented fallacies, which
may often require additional context for accurate
identification, such as diversion fallacies (Walton,
1996).
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Figure 1: Data augmentation and model training pipeline.

This necessitates a comprehensive and diverse
dataset for training these models. One strategy to
combat the challenge of sparse and imbalanced
data in machine learning is data augmentation
(Wang et al., 2017) by creating synthetic examples,
thereby enhancing the dataset size and diversity and
improving the performance of the machine learning
model.

Large Language Models (LLMs) such as GPT-3,
3.5, 4 (Brown et al., 2020; OpenAI, 2023), Llama
(Touvron et al., 2023) and Mistral (Jiang et al.,
2023) have shown promising zero-shot perfor-
mance on various text classification tasks (Bubeck
et al., 2023; Gilardi et al., 2023). However, they
still do not perform as good as smaller models that
are fine-tuned for specific tasks, especially ones
that require deeper understanding and reasoning
(Alhindi et al., 2022; Qin et al., 2023). For com-
plex tasks, such as fallacy recognition, they can
be used for data augmentation by bootstrapping
existing human-annotated datasets by annotating
or generating additional examples (Møller et al.,
2023; Lin et al., 2023; Zhu et al., 2023).

We extend previous work on fallacy recogni-
tion by exploring the capabilities of large language
models to generate synthetic data that augments
manually labeled datasets (Section 3). We study
the effect of the data generated under zero-shot and
few-shot conditions on the downstream task of fal-
lacy recognition and show our experimental setup
(Section 4) and results (Section 5). We also analyze
the quality of the synthetic data and its similarity
to the fallacy datasets (Section 6). Figure 1 shows
an overview of our approach of using GPT-3.5 to
generate additional training examples in zero/few-
shot settings, then training a T5 model (Raffel et al.,
2020) for fallacy recognition on a combination of
the original and the synthetic data.

2 Fallacy Datasets

We experiment with the five fallacy datasets cov-
ered by Alhindi et al. (2022). They include fal-
lacies in question-answer pairs in game settings
(ARGOTARIO) (Habernal et al., 2017), 18 propa-
ganda techniques in news articles (PROPAGANDA)
(Da San Martino et al., 2019), logical fallacies from
educational websites (LOGIC) (Jin et al., 2022), and
fallacies in misinformation around covid in social
media (COVID) (Musi et al., 2022) and climate
change news articles (CLIMATE) (Alhindi et al.,
2022).

These datasets identify different fallacy types
and range from 5 to 18 fallacies. Alhindi et al.
(2022) unified the fallacy types from the four
schemes and introduced 28 fallacy types in one
unified scheme. These dataset are different in size
as they go from a few hundred examples (450-880)
for CLIMATE, COVID and ARGOTARIO, to a few
thousands (4,500 to 5,100) for LOGIC and PRO-
PAGANDA. The total number of examples per fal-
lacy type varies significantly as it ranges from less
than 100 examples for some fallacies (e.g., False
Analogy, Strawman, Whataboutism) to more than
1,000 examples (e.g., Hasty Generalization, Name
Calling or Labeling, Loaded Language). Detailed
numbers for each fallacy per dataset and split can
be found in Alhindi et al. (2022).

One main challenge in these datasets is the high
imbalance frequency of classes in a high multi-
class, and even multi-label task. The unified model
presented by Alhindi et al. (2022) improves the
overall results but still performs much better on
more frequent classes, thus we utilize data augmen-
tation to address this challenge. In addition, two of
the five fallacy datasets: PROPAGANDA and CLI-
MATE are from news articles where the fallacy is
annotated at the sentence or fragment level.
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Therefore, we assess the benefit of providing
additional context to the fallacious segment (sen-
tence or fragment) by including the preceding or
succeeding sentence when available.

3 Synthetic Data Generation

To generate additional examples for infrequent fal-
lacy classes, we leverage gpt-3.5-turbo (hence-
forth called GPT-3.5), a conversational language
model, as a data augmentation tool. We explore
zero-shot, 1-shot, 2-shot, and 5-shot settings to
generate examples that have not been seen in the
original training data. These generated examples
provide diversity and help address the data scarcity
issue for less frequent fallacy types.

