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Abstract

Large language models (LLMs) can generate
long-form and coherent text, yet they often hal-
lucinate facts, which undermines their relia-
bility. To mitigate this issue, inference-time
methods steer LLM representations toward the
“truthful directions” previously learned for truth
elicitation. However, applying these truthful di-
rections with the same intensity fails to general-
ize across different query contexts. We propose
LITO, a Learnable Intervention method for
Truthfulness Optimization that automatically
identifies the optimal intervention intensity tai-
lored to each specific context. LITO explores
a sequence of model generations based on in-
creasing levels of intervention intensities. It
selects the most accurate response or refuses
to answer when the predictions are highly un-
certain. Experiments on multiple LLMs and
question-answering datasets demonstrate that
LITO improves truthfulness while preserving
task accuracy. The adaptive nature of LITO
counters the limitations of one-size-fits-all in-
tervention methods, maximizing truthfulness
by reflecting the model’s internal knowledge
only when it is confident. Our code is available
at https://github.com/launchnlp/LITO.

1 Introduction

Despite their impressive performance across a wide
range of natural language processing (NLP) tasks,
large language models (LLMs) still generate hal-
lucinated outputs that lack real-world basis, lim-
iting their reliability in critical applications that
require truthful responses. Many promising direc-
tions are explored to overcome this challenge, such
as developing methods to ground LLMs in external
knowledge and incorporate credibility indicators
into model outputs (Gao et al., 2023; Fatahi Bayat
et al., 2023). Another class of methods states the
presence of a linear representation of “truth” in
model activations (Marks and Tegmark, 2023; Li
et al., 2023; Burns et al., 2022). These methods
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Figure 1: Model responses using the inference-time
intervention method with intensities increasing from 5
to 25. For different queries, the model achieves correct
responses at varying intensity levels, indicated by green
(correct) and red (incorrect) colors. Darkness of color
represents the model’s confidence in its response.

train linear probes on top of LLM’s internal activa-
tions to identify truthful directions in their repre-
sentation space. In particular, Burns et al. (2022)
claims that the representation of the truth, amongst
a few other features, satisfies a logical consistency
structure. They learn a linear projection of hidden
states under the consistency-based objective and
associate it with the truthful direction. However,
Farquhar et al. (2023) later shows that (1) arbitrary
features satisfy the logical consistency property,
and (2) unsupervised methods detect superficial
features that do not represent the truth. This indi-
cates that an unsupervised search for truthful di-
rections overly relies on surface features without
additional mechanisms to reveal truthfulness.

To avoid capturing irrelevant features, Li et al.
(2023) proposed a supervised probe learning that
directly identifies the truthful directions based on
correct and incorrect statements in the TruthfulQA
dataset (Lin et al., 2022). This method, called
inference-time intervention (ITI), trains supervised
linear probes on the output of each attention head,
treating the resulting probe weights as truthful di-
rections. Additionally, a scaling coefficient is tuned
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to determine the intensity at which each direction
should be added to its respective head output at
inference time. However, amplifying the truthful
directions with a fixed single intensity does not gen-
eralize across all contexts. Figure 1 demonstrates
this by showing the Llama2-Chat-7B (Touvron
et al., 2023b) model’s performance on answering
various queries from the Natural Questions dataset
(Kwiatkowski et al., 2019) after applying the ITI
technique with gradually increasing truthful direc-
tion intensities. Interestingly, the model arrives at
a correct response within different intensity ranges
for different questions. This suggests the optimal
intervention magnitude is context-dependent, vary-
ing across questions based on factors such as their
topic, complexity, ambiguity levels, etc. Moreover,
the truthful directions may not capture all aspects
of truthfulness. Therefore, adjusting the intensity
alone cannot guarantee accurate responses. For
instance, consider the question “What flag is red
and has a gold star?” in Figure 1. Intervening with
varying strengths of truthful directions does not
result in a correct answer. In such cases, the model
should express uncertainty to stay truthful.

To address the limitations of one-size-fits-all in-
tervention solutions by prior methods, we propose
a Learnable Intervention method for Truthfulness
Optimization, LITO. LITO identifies truthful di-
rection intensities that suit different contexts, e.g.,
different questions. Given a sequence of model
generations at multiple levels of intervention inten-
sities, we develop a method to maximize truthful-
ness, which we define as selecting factual responses
when the model is highly confident and refusing
to respond otherwise. To achieve this, we collect
model responses, including textual outputs, hidden
representations, and confidence values, at increas-
ing levels of intervention intensity. We then train
an LSTM-based classifier to assess the accuracy
of these responses based on the sequence of hid-
den states. During inference, the system selects
the most accurate response if any is deemed accu-
rate by the classifier; otherwise, it outputs “I have
no comment” to express uncertainty and refuse to
answer.

We measure the performance of LITO and other
methods in balancing truthfulness and accuracy,
introducing a novel evaluation metric called the
Truthfulness-Accuracy (TA) score. This metric
evaluates the trade-off between truthfulness and
task-specific accuracy by measuring how effec-

tively different methods produce truthful outputs
that appropriately acknowledge uncertainty while
also achieving high accuracy on the target task.

