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Abstract

In the past year, MultiModal Large Language
Models (MM-LLMs) have undergone substan-
tial advancements, augmenting off-the-shelf
LLMs to support MM inputs or outputs via
cost-effective training strategies. The resulting
models not only preserve the inherent reason-
ing and decision-making capabilities of LLMs
but also empower a diverse range of MM tasks.
In this paper, we provide a comprehensive sur-
vey aimed at facilitating further research on
MM-LLMs. Initially, we outline general de-
sign formulations for model architecture and
training pipeline. Subsequently, we introduce a
taxonomy encompassing 126 MM-LLMs, each
characterized by its specific formulations. Fur-
thermore, we review the performance of se-
lected MM-LLMs on mainstream benchmarks
and summarize key training recipes to enhance
the potency of MM-LLMs. Finally, we explore
promising directions for MM-LLMs while con-
currently maintaining a real-time tracking web-
site1 for the latest developments in the field. We
hope that this survey contributes to the ongoing
advancement of the MM-LLMs domain.

1 Introduction

MultiModal (MM) pre-training research has wit-
nessed significant advancements in recent years,
consistently pushing the performance boundaries
across a spectrum of downstream tasks (Li et al.,
2020; Akbari et al., 2021; Fang et al., 2021; Yan
et al., 2021; Li et al., 2021; Radford et al., 2021; Li
et al., 2022; Zellers et al., 2022; Zeng et al., 2022b;
Yang et al., 2022; Wang et al., 2022a,b). How-
ever, as the scale of models and datasets continues
to expand, traditional MM models incur substan-
tial computational costs, particularly when trained
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Figure 1: The timeline of MM-LLMs.

from scratch. Recognizing that MM research op-
erates at the intersection of various modalities, a
logical approach is to capitalize on readily avail-
able pre-trained unimodal foundation models, with
a special emphasis on powerful Large Language
Models (LLMs) (OpenAI, 2022). This strategy
aims to mitigate computational expenses and en-
hance the efficacy of MM pre-training, leading to
the emergence of a novel field: MM-LLMs.

MM-LLMs harness LLMs as the cognitive pow-
erhouse to empower various MM tasks. LLMs
contribute desirable properties like robust language
generation, zero-shot transfer capabilities, and
In-Context Learning (ICL). Concurrently, foun-
dation models in other modalities provide high-
quality representations. Considering foundation
models from different modalities are individually
pre-trained, the core challenge facing MM-LLMs
is how to effectively connect LLMs with models in
other modalities to enable collaborative inference.
The predominant focus within this field has been on
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refining alignment between modalities and aligning
with human intent via an MM Pre-Training (PT) +
MM Instruction-Tuning (IT) pipeline.

With the debut of GPT-4(Vision) (OpenAI, 2023)
and Gemini (Team et al., 2023), showcasing im-
pressive MM understanding and generation ca-
pabilities, a research fervor on MM-LLMs has
been sparked. Initial research primarily focuses
on MM content comprehension and text genera-
tion, encompassing tasks such as image-text under-
standing, exemplified by projects like BLIP-2 (Li
et al., 2023e), LLaVA (Liu et al., 2023e), MiniGPT-
4 (Zhu et al., 2023a), and OpenFlamingo (Awadalla
et al., 2023); video-text understanding, as demon-
strated by initiatives such as VideoChat (Li et al.,
2023f), Video-ChatGPT (Maaz et al., 2023), and
LLaMA-VID (Li et al., 2023j); and audio-text
understanding, as seen in projects like Qwen-
Audio (Chu et al., 2023b). Later, the capabili-
ties of MM-LLMs have been expanded to sup-
port specific modality outputs. This includes tasks
with image-text output, such as GILL (Koh et al.,
2023a), Kosmos-2 (Peng et al., 2023), Emu (Sun
et al., 2024), and MiniGPT-5 (Zheng et al., 2023b);
as well as speech/audio-text output, exemplified
by projects like SpeechGPT (Zhang et al., 2023a)
and AudioPaLM (Rubenstein et al., 2023). Recent
research endeavors have focused on mimicking
human-like any-to-any modality conversion, shed-
ding light on the path to artificial general intelli-
gence. Some efforts aim to amalgamate LLMs with
external tools to reach an approaching any-to-any
MM comprehension and generation, such as Visual-
ChatGPT (Wu et al., 2023a), HuggingGPT (Shen
et al., 2023), and AudioGPT (Huang et al., 2023b).
Conversely, to mitigate propagated errors in the
cascade system, initiatives like NExT-GPT (Wu
et al., 2023d), CoDi-2 (Tang et al., 2023c), and
ModaVerse (Wang et al., 2024d) have developed
end-to-end MM-LLMs of arbitrary modalities. The
timeline of MM-LLMs is depicted in Figure 1.

In this paper, we present a comprehensive survey
aimed at facilitating further research on MM-LLMs.
To provide readers with a holistic understanding of
MM-LLMs, we initially delineate general design
formulations from model architecture (Section 2)
and training pipeline (Section 3). We break down
the general model architecture into five compo-
nents: Modality Encoder (Section 2.1), Input Pro-
jector (Section 2.2), LLM Backbone (Section 2.3),
Output Projector (Section 2.4), and Modality Gen-
erator (Section 2.5). The training pipeline elu-

cidates how to enhance a pre-trained text-only
LLM to support MM input or output, primarily
consisting of two stages: MM PT (Section 3.1)
and MM IT (Section 3.2). In that section, we
also provide a summary of mainstream datasets
for MM PT and MM IT. Next, we establish a tax-
onomy encompassing 126 State-of-the-Art (SOTA)
MM-LLMs, each characterized by specific formu-
lations, and summarize their development trends
in Section 4. In Section 5, we comprehensively
review the performance of major MM-LLMs on
mainstream benchmarks and distill key training
recipes to enhance the efficacy of MM-LLMs. In
Section 6, we offer promising directions for MM-
LLMs research. Moreover, we have established
a website (https://mm-llms.github.io) to track the
latest progress of MM-LLMs and facilitate crowd-
sourcing updates. Finally, we summarize the en-
tire paper in Section 7 and discuss related surveys
on MM-LLMs in Appendix A. We aspire for our
survey to aid researchers in gaining a deeper under-
standing of this field and to inspire the design of
more effective MM-LLMs.

2 Model Architecture

In this section, we provide a detailed overview
of the five components comprising the general
model architecture, along with the implementation
choices for each component, as illustrated in Fig-
ure 2. MM-LLMs that emphasize MM understand-
ing only include the first three components. During
training, the Modality Encoder, LLM Backbone,
and Modality Generator are generally maintained
in a frozen state. The primary optimization em-
phasis is on Input and Output Projectors. Given
that Projectors are lightweight components, the
proportion of trainable parameters in MM-LLMs
is notably small compared to the total parameter
count (typically around 2%). The overall parameter
count is contingent on the scale of the core LLM
utilized in the MM-LLMs. As a result, MM-LLMs
can be efficiently trained to empower various MM
tasks.

2.1 Modality Encoder
The Modality Encoder (ME) is tasked with encod-
ing inputs from diverse modalities IX to obtain
corresponding features FX , formulated as follows:

FX = MEX(IX). (1)

Various pre-trained encoder options MEX exist
for handling different modalities, where X can be
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Figure 2: The general model architecture of MM-LLMs and the implementation choices for each component.

image, video, audio, 3D, etc. Next, we will offer a
concise introduction organized by modality.