In order to understand the capabilities of pre-
trained large language models such as GPT-3.5 in
producing synthetic data, we control the informa-
tion provided in the prompts as follows: i) zero-
shot prompts that have no fallacy example and ask
the model to generate an example in one form (e.g.,
sentence, tweet, question-answer pair) for a cer-
tain fallacy provided in the prompt; ii) few-shot
prompts that list the fallacy type and output form in
addition to providing 1 to 5 examples for the given
fallacy type in the prompt. The model is asked to
generate the same number of examples given in the
prompt (i.e. 1-shot prompt asks the model to gener-
ate 1 example, 5-shot ask for 5 new examples and
so on); iii) few-shot-context prompts that provide
the examples of fallacy and their wider context if
available (previous and next sentence) and asks the
language model to do the same by generating both
examples for a certain fallacy and their contexts.
Figure 2 shows an example of the 1-shot-context
prompt of the Irrelevant Authority fallacy from the
PROPAGANDA dataset.

For all data augmentation settings, we generate
the same number of examples per fallacy and thus
study the quality of the synthetic data using differ-
ent prompts for generation. The aim is to address
data imbalance in these datasets so we exclude fal-
lacies that are very frequent, especially if they only
exist in one fallacy scheme (i.e. less diverse). Fol-
lowing this criteria, we exclude Loaded Language
and Name Calling or Labeling that only appear in
PROPAGANDA. We also do not generate examples
for Hasty Generalization in a form similar to the
LOGIC dataset, but we generate ones in Covid-19
and climate change domains since their respective
datasets have this fallacy in very low counts.

Prompt

Your task is to perform the following actions:
1. Read the sentence that has the fallacy of Irrelevant
Authority and its provided context. The sentence and
context below are both delimited by <>.
2. Generate a similar example of one sentence and its
context of the Irrelevant Authority fallacy. The con-
text should be a bigger chunk of text that includes the
sentence, similar to the provided example sentence and
context below.

Your generated output should be in JSON format with the
following keys: generated_sentence, generated_context.

Sentence: <Carlson cited Dr. Robert Epstein who has
said, in Carlson’s words, “Google alone could determine
the outcome of almost any election just by altering its
search selections and we would never know it.”>

Context: <Carlson cited Dr. Robert Epstein who has said,
in Carlson’s words, “Google alone could determine the
outcome of almost any election just by altering its search
selections and we would never know it.”. Dr. Robert
Epstein is a social scientist and an expert on Google. >

Generated Output
{

’generated_sentence’: ’As a dog groomer, I can tell you
that the earth is flat.’,

’generated_context’: ’While most people accept that the
earth is round, one dog groomer is convinced otherwise.
As a dog groomer, I can tell you that the earth is flat.
Dogs are great navigators, and they always sense when
the ground is flat or sloping.’
}

Figure 2: Example of 1-shot context prompt from the
Propaganda dataset of a sentence that has the Irrelevant
Authority fallacy and its context.

For all generated fallacies we double the number
of examples with respect to the number of original
examples for a certain fallacy thus maintain com-
parable ratios of both original and synthetic data.
Also, we noticed repetition in synthetic examples if
we use a single original example multiple times in
the prompts, which causes a drop in performance
in the downstream task. Therefore, we cap the
number of synthetic examples for each fallacy to
100 examples generated from each dataset. This
changes the distribution of the training set by bring-
ing the very infrequent classes closer to the overall
average number of examples per class.
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4 Experimental Setup

Similar to Alhindi et al. (2022), we use the T5
model (Raffel et al., 2020), a versatile text-to-text
transformer, as the backbone for fallacy recognition
by fine-tuning instruction-based prompts on all fal-
lacy datasets. The prompts are designed to provide
explicit instructions on identifying specific falla-
cies, enabling targeted learning within the model.
This approach is inline with a large body of re-
search that utilizes instruction-tuning of large lan-
guage models on many tasks (Wei et al., 2022; Sanh
et al., 2022). We evaluate the proposed approach
on the five fallacy datasets. We train the T5 model
using a combination of the original labeled data
and the generated examples from GPT-3.5. We
compare the performance of the model under dif-
ferent settings, including zero-shot, 1-shot, 2-shot,
and 5-shot scenarios, with and without additional
context to understand the impact of prompt and
data availability on fallacy recognition.