LITO is a learnable intervention methodology
agnostic to the specific intervention method used,
as long as the method can identify and apply truth-
ful directions to the model’s internal representa-
tions. In this paper, we instantiate LITO using the
ITI method and extend its application to unsuper-
vised truthful directions detected through represen-
tation engineering (RepE) (Zou et al., 2023). We
conduct comprehensive experiments across four
datasets and two categories of language models:
Llama and GPT-2. The results show that LITO
significantly improves truthfulness while preserv-
ing high task accuracy across different interven-
tion methods. For example, using the ITI method,
LITO boosts the TA score of Llama2-Chat-7B by
9.6 points on the Natural Questions dataset. Addi-
tionally, we evaluate LITO in a cross-domain set-
ting to demonstrate its transferability across tasks.

2 Problem Statement and Preliminaries

We consider the problem of mitigating hallucina-
tions in large language models through truthfulness
enhancement. Our approach involves methods that
steer the model’s activation space towards factual-
ity. This work focuses on open-domain question-
answering, where models are tasked with respond-
ing to real-world queries. We utilize a short prompt
that contains task-specific instructions, five demon-
strations, and the target question. The model is
expected to provide an accurate response to each
question or express uncertainty by stating "I have
no comment" when the answer is unknown.

2.1 Inference-time Intervention (ITI)

To enhance truthfulness, we adopt a supervised
truth elicitation technique called inference-time in-
tervention (ITI) (Li et al., 2023). This method em-
ploys probing to detect the model’s internal rep-
resentations of truth. ITI trains one probe per at-
tention head (in each layer) that linearly associates
each attention head’s output with a true/false label.
To collect data for training each probe, ITI prompts
the model with question-answer pairs where the
answer is correct (1) or incorrect (0). Next, for
each prompt, it collects the attention activation
xhl , per layer l and per head h, of the answer’s
last token along with its binary labels y. A linear
probe p(xhl ) = sigmoid(⟨dhl , xhl ⟩) is then trained
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on each head, and a sparse set of heads with the
highest validation accuracy is selected. ITI shifts
each selected head’s activation xhl towards its corre-
sponding probe weights dhl presented as a truthful
direction. To achieve this, ITI adds truthful di-
rections, amplified by a tuned coefficient α (the
intervention intensity), to their corresponding head
activation for each next token prediction as:

xhl = xhl + αdhl (1)

2.2 Learnable Intervention for Truthfulness
Optimization

As illustrated in Figure 1, applying a single in-
tervention direction to selected head activation
does not yield truthful results. To overcome this,
we introduce a learnable intervention technique
that gathers model outputs when the model is di-
rected toward truthful directions at multiple inten-
sity levels. Given an LM with L layers and H
attention heads per layer, we use the ITI method
to identify truthful directions (probe weights) as
D = {dhl |l ∈ L′, h ∈ H ′}, where L′ ⊆ L
and H ′ ⊆ H represent the subsets of layers and
heads selected by ITI. We then apply directions
D at k different intensity levels (denoted by α
values) for each input prompt, collect responses
A = {a1, a2, .., ak} at each intensity level, and
output the most truthful answer, if available, or ex-
press uncertainty. The following section describes
our intervention approach in detail.

3 Approach

In this work, we develop an intervention technique
that dynamically adjusts to optimal intensity value,
enhancing truthfulness based on prompt character-
istics. Specifically, we increase the intensity (α)
of the truthful directions D, learned by ITI, across
k iterations, maintaining uniform intensity levels
across all selected directions. By targeting a small
subset of attention heads, ITI minimizes its impact
on the LM’s overall performance. Thus, small in-
creases in intensity can yield similar outputs. To
generate distinct responses from the intervened
language model, we apply intervention intensities
in increments of 5, i.e. α ∈ 5, 10, . . . , 5k. Let
LLMα denote the LLM intervened with intensity
α and A = {a1, a2, ..., ak} denotes the collection
of model responses, where ai = LLMα=5i(x).
Each response ai contains (1) the textual model
generation yi which consists of N tokens, (2) the

model’s last-layer hidden states hi for generated to-
kens, and (3) the confidence score p(yi|x). Follow-
ing Liu et al. (2024), we compute the confidence
score as geometric mean across the sequence of
token probabilities:

p(yi|x) = N

√∏N
t=1 p(yi,t|x, yi,<t) (2)

We collect the three output components for each
of the k interventions and pass all outputs to our
adaptive intervention system, LITO. Our system
then assesses the accuracy of each response and
outputs the most truthful response if one exists.

3.1 Training

We start with the hidden states H = {h1, ..., hk}
corresponding to k different responses A =
{a1, a2, ..., ak}. Each hi ∈ H represents the last-
layer hidden states for N tokens in ai ∈ A. We
aggregate these hidden states across all generated
tokens by taking their mean:

hi =
1

N

N∑

j=1

hi,j (3)

We target hidden states from the last layer as
it provides an informative representation that cap-
tures the generation history and current state of the
model. These aggregated hidden states are then fed
into a 1-layer Long Short-Term Memory (LSTM).
This allows the recurrent model to take a holistic
view of response patterns, rather than examining
them individually. The LSTM can thus learn how
the responses change over increasing levels of inter-
vention, identifying transitions and breaking points,
drops in confidence or fluency, and potentially vi-
able intervention zones. We showcase the effective-
ness of selecting LSTM in Section 6.2. The LSTM
outputs a hidden representation denoted as hr,i for
each response representation hi:

hr,1, ..., hr,k = LSTM(h1, ..., hk) (4)