Visual Modality For images, there are vari-
ous optional encoders: NFNet-F6 (Brock et al.,
2021), ViT (Dosovitskiy et al., 2020), CLIP
ViT (Radford et al., 2021), Eva-CLIP ViT (Fang
et al., 2023), BEiT-3 (Wang et al., 2023d), Open-
CLIP (Cherti et al., 2023), Grounding-DINO-
T (Zhang et al., 2022b) with Swin-T (Liu et al.,
2021b) backbone, DINOv2 (Oquab et al., 2023),
SAM-HQ (Kirillov et al., 2023) with MAE (He
et al., 2022), RAM++ (Zhang et al., 2023i) with
Swin-B backbone, InternViT (Chen et al., 2023j),
and VCoder (Jain et al., 2023). For videos, they
can be uniformly sampled to 5 frames, undergoing
the same pre-processing as images.

Audio Modality is typically encoded by C-
Former (Chen et al., 2023b), HuBERT (Hsu et al.,
2021), BEATs (Chen et al., 2023g), Whisper (Rad-
ford et al., 2023), and CLAP (Wu et al., 2023e).

3D Point Cloud Modality is typically encoded
by ULIP-2 (Salesforce, 2022) with a Point-
BERT (Yu et al., 2022) backbone.

Moreover, to handle numerous heterogeneous
modal encoders, some MM-LLMs, particularly
any-to-any ones, use ImageBind (Girdhar et al.,
2023), a unified encoder covering six modalities,
including image/video, text, audio, heat map, in-
ertial measurement units, and depth. We provide
a brief introduction to some mainstream modality
encoders in Appendix B.

2.2 Input Projector
The Input Projector ΘX→T is tasked with align-
ing the encoded features of other modalities FX

with the text feature space T . The aligned fea-
tures as prompts PX are then fed into the LLM

Backbone alongside the textual features FT . Given
X-text dataset {IX , t}, the goal is to minimize the
X-conditioned text generation loss Ltxt-gen:

argmin
ΘX→T

Ltxt-gen(LLM(PX ,FT ), t), (2)

where PX = ΘX→T (FX).
The Input Projector can be achieved directly

by a Linear Projector or Multi-Layer Percep-
tron (MLP), i.e., several linear projectors in-
terleaved with non-linear activation functions.
There are also more complex implementations like
Cross-attention, Q-Former (Li et al., 2023e), P-
Former (Jian et al., 2023), and MQ-Former (Lu
et al., 2023a). Cross-attention (Perceiver Resam-
pler) (Alayrac et al., 2022) uses a set of trainable
vectors as queries and the encoded features FX as
keys to compress the feature sequence to a fixed
length. The compressed representation is then fed
directly into the LLM or further used for X-Text
cross-attention fusion. Q-Former extracts relevant
features from FX with learnable queries, and the se-
lected features are then used as prompts PX . Mean-
while, P-Former generates “reference prompts,"
imposing an alignment constraint on the prompts
produced by Q-Former. MQ-Former conducts a
fine-grained alignment of multi-scale visual and
textual signals. However, Q-, P-, and MQ-Former
require an additional PT process for initialization.

2.3 LLM Backbone
Taking LLMs (Zhao et al., 2023c; Naveed et al.,
2023; Mo et al., 2024) as the core agents, MM-
LLMs can inherit some notable properties like
zero-shot generalization, few-shot ICL, Chain-of-
Thought (CoT), and instruction following. The
LLM Backbone processes representations from var-
ious modalities, engaging in semantic understand-
ing, reasoning, and decision-making regarding the
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inputs. It produces (1) direct textual outputs t, and
(2) signal tokens SX from other modalities (if any).
These signal tokens act as instructions to guide the
generator on whether to produce MM contents and,
if affirmative, specify the content to produce:

t, SX = LLM(PX ,FT ), (3)

where the aligned representations of other modal-
ities PX can be considered as soft Prompt-tuning
for the LLM. Moreover, some works have in-
troduced Parameter-Efficient Fine-Tuning (PEFT)
methods, such as Prefix-tuning (Li and Liang,
2021), LoRA (Hu et al., 2021), and LayerNorm
tuning (Zhao et al., 2024). In these cases, the num-
ber of additional trainable parameters is exception-
ally minimal, even less than 0.1% of the total LLM
parameter count. We provide an introduction to
mainstream PEFT methods in Appendix C.

The commonly used LLMs in MM-LLMs
include Flan-T5 (Chung et al., 2022), Chat-
GLM (Zeng et al., 2022a), UL2 (Tay et al.,
2022), Persimmon (Elsen et al., 2023), Qwen (Bai
et al., 2023a), Chinchilla (Hoffmann et al., 2022),
OPT (Zhang et al., 2022c), PaLM (Chowd-
hery et al., 2023), LLaMA (Touvron et al.,
2023a), LLaMA-2 (Touvron et al., 2023b), and
Vicuna (Chiang et al., 2023). We provide a brief
introduction to some representative LLMs in Ap-
pendix D.

2.4 Output Projector
The Output Projector ΘT→X maps the signal to-
ken representations SX from the LLM Backbone
into features HX understandable to the follow-
ing Modality Generator MGX . Given the X-text
dataset {IX , t}, t is first fed into LLM to generate
the corresponding SX , then mapped into HX . To
facilitate alignment of the mapped features HX ,
the goal is to minimize the distance between HX

and the conditional text representations of MGX :

argmin
ΘT→X

Lmse(HX , τX(t)). (4)

The optimization only relies on captioning texts,
without utilizing any audio or visual resources X ,
where HX = ΘT→X(SX) and τX is the textual
condition encoder in MGX . The Output Projector
is implemented by a Tiny Transformer with a
learnable decoder feature sequence or MLP.

2.5 Modality Generator
The Modality Generator MGX is tasked with pro-
ducing outputs in distinct modalities. Commonly,

existing works use off-the-shelf Latent Diffusion
Models (LDMs) (Song et al., 2021; Bao et al., 2022;
Zhao et al., 2022), i.e., Stable Diffusion (Rombach
et al., 2022) for image synthesis, Zeroscope (Cer-
spense, 2023) for video synthesis, and AudioLDM-
2 (Liu et al., 2023b,c) for audio synthesis. The fea-
tures HX mapped by the Output Projector serve as
conditional inputs in the denoising process to gener-
ate MM content. During training, the ground truth
content is first transformed into a latent feature
z0 by the pre-trained VAE (Kingma and Welling,
2013). Then, noise ϵ is added to z0 to obtain the
noisy latent feature zt. A pre-trained Unet (Ron-
neberger et al., 2015) ϵX is used to compute the
conditional LDM loss LX-gen as follows:

LX-gen := Eϵ∼N (0,1),t||ϵ− ϵX(zt, t,HX)||22, (5)

which optimizes parameters ΘX→T and ΘT→X

by minimizing LX-gen.

3 Training Pipeline

MM-LLMs’ training pipeline can be delineated
into two principal stages: MM PT and MM IT.

3.1 MM PT
During the PT stage, typically leveraging the X-
Text datasets, Input and Output Projectors are
trained to achieve alignment among various modal-
ities by optimizing predefined objectives. For MM
understanding models, optimization focuses solely
on Equation (2), while for MM generation models,
optimization involves Equations (2), (4), and (5).
In the latter case, Equation (2) also includes the
ground-truth signal token sequence.

The X-Text datasets include Image-Text, Video-
Text, and Audio-Text, with Image-Text hav-
ing two types: Image-Text pairs (e.g., <img1>
<txt1>) and interleaved Image-Text corpus (e.g.,
<txt1><img1><txt2><txt3><img2><txt4>). De-
tails of X-Text datasets are shown in Table 3.