All fallacy examples, original and synthetic, are
transformed into instruction-based prompts that are
used to fine-tune the T5-3 Billion model (hence-
forth T53B) in a multitask fashion. The model and
hyperparameters are fixed and we only change the
training data that is fed into the model with the aim
to study the ability of a smaller size model such as
T53B to learn from manually annotated or crowd-
sourced data as well as synthetically generated data
by a larger size model such as GPT-3.5.

We show the results of all training conditions for
the PROPAGANDA and CLIMATE datasets in Table
1 and for the ARGOTARIO, LOGIC, and COVID

datasets in Table 2. In both tables, we report the
overall accuracy and macro F1 scores for each
dataset as well as the F1 scores for each fallacy
class. The results cover nine training conditions
where we train on the original training set only
(baseline-N (no-context)) similar to (Alhindi et al.,
2022), and baseline-C with context for datasets
that are from news articles. This applies to the
PROPAGANDA and CLIMATE where this context
is available. The remaining seven training condi-
tions all use a different form of data augmentation
depending on the number of examples provided in
the prompt during synthetic data generation which
includes zero, one, two, or five examples. All data
augmentation experiments are done with context
(C columns) and no-context (N columns), except
for zero-shot prompts that are done without context
only.

It was challenging for GPT-3.5 to provide us-
able examples with contexts in most cases without
providing at least one example in the prompt for
GPT-3.5 to follow. Therefore zero-shot prompts
are only reported in no-context settings. We discuss
in the next section the effect of both data augmen-
tation and the addition of context in more details.

5 Results

Data Augmentation. Adding synthetic data to
the original data improves the results over the base-
lines where only the original training data is used
regardless of the data augmentation method. This
is true for both the overall accuracy and macro-
F1 scores in all five datasets as shown in Tables 1
and 2 whether the context is provided or not. In-
terestingly, 1-shot prompts seem to yield the best
results when compared to both zero-shot and other
few-shot settings. This results is counter to what
we initially expected. We hypothesized that 5-shot
prompts that have five examples of a fallacy and
ask GPT-3.5 to generate five similar examples to
yield synthetic data that is more generic to the fal-
lacy (the one factor that is common among the five
examples in the prompt), and therefore would help
train a model for fallacy recognition to be more
resilient. However, it seems that 5-shot prompts
generate synthetic examples that are more similar
to the original data (more in Section 6), which con-
sequently makes the synthetic data generated by
1-shot prompts better for the downstream task.

Per-Class Results. Some fallacies show larger
gains after data augmentation compared to others.
This is true in the LOGIC dataset where the Equivo-
cation and Fallacy of Extension are among fallacies
with the biggest gains over baselines. These two
fallacies are also the least frequent in the LOGIC

dataset and thus the impact of data augmentation
is bigger. The diversion fallacies in PROPAGANDA

e.g., Red Herring, Strawman, Whataboutism are
particularly challenging in baseline settings due to
their low counts and complexity since they could
require external information to the fallacious seg-
ment to be properly recognized, which is espe-
cially the case for Strawman where all models
fail to make any correct prediction with or without
data augmentation. However, for Red Herring and
Whataboutism, significant gains are observed with
data augmentation particularly for Whataboutism
in 1-shot settings where the f1-scores jumps to 0.63
compared to 0 in the baseline models.
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Data Augmentation
Dataset Fallacy baseline zero-shot 1-shot 2-shot 5-shot

N C N N C N C N C
Propaganda Black and White Fallacy .14 .34 .39 .39 .29 .35 .33 .36 .34

Causal Oversimplification .34 .27 .41 .48 .27 .39 .23 .44 .29
Doubt .61 .66 .67 .66 .69 .66 .71 .69 .68
Exaggerate/Minimization .34 .32 .44 .58 .55 .58 .47 .58 .49
Fear or Prejudice .49 .44 .49 .54 .49 .67 .46 .51 .50
Flag-Waving .64 .67 .67 .68 .67 .67 .67 .69 .69
Irrelevant Authority .26 .30 .44 .46 .44 .47 .40 .41 .38
Loaded Language .79 .76 .81 .83 .81 .83 .79 .83 .80
Name Calling, Labeling .83 .79 .83 .85 .82 .85 .81 .86 .81
Red Herring 0 0 0 .29 .22 0 0 0 0
Reductio Ad Hitlerum .17 .18 .29 .40 .27 .44 .25 .40 .22
Slogans .49 .45 .59 .56 .52 .55 .51 .67 .48
Strawman 0 0 0 0 0 0 0 0 0
Thought-Termin. Cliches .29 .34 .29 .50 .40 .36 .41 .38 .39
Whataboutism 0 0 .29 .63 .62 .53 .53 .48 .47
Accuracy .68 .67 .71 .74 .71 .73 .70 .74 .70
Macro .36 .37 .44 .52 .47 .48 .44 .49 .44