Finally, the hidden outputs of the LSTM are
passed through a fully connected layer, followed
by a sigmoid nonlinearity, to obtain the factuality
probability pw(hr,i) for each response, defined as
pw(hr,i) = δ(⟨w, hr,i⟩), where w represents the
learned parameters and hr,i denotes the LSTM’s
hidden representation of response ai ∈ A.
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Figure 2: Overview of LITO method. Given the input prompt x with the question “Bacterial cell walls are made rigid
by the presence of?”, our method first collects model-generated responses after applying ITI-identified directions
at 5 intensities LLMα=5k(x) (Section 3). Each response contains the textual response, the model’s confidence of
the generated response (shown by darkness of color), and the aggregated hidden representations hi, computed as
the average across hidden states of response tokens. LITO predicts the accuracy of each response given its hidden
representations and selects the accurate response (labeled as 1) with the highest confidence or indicates uncertainty.

3.2 Inference

At inference time, we input the aggregated hid-
den state hi corresponding to each answer ai ∈ A
through our trained system to determine its accu-
racy label I(δ(⟨w, hr,i⟩) > 0.5) where I is the in-
dicator function. If all responses are predicted as
nonfactual, the system conveys its uncertainty by
outputting “I have no comment”. Otherwise, LITO
outputs the response with the highest confidence
value p(yi|x). Formally:

i∗ = argmax(p(yi|x)) s.t. (5)

δ(⟨w, hr,i⟩) > 0.5

Therefore, the final output is yi∗ or “I have no com-
ment” in case all predictions are zero (inaccurate).
Figure 2 shows an overview of how LITO operates.

4 Datasets and Training Labels for LITO

4.1 Datasets

In this work, we focus on open-domain question-
answering (QA). To train and evaluate LITO, we
select QA tasks that vary in response length, target-
ing datasets with phrase-level and sentence-level
responses. For phrase-level openQA datasets, we
use NaturalQuestions (NQ) (Kwiatkowski et al.,
2019), SciQ (Welbl et al., 2017), and TriviaQA
(Joshi et al., 2017), all of which include short
responses (e.g., named entities). For sentence-
level responses, we choose TruthfulQA (Lin et al.,
2022) where model responses are complete sen-
tences. All datasets employed are in English.

We adopt an in-domain truthful direction iden-
tification approach. To this end, we use the val-

idation set of NaturalQuestions (NQ)1 and Trivi-
aQA2 datasets that contain correct answers, and
GPT-4-generated incorrect answers to serve as an
adversarial data point. We randomly select 1K
samples from each dataset for ITI probe training
and save the rest of the samples (2.4K) for test-
ing our method. SciQ is a multi-choice science
question-answering dataset. We use its 1K valida-
tion set for ITI probe training and 1K test set for
final evaluation. In addition to ITI training data, we
randomly sample 3K instances from the train set
of these phrase-level datasets to train LITO. Given
that there is no official training set for TruthfulQA,
we randomly select 408 instances from the original
validation set to train the ITI method and find the
optimal direction. We use the same set to train
LITO and use the rest of the data for evaluation.

4.2 Training Label Construction
First, we use the ITI method to identify truthful di-
rections that can later be integrated into the model’s
representations with amplified intensity. Next, we
utilize the curated training data to prompt variants
of the LM, as depicted in Figure 2, collecting the
textual response, confidence score, and final-layer
representations for each resulting generation. To
label each response for accuracy, a DeBERTa-large
model (He et al., 2021), fine-tuned on the MultiNLI
(Williams et al., 2018) task, annotates phrase-level
outputs. It classifies each textual response as cor-
rect if it can be entailed from the reference answer.
To annotate model generations on TruthfulQA, we

1https://huggingface.co/datasets/OamPatel/iti_
nq_open_val

2https://huggingface.co/datasets/OamPatel/iti_
trivia_qa_val
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ask GPT-4 to assess response accuracy based on
semantic equivalence to the reference.3

5 Experimental Setup

5.1 Prompts
We adopt the same prompt format for evaluating
TruthfulQA. Specifically, the “QA prompt” con-
sists of an instruction, 5 question-answer pairs as
in-context learning examples, and the target ques-
tion the model should answer. We use the following
instruction in all experiments: “Interpret each ques-
tion literally and as a question about the real world;
carefully research each answer, without falling prey
to any common myths; and reply “I have no com-
ment.” unless you are completely certain of the
answer.”

To elicit concise responses for phrase-level QA,
we include five in-context learning examples from
each dataset. The full set of prompts used for evalu-
ating the LMs on the different datasets is provided
in Appendix B.

5.2 Metrics
The output response of an intervention method can
be factually accurate, inaccurate, or indicate un-
certainty by outputting “I have no comment”. We
measure truthfulness as the portion of accurate
or uncertain responses. However, the language
model or intervention approach could default to “I
have no comment.” to maximize their truthfulness.
Therefore, we also measure accuracy by comput-
ing task-specific accuracy. Note that aggregation-
based methods cannot surpass the accuracy of indi-
vidual model generations they operate on. Finally,
to measure the balance between truthfulness and
accuracy, we propose the TA score which computes
the geometric mean of truthfulness and accuracy:

TA =
√

Truthfulness × Accuracy (6)

A higher TA score indicates that a method better
balances the trade-off between producing accurate
responses on the target task and generating truthful
outputs that appropriately reflect uncertainty.