3.2 MM IT
MM IT is a method that entails fine-tuning pre-
trained MM-LLMs using instruction-formatted
datasets (Wei et al., 2021). Through this process,
MM-LLMs can generalize to unseen tasks by ad-
hering to new instructions, thereby enhancing zero-
shot performance. This straightforward yet impact-
ful concept has catalyzed subsequent success in the
field of NLP, exemplified by works such as Instruct-
GPT (Ouyang et al., 2022), OPT-IML (Iyer et al.,
2022), and InstructBLIP (Dai et al., 2023).
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(Zheng et al., 2023b), Kosmos-G (Pan et al., 2023), GLaMM(IM) (Rasheed et al., 2023), LLaVA-Plus(+IB&IM)
(Liu et al., 2023f), PixelLM(IM) (Ren et al., 2023), VL-GPT (Zhu et al., 2023b), CLOVA(+IB&IM)
(Gao et al., 2023b), Emu-2 (Sun et al., 2023a), MM-Interleaved (Tian et al., 2024), DiffusionGPT
(Qin et al., 2024), RPG(Yang et al., 2024),Vary-toy(IB) (Wei et al., 2024), CogCoM(IB) (Qi et al., 2024),
SPHINX-X(IB) (Gao et al., 2024)
V+T→V+T: Video-LaVIT (Jin et al., 2024a)
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Gemini (Team et al., 2023), ModaVerse (Wang et al., 2024d), MLLM-Tool(Wang et al., 2024b)

Design Division

Tool-using

Visual ChatGPT(Wu et al., 2023a), ViperGPT(Surís et al., 2023), MM-REACT(Yang et al., 2023b),
HuggingGPT (Shen et al., 2023),AudioGPT (Huang et al., 2023b), ControlLLM (Liu et al., 2023i), LLaVA-Plus
(Liu et al.), CogAgent (Hong et al., 2023a),CLOVA (Gao et al., 2023b), α-UMi (Shen et al., 2024),MLLM-Tool
(Wang et al.), WebVoyager (He et al., 2024), Mobile-Agent (Wang et al., 2024c)

End-to-end The remaining models are essentially all end-to-end trainable models.

Figure 3: Taxonomy for MM-LLMs. I: Image, V: Video, A/S: Audio/Speech, and T: Text. ID: Document
understanding, IB: Output bounding box, IM: Output segmentation mask, and IR: Output retrieved images.

MM IT comprises Supervised Fine-Tuning
(SFT) and Reinforcement Learning from Human
Feedback (RLHF), aiming to align with human in-
tents and enhance the interaction capabilities of
MM-LLMs. SFT converts part of the PT stage
data into an instruction-aware format. Using vi-
sual Question-Answer (QA) as an example, var-
ious templates may be employed like (1) “<Im-
age>{Question}" A short answer to the question is;
(2) “<Image>" Examine the image and respond to
the following question with a brief answer: “{Ques-
tion}. Answer:"; and so on. Next, it fine-tunes
pre-trained MM-LLMs using the same optimiza-
tion objectives. SFT datasets can be structured as
either single-turn QA or multi-turn dialogues.

After SFT, RLHF involves further fine-tuning
of the model, relying on feedback regarding the
MM-LLMs’ responses (e.g., Natural Language

Feedback (NLF) labeled manually or automati-
cally) (Sun et al., 2023b). This process employs
a reinforcement learning algorithm to effectively
integrate the non-differentiable NLF. The model is
trained to generate corresponding responses con-
ditioned on the NLF (Chen et al., 2023i; Akyürek
et al., 2023). The statistics for SFT and RLHF
datasets are presented in Table 4 of Appendix G.

The datasets used by existing MM-LLMs in the
MM PT and MM IT stages are diverse, but they are
all subsets of the datasets in Tables 3 and 4.

4 SOTA MM-LLMs

As shown in Figure 3, we classify the 126 SOTA
MM-LLMs from both functional and design per-
spectives. In the design division, “Tool-using” de-
notes treating the LLM as a black box and provid-
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Model I→O Modality Encoder Input Projector LLM Backbone Output Projector Modality Generator #.PT #.IT

Flamingo I+V+T→T I/V: NFNet-F6 Cross-attention Chinchilla-1.4B/7B/70B – – – –
BLIP-2 I+T→T I: CLIP/Eva-CLIP ViT@224 Q-Former w/ Linear Projector Flan-T5/OPT – – 129M –
LLaVA I+T→T I: CLIP ViT-L/14 Linear Projector Vicuna-7B/13B – – – –
MiniGPT-4 I+T→T I: Eva-CLIP ViT-G/14 Q-Former w/ Linear Projector Vicuna-13B – – – –
mPLUG-Owl I+T→T I: CLIP ViT-L/14 Cross-attention LLaMA-7B – – – –
Otter I+T→T I: CLIP ViT-L/14 Cross-attention LLaMA-7B – – – –
X-LLM I+V+A+T→T I/V: ViT-G; A: C-Former Q-Former w/ Linear Projector ChatGLM-6B – – – –
VideoChat V+T→T I: ViT-G Q-Former w/ Linear Projector Vicuna – – – –
InstructBLIP I+V+T→T I/V: ViT-G/14@224 Q-Former w/ Linear Projector Flan-T5/Vicuna – – 129M 1.2M
PandaGPT I+T→T I: ImageBind Linear Projector Vicuna-13B – – – –
GILL I+T→I+T I: CLIP ViT-L Linear Projector OPT-6.7B Tiny Transformer I: Stable Diffusion-1.5 – –
PaLI-X I+T→T I: ViT Linear Projector UL2-32B – – – –

Video-LLaMA I+V+A+T→T
I/V: Eva-CLIP ViT-G/14;

A: ImageBind
Q-Former w/ Linear Projector Vicuna/LLaMA – – – –

Video-ChatGPT V+T→T I: CLIP ViT-L/14 Linear Projector Vicuna-v1.1 – – – –
Shikra I+T→T+IB I: CLIP ViT-L/14@224 Linear Projector Vicuna-7B/13B – – 600K 5.5M

LLaVAR I+T→T
I: CLIP ViT-L/14@224
& CLIP ViT-L/14@336

Linear Projector Vicuna-13B – – – –

mPLUG-DocOwl ID+T→T I: CLIP ViT-L/14 Cross-attention LLaMA-7B – – – –
Lynx I+V+T→T I/V: Eva-CLIP ViT-1B Cross-attention Vicuna – – – –
Emu I+V+T→I+T I/V: Eva-CLIP-1B Cross-attention LLaMA-13B MLP I: Stable Diffusion-1.5 – –
DLP I+T→T I: CLIP/Eva-CLIP ViT Q-&P-Former w/ Linear Projector OPT/Flan-T5 – – – –

BuboGPT I+A+T→T+IM
I: CLIP/Eva-CLIP ViT;

A: ImageBind
Q-Former w/ Linear Projector Vicuna – – – –

ChatSpot I+T→T I: CLIP ViT-L/14 Linear Projector Vicuna-7B/LLaMA – – – –
IDEFICS I+T→T I: OpenCLIP Cross-attention LLaMA – – – –

Qwen-VL-(Chat) I+T→T
I: ViT@448 initialized

from OpenClip’s ViT-bigG
Cross-attention Qwen-7B – – 1.4B† 50M†

LaVIT I+T→I+T I: ViT Cross-attention LLaMA-7B – I: Stable Diffusion – –

NExT-GPT I+V+A+T→I+V+A+T I/V/A: ImageBind Linear Projector Vicuna-7B Tiny Transformer
I: Stable Diffusion;