Climate Causal Oversimplification .35 .33 .40 .53 .32 .42 .30 .60 .37
Cherry Picking .44 .41 .43 .48 .44 .43 .41 .46 .45
Evading Burden of Proof 0 0 0 .17 .12 0 .10 0 0
False Analogy 0 0 .36 .62 .18 .35 .17 .43 .17
Hasty Generalization 0 0 0 0 0 0 0 0 0
Irrelevant Authority .22 .25 .31 .31 .31 .31 .31 .43 .33
Red Herring 0 0 .12 .11 0 .18 0 .18 0
Strawman .22 0 .40 .40 .40 .36 .50 .55 .40
Vagueness .37 .39 .34 .40 .29 .36 .36 .36 .24
Accuracy .30 .28 .34 .40 .29 .34 .29 .39 .30
Macro .18 .15 .26 .33 .23 .27 .24 .33 .22

Table 1: F1 scores on the Propaganda and Climate datasets using multitask training of T53B model. N: no context
to the fallacious segment added. C: context of previous and next sentence to the fallacious segment provided.

Some fallacy types are challenging to detect
in some datasets but not as challenging in other
datasets. This is mainly due to their format in a
particular dataset, frequency, and the fallacies they
are listed with in the prompt at inference time. For
example, Red Herring is easier to detect in ARGO-
TARIO and LOGIC even by the baseline model due
to a lower number of fallacies in ARGOTARIO, and
the lack of other diversion fallacies in these two
scheme, which makes Red Herring more distinct
than the other fallacies and easier to distinguish.
However, for PROPAGANDA and CLIMATE, the
baselines get 0 f1-scores for Red Herring and data
augmentation helps in improving the results to 0.29
in 1-shot for PROPAGANDA and 0.18 in 2-shot and
5-shot settings in the CLIMATE dataset.

Some fallacy types remain challenging to de-
tect with any kind of data augmentation, such as
Strawman in PROPAGANDA, and Hasty General-
ization in CLIMATE given their low counts in the
test set (e.g., 2-5 examples) and therefore the test
sets might have one particular form of this fallacy
rather than represent the fallacy type in general.
Having a train-test split that can truly evaluate the
performance of machine learning models for this
task is not trivial due to the high number of classes,
the severe data imbalance, the quality of labels, and
the inherent subjectivity and overlap between some
fallacies. Revisiting the splits would hinder the
ability of direct comparison with previous work on
these datasets and therefore it is not included in
this paper but worth re-examination in future work.
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Data Augmentation
Dataset Fallacy baseline zero-shot 1-shot 2-shot 5-shot

N C N N C N C N C
Argotario Ad Hominem .59 .63 .63 .71 .64 .62 .64 .65 .63

Emotional Language .64 .68 .70 .71 .70 .67 .69 .60 .65
Hasty Generalization .46 .44 .51 .47 .54 .47 .52 .55 .49
Irrelevant Authority .71 .72 .80 .75 .78 .74 .77 .75 .78
Red Herring .32 .42 .47 .50 .46 .44 .51 .53 .52
Accuracy .56 .57 .61 .61 .60 .59 .63 .61 .62
Macro .54 .58 .62 .61 .61 .58 .63 .61 .61

Logic Ad Hominem .77 .81 .87 .88 .88 .88 .85 .86 .88
Ad Populum .81 .80 .82 .89 .87 .86 .86 .89 .85
Black and White Fallacy .84 .84 .91 .91 .89 .92 .89 .91 .92
Causal Oversimplification .65 .70 .81 .79 .82 .81 .80 .78 .79
Circular Reasoning .57 .56 .68 .84 .84 .80 .77 .76 .83
Deductive Fallacy .32 .29 .48 .69 .57 .57 .54 .56 .57
Emotional Language .55 .53 .65 .76 .77 .72 .74 .71 .68
Equivocation .22 0 .27 .57 .43 .55 .39 .43 .42
Fallacy of Extension .08 .04 .48 .68 .68 .64 .60 .58 .64
Hasty Generalization .64 .63 .72 .80 .75 .77 .75 .77 .79
Intentional Fallacy .09 .15 .16 .55 .48 .46 .33 .35 .33
Irrelevant Authority .56 .54 .61 .74 .68 .68 .72 .68 .66
Red Herring .24 .30 .58 .78 .67 .67 .61 .65 .62
Accuracy .58 .58 .68 .79 .76 .75 .73 .73 .74
Macro .45 .48 .62 .76 .72 .72 .68 .69 .69