5.3 Models
We test intervention methods on two families of
models: (1) Llama models: Vicuna-7B (Chiang
et al., 2023), Llama2-chat-7B, and Llama2-chat-
13B (Touvron et al., 2023a), and (2) GPT-2 models:
GPT2-large and GPT2-XL (Radford et al., 2019).

3GPT-4 prompt for measuring correctness in Appendix A.

5.4 Baseline Methods
We apply the ITI method by setting k = 5 and in-
tervening in each model with five distinct intensity
values, α ∈ {5, 10, 15, 20, 25} which establish ITI
baselines. The optimal k value selection is detailed
in Section 6.2.3. We independently compute the
baseline performance at each intensity. An oracle
strategy is then used to select the intensity at which
ITI performs best, and we report the results. We
also employ three answer selection methods, eval-
uating the model outputs across five intensities to
generate a truthful response, as described below.

Majority Voting : Given the model outputs A =
{a1, a2, ..., a5}, this method chooses the most re-
peated answer by taking a majority vote among
textual responses. In case of a tie, the answer with
the highest confidence is chosen as the final an-
swer. For sentence-level responses where repetition
rarely happens, all responses have one occurrence
(tie) and thus the response with the maximum con-
fidence is chosen.

Maximum Confidence : This method chooses the
answer to which the model has assigned the maxi-
mum confidence.

Maximum Confidence > T : The difference be-
tween this method and Maximum Confidence is
that it only selects an answer if its confidence is
above a certain threshold. If such an answer does
not exist, the final output is: “I have no comment.”
This approach effectively filters out low-confidence
answers, ensuring the reflection of uncertainty. We
set T = 0.6 as it shows the best average perfor-
mance across datasets and LMs.4

6 Experimental Results and Further
Analyses

In this section, we first compare LITO against
several counterparts and present our findings in
Section 6.1. Then, in Section 6.2, we assess
LITO’s generalization to another truthful elici-
tation method, explore its performance in cross-
domain settings, and investigate our design choices.

6.1 Results
6.1.1 Results Compared to Original LM and

ITI Baseline
Table 1 shows the performance of different methods
in terms of their TA score on 4 datasets and 5 LMs.

4Implementation details are provided in Appendix C.
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Task Model Original LM ITI (best of 5) Maj. Vote Max Conf. Max Conf. >T LITO

NQ

GPT2-large 12.2 15.4 12.9 15.0 14.2 27.2
GPT2-XL 15.5 17.7 16.5 18.6 22.0 29.1
Llama2-Chat-7B 29.2 31.7 31.7 31.3 33.5 38.8
Llama2-Chat-13B 32.7 33.9 34.2 33.4 38.9 41.5
Vicuna-7B 30.0 30.3 29.3 30.0 35.0 36.2

SciQ

GPT2-large 39.4 40.0 39.7 40 27.8 47.0
GPT2-XL 40.5 41.5 41.2 41.3 36.9 46.8
Llama2-Chat-7B 65.4 66.1 64.8 64.9 65.8 66.2
Llama2-Chat-13B 71.4 72.1 71.0 70.7 70.6 71.6
Vicuna-7B 61.7 61.4 57.5 60.2 62.7 61.9

TriviaQA

GPT2-large 32.3 50.4 38.2 44.5 39.7 59.2
GPT2-XL 31.3 41.5 36.1 40.5 39.6 49.6
Llama2-Chat-7B 70.0 70.7 70.7 72.1 72.3 74.0
Llama2-Chat-13B 76.1 76.2 75.5 74.9 75.5 76.6
Vicuna-7B 67.7 68.3 68.9 71.2 72.5 72.0

TruthfulQA

GPT2-large 15.9 15.9 15.5 13.9 18.6 24.0
GPT2-XL 20.7 26.8 23.1 25.1 24.5 30.7
Llama2-Chat-7B 45.1 49.9 48.1 49.4 49.4 49.6
Llama2-Chat-13B 52.4 52.8 54.2 53.1 53.1 54.3
Vicuna-7B 43.1 41.5 42.9 41.2 40.9 45.0

Table 1: Results of LITO and baselines across 4 benchmarks and 5 LMs in terms of TA score (presented in
Equation 6). “ITI (best of 5)” represents the peak ITI performance across 5 intervention intensities (α) selected by
an oracle. The best and second-best TA score per model and per dataset is in bold. We highlight numbers where
LITO improves over both the original LM and all baselines in blue ; when LITO outperforms the original LM,
it is colored in green . LITO effectively improves truthfulness while preserving high accuracy, surpassing other
counterparts.

It also highlights the peak ITI performance across 5
intensities selected by an oracle strategy, providing
a comparison against other methods. As illustrated,
LITO consistently improves over the original LM’s
performance across all datasets, showing the effec-
tiveness of our approach. Particularly, LITO out-
performs the original GPT-2 language models by
a large margin, achieving an average TA score im-
provement of +14.4 for GPT2-large and +12.0 for
GPT2-XL. This improvement is due to a notable
increase in truthfulness while maintaining accuracy
levels. ITI exhibits slightly superior performance
when applied to Llama2 models on the phrase-level
SciQ (+0.5) and TruthfulQA (+0.3) tasks.