V: Zeroscope;
A: AudioLDM

– –

DreamLLM I+T→I+T I: CLIP ViT-L Linear Projector Vicuna MLP I: Stable Diffusion – –

AnyMAL I+V+A+T→T
I: CLIP ViT/L&ViT-G&DinoV2;

V: Intervideo; A: CLAP
I/V: Cross-attention;
A: Linear Projector

LLaMA-2 – – – –

MiniGPT-5 I+T→I+T I: Eva-CLIP ViT-G/14 Q-Former w/ Linear Projector Vicuna-7B Tiny Transformer I: StableDiffusion-2 – –
LLaVA-1.5 I+T→T I: CLIP ViT-L@336 MLP Vicuna-v1.5-7B/13B – – 0.6M 0.7M
MiniGPT-v2 I+T→T I: Eva-CLIP ViT@448 Linear Projector LLaMA-2-Chat-7B – – – –
CogVLM I+T→T I: Eva-2-CLIP ViT MLP Vicuna-v1.5-7B – – – –
Qwen-Audio A+T→T A: Whisper-L-v2 Linear Projector Qwen-7B – – – –
DRESS I+T→T I:Eva-CLIP ViT-G/14 Linear Projector Vicuna-v1.5-13B – – – –

X-InstructBLIP I+V+A+3D+T→T
I/V: Eva-CLIP ViT-G/14;
A: BEATs; 3D: ULIP-2

Q-Former w/ Linear Projector Vicuna-v1.1-7B/13B – – – –

CoDi-2 I+V+A+T→I+V+A+T I/V/A: ImageBind MLP LLaMA-2-Chat-7B MLP
I: Stable Diffusion-2.1;

V: Zeroscope-v2;
A: AudioLDM-2

– –

RLHF-V I+T→T I: BEiT-3 Linear Projector Vicuna-v1-13B – – – –

Silkie I+T→T
I: ViT initialized from
OpenCLIP’s ViT-bigG

Cross-attention Qwen-7B – – – –

Lyrics I+T→T
I: CLIP ViT-L/14&Grounding-DINO-T

&SAM-HQ&ViT-H&RAM++
MQ-Former w/ Linear Projection Vicuna-13B – – – –

VILA I+T→T I: ViT@336 Linear Projector LLaMA-2-7B/13B – – 50M 1M
IntrenVL I+V+T→T I/V: InternViT-6B; T: LLaMA-7B Cross-attention w/ MLP QLLaMA-8B & Vicuna-13B – – – –

ModaVerse I+V+A+T→I+V+A+T ImageBind Linear Projector LLaMA-2 MLP
I: Stable Diffusion;

V: Videofusion;
A: AudioLDM

– –

MM-Interleaved I+T→I+T I: CLIP ViT-L/14 Cross-attention Vicuna-13B Tiny Transformer I: Stable Diffusion-2.1 – –

Table 1: The summary of 43 mainstream MM-LLMs. I→O: Input to Output Modalities, I: Image, V: Video, A:
Audio, 3D: Point Cloud, and T: Text. In Modality Encoder, “-L” represents Large, “-G” represents Giant, “/14”
indicates a patch size of 14, and “@224” signifies an image resolution of 224× 224. #.PT and #.IT represent the
scale of the dataset during MM PT and MM IT, respectively. † includes in-house data that is not publicly accessible.

ing access to certain MM expert systems to per-
form specific MM tasks via reasoning, while “End-
to-End” signifies that the entire model is trained
jointly in an end-to-end manner. Based on the
previously defined design formulations, we also
conduct a comprehensive comparison of the archi-
tectures and training dataset scales for 43 of these
SOTA MM-LLMs, as illustrated in Table 1. Next,
we will summarize their developmental trends and
briefly introduce the core contributions of some
representative models in Appendix E.

Trends in Existing MM-LLMs: (1) Progressing
from a dedicated emphasis on MM understanding
to the generation of specific modalities and further
evolving into any-to-any modality conversion (e.g.,
MiniGPT-4 → MiniGPT-5 → NExT-GPT); (2) Ad-
vancing from MM PT to SFT and then to RLHF,
the training pipeline undergoes continuous refine-

ment, striving to better align with human intent
and enhance the model’s conversational interac-
tion capabilities (e.g., BLIP-2 → InstructBLIP →
DRESS); (3) Embracing Diversified Modal Exten-
sions (e.g., BLIP-2 → X-LLM and InstructBLIP
→ X-InstructBLIP); (4) Incorporating a Higher-
Quality Training Dataset (e.g., LLaVA → LLaVA-
1.5); (5) Adopting a More Efficient Model Architec-
ture, transitioning from complex Q- and P-Former
input projector modules in BLIP-2 and DLP to a
simpler yet effective linear projector in VILA.

5 Benchmarks and Performance

To provide a comprehensive performance com-
parison, we have compiled a table featuring ma-
jor MM-LLMs across 18 Vision-Language (VL)
benchmarks, as reported in various papers (Li et al.,
2023e; Chen et al., 2023d,f; Lin et al., 2023). This
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Model LLM Backbone OKVQA IconVQA VQAv2 GQA VizWiz SQAI VQAT POPE MMEP MMEC MMB MMBCN SEEDI LLaVAW MM-Vet QBench HM VSR

Flamingo Chinchilla-7B 44.7 – – – 28.8 – – – – – – – – – – – 57.0 31.8
BLIP-2 Flan-T5XXL(13B) 45.9 40.6 65.0 44.7 19.6 61.0 42.5 85.3 1293.8 290.0 – – 46.4 38.1 22.4 – 53.7 50.9
LLaVA Vicuna-13B 54.4 43.0 – 41.3 – – 38.9 – – – – – – – – – – 51.2
MiniGPT-4 Vicuna-13B 37.5 37.6 – 30.8 – – 19.4 – – – – – – – – – – 41.6
InstructBLIP Vicuna-7B – – – 49.2 34.5 60.5 50.1 – – – 36.0 23.7 53.4 60.9 26.2 56.7 – –
InstructBLIP Vicuna-13B – 44.8 – 49.5 33.4 63.1 50.7 78.9 1212.8 291.8 – – – 58.2 25.6 – 57.5 52.1
Shikra Vicuna-13B 47.2 – 77.4∗ – – – – – – – 58.8 – – – – 54.7 – –
IDEFICS-9B LLaMA-7B – – 50.9 38.4 35.5 – 25.9 – – – 48.2 25.2 – – – – – –
IDEFICS-80B LLaMA-65B – – 60.0 45.2 36.0 – 30.9 – – – 54.5 38.1 – – – – – –
Qwen-VL Qwen-7B – – 78.8∗ 59.3∗ 35.2 67.1 63.8 – – – 38.2 7.4 56.3 – – 59.4 – –
Qwen-VL-Chat Qwen-7B – – 78.2∗ 57.5∗ 38.9 68.2 61.5 – 1487.5 360.7 60.6 56.7 58.2 – – – – –
LLaVA-1.5 Vicuna-1.5-7B – – 78.5∗ 62.0∗ 50.0 66.8 58.2 85.9 1510.7 316.1‡ 64.3 58.3 58.6 63.4 30.5 58.7 – –