Covid Causal Oversimplification .45 .53 .40 .56 .59 .53 .53 .50 .50
Cherry Picking .35 .37 .37 .31 .36 .28 .34 .38 .38
Evading Burden of Proof 0 0 .31 .45 .53 .46 .57 .49 .40
False Analogy .33 .50 .25 .29 .29 .25 .29 .29 .25
Hasty Generalization .17 0 .11 .17 .16 .11 .25 .10 .11
Irrelevant Authority 0 0 0 0 0 0 0 0 0
Red Herring 0 0 0 0 0 0 0 0 0
Strawman 0 0 0 .20 0 0 .17 .17 .15
Vagueness .09 0 .09 .27 .33 .22 .30 .15 .19
Accuracy .23 .25 .26 .30 .34 .27 .36 .31 .30
Macro .16 .15 .17 .25 .25 .20 .27 .23 .22

Table 2: F1 scores on the Argotario, Logic and Covid datasets. N: no additional context provided. C: context of
previous and next sentence provided where available (Propaganda and Climate only and added with no-context
training sets of the three datasets shown).

Effect of Additional Context. The use of con-
text during training is different for PROPAGANDA

and CLIMATE in Table 1 compared to the other
three datasets shown in Table 2. The difference
between each N and C columns in Table 1 is rather
than only providing a fallacious segment, we pro-
vide a wider context window of the previous and
next sentence when available for the two datasets
listed in the table. However, there is no difference
in the training data between the N and C columns

for the three datasets listed in Table 2 i.e. ARGO-
TARIO, LOGIC, and COVID. The only difference
is that they are combined in the multitask training
model with two other datasets (PROPAGANDA and
CLIMATE) where the context is provided. Since
the training is done on all datasets combined with
some overlap between fallacy types across datasets,
we report the results on the ARGOTARIO, LOGIC,
and COVID datasets for context-based experiments
on all five datasets.
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Figure 3: Average BLEURT score (y-axis) between original and synthetic data for each fallacy type in few-shot
prompts (x-axis: 1-shot, 2-shot, 5-shot).

With minor exceptions (e.g., Doubt in PROPA-
GANDA, Vagueness and overall scores in COVID),
adding context does not improve the results for
fallacy recognition. This could be related to the
fact that some fallacy types require different con-
text than others. For example, Cherry Picking re-
quires understanding of the trend and Strawman re-
quires the retrieval of the original argument, while
Evading the Burden of Proof needs information
regarding the structure of the argument to assess
its validity (Goffredo et al., 2022; Alhindi et al.,
2021). Therefore, a unified form of context across
twenty-eight fallacy types does not have consistent
improvement over experiments conducted under
similar conditions.

Overall Observations. There are two observa-
tions that are consistent across all results. First,
data augmentation through large language mod-
els helps train smaller models on more data that
is beneficial to fallacy recognition. Second, sim-
ple context of previous or next sentence does not
provide valuable insight for this task. Thus, the
customization of the type of context based on the
fallacy type is needed.

6 Original and Synthetic Data Similarity

In order to understand the reason for 1-shot
prompts to generate synthetic data that is more
beneficial to the task, we analyze the similarity
between the generated data and the original train-
ing examples shown at the prompts. For simi-
larity, we use BLEURT score as it has the most
consistent results with human evaluation (Sellam
et al., 2020). We calculate BLEURT score for each
original-synthetic example pair where the original
example is the one used in the prompt to generate
the synthetic example. Thus, we only report sim-
ilarity in the 1-shot, 2-shot, and 5-shot prompts.
For the 2-shot and 5-shot, we report the maximum
score for a generated example with respect to all
original examples included in the prompt.