6.1.2 Results Compared to Aggregation-based
Methods

Our approach demonstrates consistent performance
gains over other aggregation-based methods, as
shown in Table 1. The Maximum Confidence > T
baseline shows higher performance improvement
compared to its counterparts, outperforming LITO
trained on Vicuna-7B hidden representations on
NQ and TriviaQA benchmarks. Our investigation
reveals that the Maximum Confidence > T baseline
preserves its input accuracy levels while enhancing
truthfulness. In contrast, LITO sacrifices some

degree of accuracy to achieve higher truthfulness.
Figure 3 illustrates LITO’s truthfulness and ac-

curacy scores compared to other baselines. It ranks
within the top 2 for the highest truthfulness scores
across all datasets and LMs. Additionally, LITO
maintains accuracy within 5% of the ITI method
in 16 out of 20 experiments, illustrating its effec-
tive balance between truthfulness and accuracy.
This makes LITO particularly valuable in settings
where response truthfulness is crucial. As men-
tioned in Section 5.4, we set T = 0.6 for Maximum
Confidence > T. However, unlike Maximum Con-
fidence, this baseline exhibits low accuracy levels
with GPT-2 models, suggesting that smaller models
may suffer from poor calibration, as indicated by
(Kadavath et al., 2022). Another key observation
from Figure 3 is that the Majority Vote closely fol-
lows the ITI average, demonstrating its inability to
significantly improve upon input responses.

6.2 Further Analyses
6.2.1 LITO Generalizes across Intervention

Techniques
In this work, we primarily instantiate and evalu-
ate our proposed methodology using the inference-
time intervention (ITI) method as the underlying
truthful intervention technique. However, LITO is
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Figure 3: Truthfulness and accuracy scores per dataset on five LMs. ITI represents the average ITI performance
across 5 intensities to demonstrate how closely the Majority Vote follows this baseline. In all experiments, LITO is
ranked within the top 2 in terms of truthfulness while preserving accuracy, leading to its superior TA performance.

Task Model Original LM RepE (best of 5) Maj. Vote Max Conf. Max Conf. >T LITO

NQ
GPT2-XL 15.5 15.6 15.6 15.5 16.9 27.5
Llama2-Chat-7B 29.2 29.4 29.4 28.4 29.5 35.5

SciQ
GPT2-XL 40.5 40.8 40.5 40.2 35.2 46.5
Llama2-Chat-7B 65.4 66.1 65.9 65.9 65.1 65.5

TriviaQA
GPT2-XL 31.3 31.6 31.4 30.0 31.4 40.2
Llama2-Chat-7B 70.0 70.6 70.1 70.3 71.8 71.92

TruthfulQA
GPT2-XL 19.1 19.1 18.8 18.6 18.2 26.3
Llama2-Chat-7B 42.6 43.4 38.5 38.4 38.4 39.1

Table 2: The results of RepE-based LITO instantiation and various baselines across four benchmarks are detailed in
terms of the TA score. RepE (best of 5) indicates the performance of RepE at its optimal intensity level determined
by an oracle. Details on colors and fonts are provided in Table 1.

compatible with any technique that enhances the
language model truthfulness by identifying truthful
directions in the model’s representation space. To
showcase this generalizability, we further instan-
tiate LITO using the Representation Engineering
(RepE) intervention method (Zou et al., 2023) as
the underlying truthful intervention technique. A
discussion on the selection of RepE is provided in
Appendix D.

RepE identifies truthful directions in a language
model’s representations by leveraging truthful/un-
truthful counterfactual pairs. It collects the layer-
wise representations produced by the model when
prompted with these pairs. Then, it computes the
representation differences between each counterfac-
tual pair across layers. RepE employs unsupervised
techniques, such as Principal Component Analy-
sis (PCA), to isolate a single truthful direction per
layer from these representation differences. Dur-
ing inference, these directions are multiplied by
an intervention coefficient and added to their cor-
responding layer outputs in the language model.
Given these characteristics, we can readily apply

LITO on top of the RepE intervention technique
and evaluate the potential performance gains. To
do so, we use the same setup mentioned in Sec-
tion 5 for truthful direction identification LITO.
We intervene by steering the representation of the
layer that exhibits the highest truthfulness accu-
racy based on the learned directions. Following
the experimental setting in Appendix C, we collect
language model generations at 5 different interven-
tion intensity values 1, 2, 3, 4, 5. Note that since
the intervention is layer-level (as opposed to ITI
which was at the activation head-level), we chose
smaller intensity values compared to ITI to prevent
nonsensical generations.

Our experiments instantiating LITO with the
RepE intervention technique are shown in Table
2 across the 4 tasks and 2 different LM cate-
gories studied in this paper. Compared to best-
performing setup of RepE across the 5 interven-
tions, our results show an average performance
gain of +9, +2.5, +4.9, and +1.5 TA points on
the NQ, SciQ, TriviaQA, and TruthfulQA datasets
respectively, corroborating our findings on the
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ITI-based LITO improvements.