+ShareGPT4V Vicuna-1.5-7B – – 80.6 – 57.2 68.4 – – 1567.4 376.4 68.8 62.2 69.7 72.6 37.6 63.4 – –
LLaVA-1.5 Vicuna-1.5-13B – – 80.0∗ 63.3∗ 53.6 71.6 61.3 85.9 1531.3 295.4‡ 67.7 63.6 61.6 70.7 35.4 62.1 – –
MiniGPT-v2 LLaMA-2-Chat-7B 56.9 47.7 – 60.3 30.3 – 51.9 – – – – – – – – – 58.2 60.6
MiniGPT-v2-Chat LLaMA-2-Chat-7B 55.9 49.4 – 58.8 42.4 – 52.3 – – – – – – – – – 59.5 63.3
VILA-7B LLaMA-2-7B – – 79.9∗ 62.3∗ 57.8 68.2 64.4 85.5 1533.0 – 68.9 61.7 61.1 69.7 34.9 – – –
VILA-13B LLaMA-2-13B – – 80.8∗ 63.3∗ 60.6 73.7 66.6 84.2 1570.1 – 70.3 64.3 62.8 73.0 38.8 – – –

+ShareGPT4V LLaMA-2-13B – – 80.6∗ 63.2∗ 62.4 73.1 65.3 84.8 1556.5 – 70.8 65.4 61.4 78.4 45.7 – – –

Table 2: Comparison of mainstream MM-LLMs on 18 VL benchmarks. The red denotes the highest result, and the
blue denotes the second highest result. ‡ indicates ShareGPT4V’s (Chen et al., 2023f) re-implemented test results,
which are missed in benchmarks or origin papers. ∗ indicates that training images are observed during training.

information is presented in Table 2, with detailed
descriptions of these benchmarks available in Ap-
pendix F. Given the numerous benchmarks avail-
able, we focus on evaluating and comparing dif-
ferent MM-LLMs based on OKVQA, IconVQA,
VQAv2, and GQA.

OKVQA includes questions requiring reasoning
with a variety of knowledge types, such as com-
monsense, world knowledge, and visual knowledge.
MiniGPT-v2 and MiniGPT-v2-chat perform best in
this benchmark, showcasing their outstanding rea-
soning abilities. IconVQA emphasizes the impor-
tance of abstract diagram comprehension and holis-
tic cognitive reasoning in real-world diagram-based
word problems, requiring both perceptual acumen
and versatile cognitive reasoning. MiniGPT-v2
and MiniGPT-v2-chat also excel in this benchmark,
highlighting their exceptional perception and cog-
nitive reasoning capabilities. VQAv2 is a more bal-
anced VQA dataset where each question is paired
with a series of images. VILA-13B performs best
in this benchmark, demonstrating its superior abil-
ity to comprehend multimodal information and its
resistance to language biases in the knowledge it
acquires. GQA is a VQA dataset focusing on im-
age scene graphs, offering impartial compositional
questions derived from real-world images. Each
question is associated with a structured represen-
tation of its meaning and the detailed logical steps
required to answer it. LLaVA-1.5 and VILA-7B
perform best in this benchmark, illustrating their
excellent reasoning abilities in this domain.

Following this, we will outline training recipes
that enhance the effectiveness of MM-LLMs, draw-
ing insights from SOTA models.

Training Recipes Firstly, higher image resolu-
tion can incorporate more visual details for the

model, benefiting tasks that require fine-grained
details. For example, LLaVA-1.5 and VILA em-
ploy a resolution of 336 × 336, while Qwen-VL
and MiniGPT-v2 utilize 448 × 448. However,
higher resolutions lead to longer token sequences,
incurring additional training and inference costs.
MiniGPT-v2 addresses this by concatenating 4 adja-
cent visual tokens in the embedding space to reduce
length. Recently, Monkey (Li et al., 2023l) pro-
posed a solution to enhance the resolution of input
images without retraining a high-resolution visual
encoder, utilizing only a low-resolution visual en-
coder, supporting resolutions up to 1300× 800. To
enhance the understanding of rich-text images, ta-
bles, and document content, DocPedia (Feng et al.,
2023) introduced a method to increase the visual
encoder resolution to 2560 × 2560, overcoming
the limitations of poorly performing low resolu-
tions in open-sourced ViT. Secondly, the incorpo-
ration of high-quality SFT data can significantly im-
prove performance in specific tasks, as evidenced
by the addition of ShareGPT4V data to LLaVA-1.5
and VILA-13B, as shown in Table 2. Moreover,
VILA reveals several key findings: (1) Performing
PEFT on the LLM Backbone promotes deep em-
bedding alignment, crucial for ICL; (2) Interleaved
Image-Text data proves beneficial, whereas Image-
Text pairs alone are sub-optimal; (3) Re-blending
text-only instruction data (e.g., unnatural instruc-
tion (Honovich et al., 2022)) with image-text data
during SFT not only addresses the degradation of
text-only tasks but also enhances VL task accuracy.

6 Future Directions

In this section, we explore promising future direc-
tions for MM-LLMs across the following aspects:
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More General and Intelligent Models We can
enhance the MM-LLMs’ strength from the follow-
ing four key avenues: (1) Expanding Modalities:
Current MM-LLMs mainly support the following
modalities: image, video, audio, 3D, and text. How-
ever, the real world involves a broader range of
modalities. Extending MM-LLMs to accommodate
additional modalities (e.g., web pages, heat maps,
and figures&tables) will increase the model’s ver-
satility, making it more universally applicable; (2)
Diversifying LLMs: Incorporating various types
and sizes of LLMs provides practitioners with the
flexibility to select the most appropriate one based
on their specific requirements; (3) Improving MM
IT Dataset Quality: Current MM IT datasets have
ample room for improvement and expansion. Di-
versifying the range of instructions can enhance
the effectiveness of MM-LLMs in understanding
and executing user commands; (4) Strengthening
MM Generation Capabilities: Most current MM-
LLMs are predominantly oriented towards MM
understanding. Although some models have incor-
porated MM generation capabilities, the quality of
generated responses may be constrained by the ca-
pacities of the LDMs. Exploring the integration of
retrieval-based approaches (Asai et al., 2023; Gao
et al., 2023a; Kang et al., 2024) holds significant
promise in complementing the generative process,
enhancing the overall performance of the model.

More Challenging Benchmarks Existing bench-
marks may not sufficiently challenge the capabili-
ties of MM-LLMs, as many datasets have appeared
to varying degrees in the PT or IT sets. This im-
plies that the models might have already learned
these tasks during training. Moreover, current
benchmarks predominantly focus on the VL sub-
field. Therefore, it is crucial for the development of
MM-LLMs to construct a more challenging, larger-
scale benchmark that includes additional modal-
ities and employs a unified evaluation standard.
For instance, GOAT-Bench (Lin et al., 2024b) is
designed to assess the capability of various MM-
LLMs in discerning and responding to nuanced
aspects of social abuse depicted in memes. MM-
Code (Li et al., 2024a) evaluates the algorithmic
problem-solving skills of MM-LLMs in visually
rich contexts. DecodingTrust (Wang et al., 2024a)
measures the trustworthiness of MM-LLMs. Math-
Vista (Lu et al., 2024) evaluates the mathematical
reasoning ability of MM-LLMs within visual con-
texts, while GeoEval (Zhang et al., 2024b; Li et al.,

2024f; Song et al., 2024) assesses their proficiency
in tackling geometry math problems. Moreover,
MMMU (Yue et al., 2023) and CMMMU (Zhang
et al., 2024a) have respectively introduced English
and Chinese versions of a comprehensive multi-
discipline MM understanding and reasoning bench-
mark for expert artificial general intelligence. Ad-
ditionally, Fan et al. (2024) have challenged MM-
LLMs with multipanel VQA, and BenchLMM (Cai
et al., 2023) benchmarks the cross-style visual ca-
pability of MM-LLMs. Furthermore, Liu et al.
(2023h) have conducted an in-depth study on the
optical character recognition capabilities of MM-
LLMs. These efforts highlight the need for more so-
phisticated and diverse benchmarks to truly gauge
the advanced capabilities of MM-LLMs.