Figure 3 shows average BLEURT scores for each
fallacy in all five datasets. We notice high similar-
ity scores in ARGOTARTIO and LOGIC that range
between 0.50 and 0.30 and much lower scores
for CLIMATE and COVID that range between 0.18
and 0.30. This shows that it is harder to produce
synthetic examples that are similar to naturally-
occurring examples in news and social media.
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Common across all datasets is that on average
1-shot prompts for most fallacies tend to produce
less similar examples to the ones included in the
prompts when compared with 2-shot and 5-shot
prompts. However, the synthetic data from the 1-
shot prompts is more useful to training a model
for fallacy recognition that is tested on human-
annotated data. After closer examination of syn-
thetic data from 2-shot and 5-shot, while they are
more similar to the original data on average, they
tend be more similar to one of the 2 example (or
5 examples) provided in the prompt and thus suf-
fer from repetition of one form, which makes the
overall synthetic data less diverse. This shows the
sensitivity of the LLM to the information in the
prompt and possibly to the order of the provided
few-shot examples. Therefore, asking an LLM
to generate multiple synthetic examples in one in-
struction could lead it to generate ones that are
more similar to each other even if the original data
in the prompt include multiple human-annotated
examples.

7 Related Work

We provide an overview of the literature that dis-
cusses the use of LLMs for data augmentation, and
the literature on the development of models and
resources for fallacy recognition.

7.1 Data Augmentation

With the significant focus on the development of
generative large language models (LLMs) in re-
cent years (Brown et al., 2020; Zhang et al., 2022;
Chowdhery et al., 2023; Touvron et al., 2023; Ope-
nAI, 2023; Jiang et al., 2023), there has been an
increase in the utilization of these models to an-
notate data (Feng et al., 2021; Chen et al., 2023;
He et al., 2023; Bansal and Sharma, 2023; Zhang
et al., 2023), or generate additional data instances
that can be added to existing training sets for vari-
ous tasks (Kumar et al., 2020; Schick and Schütze,
2021; Wang et al., 2023, 2021; Ye et al., 2022;
Gao et al., 2022; Sahu et al., 2023). LLMs are
particularly useful for data augmentation in special-
ized domains or complex tasks where human labels
are difficult or expensive to collect at scale (Ding
et al., 2024). Previous work include using LLMs
for annotation following an explain-then-annotate
approach (He et al., 2023), a framework for LLMs
as active annotators (Zhang et al., 2023), and a
sampling strategy to find the most informative in-

puts to annotate by LLMs (Bansal and Sharma,
2023). Møller et al. (2023) instructs LLMs to gen-
erate examples similar to a provided example from
one class and uses those for few-shot classification.
Sahu et al. (2023) generates challenging augmenta-
tions near class boundaries and instructs LLMs to
relabel these augmentations.

For dialogue, Feng et al. (2021) uses GPT for
dialogue summarization, Chen et al. (2023) uses ex-
pert written conversation to synthesize social con-
versation, Chintagunta et al. (2021) uses GPT-3 to
create medical summaries in dialog setting then
trains models on a mix of synthesized and gold-
labeled data which scales the results to 30x gold-
labeled examples, and AugESC Zheng et al. (2023)
finetunes an LM and prompts it to complete dia-
logues for emotional support conversations. We
adopt similar strategies for fallacy recognition that
presents a unique set of challenges.

7.2 Fallacy Recognition
In addition to the five fallacy datasets mentioned in
Section 2 that cover fallacy in dialogue (Habernal
et al., 2017), propaganda (Da San Martino et al.,
2019), educational websites (Jin et al., 2022) and
(mis/dis)-information (Musi et al., 2022; Alhindi
et al., 2022), there is other work that extends these
datasets in the same domain or cover other domains
and genres. Habernal et al. (2018) created a dataset
for the ad hominem fallacy from the "Change My
View" subreddit, while Sahai et al. (2021) used
Reddit to create a dataset with eight fallacy types.
In addition, fallacy in dialogue include datasets in
political debate (Goffredo et al., 2022, 2023), and
the evaluation of the robustness of LLMs against
logical fallacies (Payandeh et al., 2023).

Work on propaganda include covering additional
propaganda techniques that go up to a total of 23
techniques (Piskorski et al., 2023), the detection
of propaganda techniques in code-switched text
(Salman et al., 2023), using discourse to detect
propaganda (Chernyavskiy et al., 2024), and the
study of framing and how it relates to persuasion
and propaganda (Sajwani et al., 2024).