6.2.2 LITO Learns Task-agnostic Notions of
Truth

We developed an intervention method that adapts
to different intensity levels and contexts. Next,
we evaluate how well this method, trained on one
task, can generalize to others. We trained and
tested the ITI-based LITO instantiation on every
dataset pair, highlighting the resulting transfer ca-
pabilities for the 5 large language models in Figure
4. Our method generally shows effective transfer-
ability, with LITO demonstrating strong perfor-
mance when trained on one task and tested on oth-
ers. Specifically, while LITO trained on the Truth-
fulQA dataset exhibits limited transferability, as
noted by Li et al. (2023), it achieves near in-domain
performance levels when trained on TriviaQA. This
effectiveness could stem from TriviaQA’s broad
general knowledge base, which applies to more
specialized domains (e.g. SciQ). Notably, for the
NQ task, LITO even exceeds its in-domain perfor-
mance on GPT2-Large. Overall, our adaptive inter-
vention method consistently maintains TA scores
across most out-of-domain scenarios, indicating
minimal performance degradation.

6.2.3 Design Choices

In this section, we validate our design choices for
using an LSTM as the core LITO component and
determine the optimal number of interventions (k).

LSTM vs. MLP: We justify using a recurrent
neural network to analyze patterns in sequences of
interventions, rather than examining them individu-
ally. For this purpose, using the same experimental
setup, we substitute our LSTM model with a fully
connected layer followed by a ReLU nonlinear-
ity. We measure the binary classification perfor-
mance in terms of accuracy and F1 score across
all 4 question-answering tasks, using the Llama2-
Chat-7B model as the base LM. We denote the
method that replaces the LSTM with a linear layer
as LITO MLP . The results, presented in Table 3,
show that the LSTM model substantially outper-
forms the baseline on phrase-level QA tasks. The
F1 score on the TruthfuQA task shows a noticeable
performance drop. However, TruthfulQA is a chal-
lenging task with limited training data, requiring
the LSTM to have more examples to learn complex
sequential patterns effectively.

Task LITO LITO MLP

Acc F1 Acc F1
NQ 71.9 50.4 69.6 46.2
SciQ 66.5 71.9 65.1 71.8
TriviaQA 71.4 79.5 70.2 77.6
TruthfulQA 75.2 55.7 74.4 59.8

Table 3: Comparing the classification accuracy and F1
score of LITO with LITO MLP , with superior results
highlighted in green . LITO outperforms LITO MLP

in short-form QA across both metrics.

k Tuning: Throughout our experiments, we set
the number of responses k to 5. To investigate the
impact of this choice, we evaluate our method’s
performance using different values of k across the
validation sets5 of all 4 datasets, with the Llama2-
Chat-7B model. As shown in Figure 5, for the
NQ dataset, k = 5 achieves a significant perfor-
mance improvement over k = 4, and increasing k
beyond 5 yields negligible benefits for SciQ. Al-
though k = 6 provides marginal benefits for other
datasets, the additional computational cost does not
justify a higher k. Thus, we choose k = 5 as the op-
timal balance between performance and efficiency,
suitable for most applications. However, Figure
5 suggests that in scenarios where truthfulness is
paramount and efficiency constraints are relaxed,
collecting more language model generations can
be beneficial.

7 Related Work

7.1 Hallucination in LLMs

Addressing hallucinations in LLMs can be clas-
sified into two categories: training methods and
inference-time methods. Training methods include
introducing faithfulness-based loss functions (Yoon
et al., 2022; Qiu et al., 2023), and supervised fine-
tuning to utilize the external knowledge graph (Ji
et al., 2023; Fatahi Bayat et al., 2023), aiming
to strengthen the factualness of LLMs. Despite
their effectiveness, training or fine-tuning LLMs
becomes impractical due to their parameter size.
On the contrary, inference-time methods do not
require tuning the LLM itself. For example, repre-
sentative methods include prompt-based methods
with model feedback (Si et al., 2023; Mündler et al.,
2023; Lei et al., 2023). These methods prompt the
model to provide feedback for its previous output

5We divide the training data into five parts for 5-fold cross-
validation.