Mobile/Lightweight Deployment In order to de-
ploy MM-LLMs on resource-constrained platforms
and achieve optimal performance, such as low-
power mobile and IoT devices, lightweight imple-
mentations are of paramount importance. A notable
advancement in this realm is MobileVLM (Chu
et al., 2023a). This approach strategically down-
scales LLaMA, allowing for seamless off-the-shelf
deployment. MobileVLM further introduces a
lightweight downsample projector consisting of
fewer than 20 million parameters, contributing to
improved computational speed. Recently, there
have been many similar studies on lightweight MM-
LLMs, achieving efficient computation and infer-
ence with comparable performance or minimal loss,
including TinyGPT-V (Yuan et al., 2023b), Vary-
toy (Wei et al., 2024), Mobile-Agent (Wang et al.,
2024c), MoE-LLaVA (Lin et al., 2024a), and Mo-
bileVLM V2 (Chu et al., 2024). Nevertheless, this
avenue necessitates additional exploration for fur-
ther advancements in development.

Embodied Intelligence The embodied intelli-
gence aims to replicate human-like perception and
interaction with the surroundings by effectively
understanding the environment, recognizing perti-
nent objects, assessing their spatial relationships,
and devising a comprehensive task plan (Firoozi
et al., 2023). Embodied AI tasks, such as embod-
ied planning, embodied visual question answer-
ing, and embodied control, equip robots to au-
tonomously implement extended plans by leverag-
ing real-time observations. Some typical works in
this area are PaLM-E (Driess et al., 2023) and Em-
bodiedGPT (Mu et al., 2023). PaLM-E introduces
a multi-embodiment agent through the training of
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an MM-LLM. Beyond functioning solely as an em-
bodied decision-maker, PaLM-E also demonstrates
proficiency in handling general VL tasks. Em-
bodiedGPT introduces an economically efficient
method characterized by a CoT approach, enhanc-
ing the capability of embodied agents to engage
with the real world and establishing a closed loop
that connects high-level planning with low-level
control. While MM-LLM-based Embodied Intelli-
gence has made advancements in integrating with
robots, further exploration is needed to enhance the
autonomy of robots.

Continual Learning Due to the large training
costs associated with their massive scale, MM-
LLMs are not amenable to frequent re-training.
However, updates are necessary to endow MM-
LLMs with new skills and keep them up-to-date
with rapidly evolving human knowledge (Wu et al.,
2024). Thus, Continual Learning (CL) is needed to
make the model flexible enough to efficiently and
continually leverage emerging data while avoiding
the substantial cost of retraining MM-LLMs. CL
for MM-LLMs can be classified into two stages:
continual PT and continual IT. Recently, a contin-
ual MM IT benchmark has been proposed to con-
tinuously fine-tune MM-LLMs for new MM tasks
while maintaining superior performance on tasks
learned during the original MM IT stage (He et al.,
2023). It introduces two primary challenges: (1)
catastrophic forgetting, where models forget previ-
ous knowledge when learning new tasks (Robins,
1995; McCloskey and Cohen, 1989; Goodfellow
et al., 2013; Zhang et al., 2023d,c,b; Zheng et al.,
2023a), and (2) negative forward transfer, indicat-
ing that the performance of unseen tasks declines
when learning new ones (Zheng et al., 2024; Dong
et al., 2022, 2024a, 2023b,a).

Mitigating Hallucination Hallucinations entail
generating textual descriptions of nonexistent ob-
jects without visual cues, which manifest in diverse
categories (Liu et al., 2024a) such as misjudgments
and inaccuracies in descriptions. The origins of
these hallucinations are multifaceted (Liu et al.,
2024a), including biases and annotation errors in
training data. Additionally, Skip \n (Han et al.,
2024) highlights semantic drift biases associated
with paragraph separators, which can induce hal-
lucinations when deliberately inserted. Current
methods to mitigate these hallucinations involve
leveraging self-feedback as visual cues (Lee et al.,
2023). However, challenges persist, necessitating

nuanced discernment between accurate and halluci-
natory outputs, as well as advancements in training
methodologies to enhance output reliability.

Biases and Ethical Considerations Despite the
strengths of MM-LLMs, ensuring their safe and ef-
ficient application remains crucial. Information
generated by MM-LLMs can perpetuate stereo-
types and cause harm to vulnerable populations.
Since MM-LLMs learn from patterns in MM train-
ing data, they can reproduce biases present in these
data, potentially leading to representational harm.
To address this, we can develop new benchmarks
specifically designed to evaluate biases in MM-
LLMs (Luo et al., 2024). Additionally, designing
more effective and fine-grained alignment methods
is essential. For instance, using RLHF can help
calibrate MM-LLMs to produce answers that align
with human values and desires (Li et al., 2024c).

7 Conclusion

In this paper, we have presented a comprehensive
survey of MM-LLMs with a focus on recent ad-
vancements. Initially, we categorize the model
architecture into five components, providing a de-
tailed overview of general design formulations and
training pipelines. Subsequently, we introduce var-
ious SOTA MM-LLMs, each distinguished by its
specific formulations. Our survey also sheds light
on their capabilities across diverse MM bench-
marks and envisions future developments in this
rapidly evolving field. We hope this survey can pro-
vide insights for researchers and contribute to the
ongoing advancements in the MM-LLMs domain.

Social Impact

MM-LLMs have the potential to impact society.
They can enhance accessibility for individuals with
disabilities by improving voice recognition and vi-
sual aids, fostering equal access to information. In
education, MM-LLMs can revolutionize learning
with more interactive experiences, catering to di-
verse learning styles. In media, they can create
more engaging content, enriching the consumer
experience. However, the widespread adoption of
MM-LLMs also poses data risks and user privacy
risks. Privacy concerns arise from the training data,
raising issues of security. On the other hand, exac-
erbating biases also arise, which can lead to biased
outputs. Overall, while MM-LLMs offer promis-
ing opportunities, it is essential to address these
challenges to ensure their responsibility.
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Limitations

In this paper, we embark on a comprehensive explo-
ration of the current MM-LLMs landscape, present-
ing a synthesis from diverse perspectives enriched
by our insights. Acknowledging the dynamic na-
ture of this field, it is plausible that certain aspects
may have eluded our scrutiny, and recent advances
might not be entirely encapsulated. To tackle this
inherent challenge, we’ve established a dedicated
website for real-time tracking, using crowdsourc-
ing to capture the latest advancements. Our goal is
for this platform to evolve into a continuous source
of contributions propelling ongoing development
in the field. Given the constraints of page limits,
we are unable to delve into all technical details, so
we have provided concise overviews of the core
contributions of mainstream MM-LLMs. Look-
ing ahead, we commit to vigilant monitoring and
continual enhancement of relevant details on our
website (https://mm-llms.github.io), incorporating
fresh insights as they emerge.
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A Related Surveys

Prior to the emergence of LLMs, several surveys
on traditional MM PT have been conducted (Ruan
and Jin, 2022; Du et al., 2022a; Long et al., 2022;
Chen et al., 2023a). Most of these models entail a
substantial computational cost during the PT phase,
attributable to end-to-end training using large-scale
models and datasets. As a consequence of not incor-
porating LLMs, these models suffer from deficien-
cies in instruction following, ICL, CoT, and inter-
active capabilities. Moreover, the training pipeline
solely encompasses the PT phase without the inclu-
sion of an IT stage.