A shared task at the CheckThat! Lab at CLEF
2024 extends the coverage of propaganda tech-
niques to 13 languages2, while other shared tasks
cover text and memes in multilingual settings3, and
in Arabic4 (Hasanain et al., 2023).

2checkthat.gitlab.io/clef2024/task3/
3propaganda.math.unipd.it/semeval2024task4/
4araieval.gitlab.io/
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We build on the line of work that uses language
models for generating additional training data. Our
work differs form previous work in the following
aspects: i) we particularly focus on the ability of us-
ing synthetic data generated by language models to
address data imbalance challenges, ii) we use zero-
shot and few-shot settings to generate synthetic
data but use full-shot training on a mix of original
and synthetic data for the downstream task, and iii)
we tackle a challenging task of fallacy recognition
to understand the gains from using large language
models for data augmentation.

8 Conclusion and Future Work

Fallacy recognition remains a challenging problem
due to the high number of classes, severe data im-
balance and the need in some cases for external
information to the fallacious segment. To mitigate
the effect of data imbalance, we studied the capabil-
ities of large language models to generate synthetic
data that can be used to train smaller models on
a combination of original and synthetic data for
fallacy recognition across multiple tasks. The main
observation is that data augmentation through large
language models is beneficial for this task.

However, the conditions under which the data is
generated impacts the quality of the synthetic data
significantly. Providing one example in the prompt
(1-shot) for a certain fallacy from the original data
and asking GPT-3.5 to generate a similar example
results in synthetic data that is more beneficial to
downstream models for fallacy recognition tested
on data from the same distribution. The value in
having synthetic data that is less similar to the orig-
inal training data and possibly more generic to the
task needs to be tested on data from unseen fallacy
schemes or domains, which presents a potential
avenue for future work. Overall, large language
models show great potential to generate additional
training data for the task of fallacy recognition,
which can be used to train smaller size open-source
models for this task.

In future work, we want to test the resilience of
data augmentation on out-of-domain test sets such
as fallacy in political debates. Also, we want to
study the ability of LLMs to generate examples that
could be labeled by multiple fallacies and train ma-
chine learning for this tasks with a multi-labeling
objective. Finally, we want to experiment with the
ability of LLMs to provide more useful context for
fallacy recognition.

Limitations

This work addresses challenges related to datasets
with imbalance class ratios in high multi-class clas-
sifications using data augmentation generated by
large language models. However, this work does
not address other challenges in fallacy recognition.

These include the incorporation of external
knowledge to the fallacious segment which is es-
sential in detecting some of the diversion fallacies
such as Cherry Picking that requires an understand-
ing of the general trend for the issue at hand, or
Strawman that requires the retrieval of the original
argument.

In addition, this work assumes a single fallacy
label for each segment of text. However, in reality
fallacies can overlap and thus handling the multi-
label aspect of this task is not covered in this work.

Also, this work focuses on the classification of
fallacy types and not the detection of fallacy and
separating it from non-fallacious text which is a
challenging task (Goffredo et al., 2023).

Finally, labeling fallacy by humans is inherently
subjective and thus concurrent work suggests incor-
porating subjectivity in fallacy labels (Helwe et al.,
2023), and thus treating human annotations as cer-
tain gold labels might provide a limited perspective
for fallacy recognition models.

Ethics and Broader Impact

Using large language models to generate examples
of various fallacy types comes at a risk of produc-
ing impolite, foul or hateful language. We have
inspected a sample of the synthetic data and modi-
fied the prompts to minimize these aspects in the
generated data. However, it is hard to guarantee the
nonexistence of harsh language in data from large
language models at scale. Some fallacy techniques
in the datasets used in this paper have harsh or im-
polite language by definition e.g., Name Calling,
Labeling and thus cannot be avoided. Also, study-
ing fallacy and training machine learning models
for fallacy recognition could potentially lead to
the promotion of the topic and the misuse of these
models in various ways.

While we acknowledge the risks, we believe this
study contributes to increasing the awareness of
fallacious techniques for both readers and writers
and can better equip them with proper tools to in-
crease their immunity against potential harms with
the overall objective of increasing digital literacy
for both content-creators and content-consumers.
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