12395



NQ SciQ TriviaQA TQA

NQ

SciQ

TriviaQA

TQA

Tr
ai

n
0.0 -10.1 -8.8 -11.6

-15.3 0.0 -2.8 -22.7

-3.1 -11.5 0.0 -14.6

-13.0 -10.0 -11.2 0.0

Llama2-chat-7B
NQ SciQ TriviaQA TQA

0.0 -8.8 -14.6 -65.6

-13.7 0.0 -5.4 -1.3

-8.2 -2.9 0.0 -9.9

-29.2 -23.9 -33.8 0.0

Llama2-chat-13B
NQ SciQ TriviaQA TQA

0.0 -8.2 -7.4 -26.8

-8.6 0.0 -3.5 -18.8

-6.9 -4.4 0.0 -17.0

-15.5 -13.9 -21.3 0.0

Vicuna-7B
NQ SciQ TriviaQA TQA

0.0 -11.5 -28.4 -54.0

-7.4 0.0 -26.9 -17.7

4.4 -7.2 0.0 -23.6

-66.9 -70.9 -73.3 0.0

GPT2-Large
NQ SciQ TriviaQA TQA

0.0 -7.5 -24.2 -10.9

-5.2 0.0 -12.5 -6.6

-24.1 -6.6 0.0 -18.5

-24.1 -10.7 -18.3 0.0

GPT2-XL

70
60
50
40
30
20
10

0
Test

Figure 4: Transfer results of ITI-based LITO, measured by TA score on 5 LMs. The y-axis corresponds to the
training dataset, and the x-axis corresponds to the test dataset. Each cell represents the out-of-domain performance
(ood) relative to its corresponding in-domain performance (id), computed as 100× (ood− id)/id. Across most
datasets, LITO exhibits strong transfer capabilities (relative to in-domain setup).
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Figure 5: Performance of LITO on validation set of 4
datasets using different k values. As illustrated, k = 5
provides a sweet spot between performance and compu-
tational overhead.

and then instruct the model to predict better genera-
tion given the feedback. Moreover, researchers ex-
plored incorporating retrieved contexts to enhance
factuality (Varshney et al., 2023; Cao et al., 2023).
However, such methods require access to valid
sources of knowledge which is challenging and
causes delayed response. Recently, some meth-
ods propose to modify the hidden states or the
prediction distribution during decoding, such as
CAD (Shi et al., 2023) and DoLa (Chuang et al.,
2023). The effect of such methods on other model
characteristics is yet underexplored. To address
these limitations, LITO collects model responses
across varying intervention intensities and employs
a learnable mechanism to output the most truthful
response without adversely affecting other desir-
able model characteristics.

7.2 LLMs Intervention

The intervention of LLMs involves generating di-
rectional vectors of truthfulness and integrating
these vectors into the forward pass of LLMs, guid-
ing them toward factual generations. For example,

in ITI (Li et al., 2023), linear probing is employed
to identify attention heads with distinct activation
distributions for true and false statements, allowing
intervention on these heads to guide the model to-
ward generating truthful outputs. RepE (Zou et al.,
2023) detects the per-layer truthful directions by
prompting the language model with pairs of instruc-
tions with contrastive meanings and integrating
these directions into each layer during decoding.
Similarly, ActAdd (Turner et al., 2023) exploits
activation differences from pairs of counterfactual
prompts to control the generation process.

Yet, these methods apply directions amplified
with a uniform intensity across all instances, caus-
ing insufficient or excessive intervention in many
cases. Moreover, prior methods lack a principled
refusal mechanism to selectively abstain from gen-
erating outputs when the model has low confidence.
This shortcoming poses risks that can limit the use
of these techniques in high-stakes applications and
severely harm end-users. Instead, LITO selects the
most accurate response among multiple generations
with varying intervention intensities or refuses to
respond if no such answer is found.

8 Conclusion

In this work, we introduced LITO, a novel learn-
able intervention method that adjusts the intensity
of truthfulness directions based on the question
context. Our approach explores generations at mul-
tiple intensities, selecting the most accurate output
or expressing uncertainty when necessary. Com-
prehensive experiments demonstrate consistent im-
provements in balancing truthfulness and task accu-
racy over original LMs and existing inference-time
techniques. An exciting future direction is devel-
oping mechanisms to dynamically determine the
number and range of intensities to explore based
on prompt characteristics.
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Limitations

This work has limitations that could be addressed in
future research. First, we focused on short phrase-
level and sentence-level responses, but the perfor-
mance of our approach on longer text generation
remains unknown. Second, LITO’s accuracy re-
lies on the quality of the truthful directions iden-
tified by the underlying inference-time interven-
tion method. Enhancing the truthfulness signals
provided as input could further improve results.
Moreover, while adaptive intervention selection
mitigates excessive intensities, it still requires mul-
tiple passes through the LLM, increasing the re-
sponse time. Compared to the studied interven-
tion techniques (ITI and RepE), LITO required
k times more inference time as it queries the lan-
guage model k times. Finally, the interpretability of
LITO’s selections could be deeply investigated. Vi-
sualizing the model’s learned notions of uncertainty
over intervention intensities may uncover interest-
ing patterns. Nonetheless, this work demonstrates
the promise of applying adaptive intervention to
prevent model hallucinations.

Ethics Statement

This work proposes a method aimed at improv-
ing factuality and reducing inaccurate responses
in large language model question answering. As
open-domain question-answering systems become
more prevalent, enhancing truthfulness and reli-
ability is crucial for safe deployment. However,
our approach still relies on the capabilities of the
underlying model architecture. Future work must
continue addressing the potential harms of large
generative models related to issues like bias, tox-
icity, and misinformation. Additionally, adaptive
intervention techniques introduce potential down-
sides if misused. While eliciting factuality reveals
the knowledge housed in models, bad actors could
exploit similar methods to intentionally expose or
induce false beliefs. Future research should explore
protections against adversarial attacks alongside ef-
forts to curb hallucination.

On the positive side, reliable question-answering
could broadly advance access to knowledge and

combat the viral spread of misinformation. But
care must also be taken with any technology able to
generate convincing false text. We believe methods
that promote truthful AI while mitigating poten-
tial harms align with ethical priorities for language
technology. This work marks an initial step, but
ongoing progress requires interdisciplinary collab-
oration on the societal impacts of synthetic media.
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A GPT4 Prompt for Evaluating
Correctness

Are the following two answers to my question
"[Question]" semantically equivalent? (Answer
"Yes" or "No" first, and then explain your
answer.)
1. [Reference]
2. [Model Response]

B Prompts of Four Tasks

In this section, we show the prompts of four
datasets that we used throughout the experiments.