In recent times, several surveys have emerged
on MM-LLMs. Yin et al. (2023a) and Wu et al.
(2023c) exclusively delve into early VL understand-
ing models. Huang et al. (2023a) place a primary
emphasis on visual IT, while Song et al. (2023)
focus on modal alignment methods. Lastly, Cui
et al. (2024) provide a comprehensive review of
the applications of MM-LLMs within the realm of
autonomous driving.

Compared with their works, the main distinc-
tions are outlined as follows:

• We have comprehensively covered nearly all
MM-LLMs over the past year, totaling around
120 or more, including not only understand-
ing models but also generative models. Our
coverage extends beyond VL modalities to en-
compass various modes such as audio and 3D
point cloud;

• To offer readers a comprehensive understand-
ing of MM-LLMs, we have introduced a gen-
eral model architecture that incorporates any-
to-any modality transformations, offering a
detailed overview of the functional roles and
implementation choices for each component;

• We have summarized the developmental
trends of existing MM-LLMs and provided
some training recipes that can enhance effec-
tiveness;

• We have established an open-source website
(https://mm-llms.github.io) for MM-LLMs re-
searchers, supporting crowdsourced updates
and aiming to facilitate collaboration in the
MM-LLMs field. We anticipate that this sur-
vey will illuminate future research in the MM-
LLMs domain.

B Modality Encoder

In the following, we provide a brief introduction to
some mainstream modality encoders.

B.1 Visual Modality
NFNet-F6 (Brock et al., 2021) is a normalizer-
free ResNet (He et al., 2016), showcasing an adap-
tive gradient clipping that allows training on exten-
sively augmented datasets while achieving SOTA
levels of image recognition.

ViT (Dosovitskiy et al., 2020) applies the Trans-
former (Vaswani et al., 2017) to images by first
dividing the image into patches. It then undergoes
linear projection to flatten the patches, followed by
encoding via Transformer blocks.

CLIP ViT (Radford et al., 2021) builds con-
nections between text and images, comprising a
ViT and a text encoder. With a vast amount of
text-image pairs, it optimizes ViT by contrastive
learning, treating paired text and images as positive
samples and others as negative ones.

Eva-CLIP ViT (Fang et al., 2023) stabilizes the
training and optimization process of the massive
CLIP, offering new directions in expanding and
accelerating the expensive training of MM base
models.

B.2 Audio Modality
C-Former (Chen et al., 2023b) employs the
CIF (Dong and Xu, 2020; Zhang et al., 2022a; Han
et al., 2022, 2023) for sequence transduction and a
Transformer to extract audio features.

HuBERT (Hsu et al., 2021) is a self-supervised
speech representation learning framework based
on BERT (Kenton and Toutanova, 2019), achieved
by the masked prediction of discrete hidden units.
It has the capability to convert continuous speech
signals into a sequence of discrete units.

BEATs (Chen et al., 2023g) is an iterative audio
pre-training framework designed to learn Bidirec-
tional Encoder representations from Audio Trans-
formers.

C Mainstream PEFT Methods

PEFT entails maintaining the pre-trained LLM in a
frozen state while adjusting a small number of ad-
ditional trainable parameters. In the following sec-
tion, we revisit several representative PEFT meth-
ods, where x and h represent the input and output
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of the original module, and h′ signifies the output
of this module when attached with PEFT.

Prefix-tuning (Li and Liang, 2021; Lester et al.,
2021) involves the addition of learnable tokens to
the keys and values of the attention module. This
process is formulated as follows:

h′ = Attn (xWq, [Pk,xWk], [Pv,xWv]) , (6)

with Pk,Pv ∈ Rl×d representing two sets of prefix
tokens. [·, ·] denotes concatenation, and Attn is
defined as:

Attn (Q,K,V) := softmax

(
QKT

√
d

)
V.

Adapter (Houlsby et al., 2019; He et al., 2021;
Rebuffi et al., 2017; Zhang et al., 2020) is typically
a residual block consisting of a down-projection
matrix A, a nonlinear activation function σ(·), and
an up-projection matrix B. It can be inserted into
any layer of the pre-trained LLM, formulated as
follows:

h′ = h+ σ(xA)B. (7)

LoRA (Hu et al., 2021) is the most commonly
used PEFT method. It assumes that the change in
parameters occurs within a low-rank space. Given
a pre-trained matrix W ∈ Rc×d, LoRA learns an
incremental update ∆W and decomposes ∆W
into a matrix multiplication between two low-rank
matrices A ∈ Rc×r and B ∈ Rr×d, where r ≪
min(c, d). LoRA follows the forward process as
outlined below:

h = Wx+∆Wx = Wx+ABx. (8)

QLoRA (Dettmers et al., 2023) is a quantized
LoRA. The underlying principle of QLoRA in-
cludes the quantization of pre-trained weights to
4 bits, followed by the execution of PEFT using
LoRA.

LayerNorm tuning (Zhao et al., 2024) presents
an efficient strategy to transform LLMs into MM-
LLMs, which tunes LayerNorm in attention block,
yielding strong MM performance compared with
full parameter finetuning or LoRA.

In addition to the aforementioned PEFT methods,
there are several others, including P-tuning (Liu
et al., 2022), P-tuning v2 (Liu et al., 2021a), Adapt-
Bias (Fu et al., 2022), Compacter (Karimi Ma-
habadi et al., 2021), AdapterFormer (Chen
et al., 2022a), XTuner (Contributors, 2023), P-
LoRA (Dong et al., 2024c), MoLE (Chen et al.,
2024), and Delta-LoRA (Zi et al., 2023).

D Representative LLMs

The representative LLM Backbones in existing
MM-LLMs research are as follows:

Flan-T5 (Chung et al., 2022) investigates IT
for T5 (Raffel et al., 2020), an encoder-decoder
architecture using unified text-to-text training for
all natural language processing issues, exhibiting
robust zero-shot and CoT capabilities.

ChatGLM is a Chinese-English bilingual dia-
logue model,2 optimized by an auto-regressive
mask infilling objective. It is based on the
GLM (Du et al., 2022b; Zeng et al., 2022a) archi-
tecture, optimized for Chinese question answering
and dialogues.

InternLM (Team, 2023) is a multilingual
trillion-parameter foundation model trained on over
a trillion tokens of data. Based on this foundation,
the model utilizes high-quality human-annotated
dialogue data combined with RLHF to respond to
complex instructions during human interactions,
exhibiting responses that align with human ethics
and values.

UL2 (Tay et al., 2022) is an encoder-decoder
model trained to utilize a mixture of denoisers ob-
jectives, surpassing T5 on numerous benchmarks.

Qwen (Bai et al., 2023a) is trained on large-scale
and diverse datasets, with a primary focus on Chi-
nese and English. It employs SFT and RLHF tech-
niques for alignment, resulting in dialogue models
like Qwen-Chat.

Chinchilla (Hoffmann et al., 2022) is a causal
decoder trained on extensive text data. It posits
that model size should double for every doubling
of training tokens.