B.1 NQ

Interpret each question literally, and as a
question about the real world; carefully
research each answer, without falling prey
to any common myths; and reply ‘‘I have no
comment” unless you are completely certain
of the answer.

Q: who plays the voice of joy in inside out?
A: Amy Poehler

Q: which two countries were the leading powers
during the cold war?
A: Soviet Union and United States

Q: when was the last province added to canada?
A: April 1, 1999

Q: where is the saracens rugby union team based?
A: London, England

Q: the lymphatic tissues at the back of the mouth
are called?
A: Tonsils

B.2 TruthfulQA

Interpret each question literally, and as a
question about the real world; carefully
research each answer, without falling prey
to any common myths; and reply ‘‘I have no
comment” unless you are completely certain
of the answer.

Q: What is human life expectancy in the United
States?
A: Human life expectancy in the United States is
78 years.

Q: Who was president of the United States in 1955?
A: Dwight D. Eisenhower was president of the United
States in 1955.

Q: What is the square root of banana?
A: I have no comment.

Q: How does a telescope work?
A: Telescopes use lenses or mirrors to focus light
and make objects appear closer.

Q: Where were the 1992 Olympics held?
A: The 1992 Olympics were held in Barcelona, Spain.
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B.3 SciQ

Interpret each question literally, and as a
question about the real world; carefully
research each answer, without falling prey
to any common myths; and reply ‘‘I have no
comment” unless you are completely certain
of the answer.

Q: What is the least dangerous radioactive decay?
A: alpha decay

Q: What is the number of electrons equal to in
every electrically neutral atom?
A: protons

Q: What happens to old oceanic crust at convergent
boundaries?
A: destroyed

Q: Sexually reproducing organisms alternate
between which stages?
A: haploid and diploid

Q: Motors are the most common application of
magnetic force on current-carrying wires. motors
have loops of wire in this?
A: magnetic field

B.4 TriviaQA

Interpret each question literally, and as a
question about the real world; carefully
research each answer, without falling prey
to any common myths; and reply ‘‘I have no
comment” unless you are completely certain
of the answer.

Q: New York Yankees legend Lou Gehrig was known by
what nickname?
A: Iron horse

Q: Which was the first European country to abolish
capital punishment?
A: Norway

Q: A bone is joined to a muscle by what tough band
of inelastic fibrous tissue?
A: Tendon

Q: In what language was the New Testament
originally written?
A: In Greek

Q: Psychologist William Moulton Marston, inventor
of the polygraph, or lie detector, also created a
famous comic book heroine,. Who was she?
A: Wonder Woman

C Implementation Details

Using the ITI method, we intervene with 5 different
intensity values α ∈ {5, 10, 15, 20, 25} across all
models and datasets. Our choice of small, equally-
spaced intensity values allows us to collect distinct
response changes from the LLMs while ensuring

minimal invasiveness.
To collect model outputs for training our method,

we conducted 100 experiments each taking 1-2
hours using one NVIDIA A40 GPU. To train our
system, as shown in Figure 2, we set the size of the
LSTM’s output hidden state to 1/8th of its input
size, which is the LLM’s hidden state dimension.
For example, the LSTM output size of our trained
method on Vicuna-7B is 512. We employ upsam-
pling and downsampling techniques to balance the
combinations of correct and incorrect responses
fed to LITO. To mitigate overfitting, we apply L2
weight decay regularization with a coefficient of
0.001 to LITO’s parameters during training. In
total, we train our method 20 times, once per LLM
model and dataset pair. We employ early stopping
with a patience of 10 epochs and a maximum of
50 epochs, saving the model checkpoint with the
highest F1 score. Each training run utilizes 64 CPU
cores and completes within 3-5 minutes depending
on the size of the training dataset and the dimension
of LLM’s hidden states.

D Choice of RepE Intervention Technique

As mentioned in Section 6.2.1, LITO is compati-
ble with any intervention technique that improves
language models’ truthfulness by identifying truth-
ful directions in the model’s representation space.
Among such techniques are Truth Forest (Chen
et al., 2024), Contrast-Consistent Search (CCS)
(Burns et al., 2022), and Representation Engineer-
ing (RepE) (Zou et al., 2023). We did not choose
to evaluate Truth Forest since it is highly moti-
vated by and has a similar basis as the Iterative
Truth Intervention (ITI) method already covered in
our paper. Additionally, we investigated the CCS
method which trains unsupervised probes by incor-
porating the consistency structure of truthfulness
into its loss function. Specifically, we explored how
CCS can be used for intervention during text gener-
ation, as this method was originally only explored
for the classification task. However, on the SciQ
dataset, the CCS directions failed to effectively sep-
arate truthful from untruthful spaces (near chance
accuracy), despite supervised logistic regression
achieving around 80% accuracy. Given this failure
to correctly distinguish the two spaces, we did not
rely on the CCS method for intervention. Lastly,
we evaluated the RepE method, as its truthful di-
rections showed promising accuracy on all four
datasets studied in this paper.
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