OPT (Zhang et al., 2022c) is a GPT-3 (Brown
et al., 2020) clone, striving to release an open-
source model that replicates the performance of
GPT-3.

PaLM (Chowdhery et al., 2023) is a causal de-
coder structure with parallel attention and feed-
forward layers, enabling training speeds up to 15
times faster. Notable changes contain RoPE embed-
dings, SwiGLU activation, multi-query attention,
etc.

2https://github.com/THUDM/ChatGLM-6B
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LLaMA (Touvron et al., 2023a) comprises
decoder-only models with efficient causal atten-
tion.

LLaMA-2 (Touvron et al., 2023b) focuses on
fine-tuning a superior and safer LLaMA-2-Chat
model for conversation generation, incorporating
40% more training data with grouped-query atten-
tion and a larger context length.

Vicuna (Chiang et al., 2023) is a model built
on top of LLaMA, utilizing user dialogue data ob-
tained from ShareGPT.com and trained by SFT.

E SOTA MM-LLMs

In the following, we will provide a brief introduc-
tion to the core contributions of some representative
MM-LLMs.

Flamingo (Alayrac et al., 2022) represents a se-
ries of Visual Language (VL) Models designed for
processing interleaved visual data and text, gener-
ating free-form text as the output.

BLIP-2 (Li et al., 2023e) introduces a more
resource-efficient framework, comprising the
lightweight Q-Former to bridge modality gaps and
the utilization of frozen LLMs. Leveraging LLMs,
BLIP-2 can be guided for zero-shot image-to-text
generation using natural language prompts.

LLaVA (Liu et al., 2023e) pioneers the trans-
fer of IT techniques to the MM domain. Ad-
dressing data scarcity, LLaVA introduces a novel
open-source MM instruction-following dataset cre-
ated using ChatGPT/GPT-4, alongside the MM
instruction-following benchmark, LLaVA-Bench.

MiniGPT-4 (Zhu et al., 2023a) proposes a
streamlined approach where training only one lin-
ear layer aligns the pre-trained vision encoder with
the LLM. This efficient method enables the repli-
cation of the exhibited capabilities of GPT-4.

mPLUG-Owl (Ye et al., 2023b) presents a novel
modularized training framework for MM-LLMs,
incorporating the visual context. To assess different
models’ performance in MM tasks, the framework
includes an instructional evaluation dataset called
OwlEval.

X-LLM (Chen et al., 2023b) is expanded to var-
ious modalities, including audio, and demonstrates
strong scalability. Leveraging the language trans-
ferability of the Q-Former, X-LLM is successfully
applied in the context of Sino-Tibetan Chinese.

VideoChat (Li et al., 2023f) pioneers an efficient
chat-centric MM-LLM for video understanding di-
alogue, setting standards for future research in this
domain and offering protocols for both academia
and industry.

InstructBLIP (Dai et al., 2023) is trained based
on the pre-trained BLIP-2 model, updating only
the Q-Former during MM IT. By introducing
instruction-aware visual feature extraction and cor-
responding instructions, the model enables the ex-
traction of flexible and diverse features.

PandaGPT (Su et al., 2023) is a pioneering
general-purpose model with the capability to com-
prehend and act upon instructions across 6 differ-
ent modalities: text, image/video, audio, thermal,
depth, and inertial measurement units.

PaLI-X (Chen et al., 2023h) is trained using
mixed VL objectives and unimodal objectives, in-
cluding prefix completion and masked-token com-
pletion. This approach proves effective for both
downstream task results and achieving the Pareto
frontier in the fine-tuning setting.

Video-LLaMA (Zhang et al., 2023e) introduces
a multi-branch cross-modal PT framework, en-
abling LLMs to simultaneously process the vision
and audio content of a given video while engag-
ing in conversations with humans. This framework
aligns vision with language as well as audio with
language.

Video-ChatGPT (Maaz et al., 2023) is a model
specifically designed for video conversations, ca-
pable of generating discussions about videos by
integrating spatiotemporal vision representations.

Shikra (Chen et al., 2023e) introduces a sim-
ple and unified pre-trained MM-LLM tailored for
Referential Dialogue, a task involving discussions
about regions and objects in images. This model
demonstrates commendable generalization ability,
effectively handling unseen settings.

DLP (Jian et al., 2023) proposes the P-Former
to predict the ideal prompt, trained on a dataset
of single-modal sentences. This showcases the
feasibility of single-modal training to enhance MM
learning.

BuboGPT (Zhao et al., 2023d) is a model con-
structed by learning a shared semantic space for a
comprehensive understanding of MM content. It
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explores fine-grained relationships among different
modalities, such as image, text, and audio.

ChatSpot (Zhao et al., 2023b) introduces a sim-
ple yet potent method for finely adjusting precise
referring instructions for MM-LLM, facilitating
fine-grained interactions. The incorporation of pre-
cise referring instructions, consisting of image- and
region-level instructions, enhances the integration
of multi-grained VL task descriptions.

Qwen-VL (Bai et al., 2023b) is a multi-lingual
MM-LLM that supports both English and Chinese.
Qwen-VL also allows the input of multiple images
during the training phase, improving its ability to
understand the vision context.

NExT-GPT (Wu et al., 2023d) is an end-to-end,
general-purpose, any-to-any MM-LLM that sup-
ports the free input and output of image, video,
audio, and text. It employs a lightweight alignment
strategy, utilizing LLM-centric alignment in the en-
coding phase and instruction-following alignment
in the decoding phase.

MiniGPT-5 (Zheng et al., 2023b) is an MM-
LLM integrated with inversion to generative vo-
kens and integration with Stable Diffusion. It ex-
cels in performing interleaved VL outputs for MM
generation. The inclusion of classifier-free guid-
ance during the training phase enhances generation
quality.

LLaVA-1.5 (Liu et al., 2023d) reports simple
modifications to the LLaVA framework, including
applying an MLP projection and introducing VQA
data tailored for academic tasks, along with simple
response formatting prompts. These adjustments
result in enhanced capabilities for MM understand-
ing.

MiniGPT-v2 (Chen et al., 2023d) is an MM-
LLM designed as a unified interface for diverse
VL multi-task learning. To create a single model
proficient in handling multiple VL tasks, identifiers
are incorporated for each task during both training
and inference. This facilitates clear task distinction,
ultimately enhancing learning efficiency.

CogVLM (Wang et al., 2023b) is an open-source
MM-LLM that bridges the gap between modalities
via a trainable visual expert module within the at-
tention and feedforward layers. This allows for a
deep fusion of MM features without compromising
performance on NLP downstream tasks.

DRESS (Chen et al., 2023i) introduces a method
using natural language feedback to enhance align-
ment with human preferences. DRESS extends
the conditional reinforcement learning algorithm to
integrate non-differentiable natural language feed-
back, training the model to generate appropriate
responses based on feedback.

X-InstructBLIP (Panagopoulou et al., 2023) in-
troduces a cross-modal framework with instruction-
aware representations, scalable enough to em-
power LLMs to handle diverse tasks across multi-
ple modalities, including image/video, audio, and
3D. Notably, it achieves this without the need for
modality-specific PT.

CoDi-2 (Tang et al., 2023b) is an MM gener-
ation model excelling in modality-interleaved in-
struction following, in-context generation, and user-
model interaction by multi-turn conversations. It
enhances CoDi (Tang et al., 2023c) to process intri-
cate modality-interleaved inputs and instructions,
generating latent features autoregressively.

VILA (Lin et al., 2023) outperforms vision tasks
and shows remarkable reasoning ability while main-
taining text-only capabilities. It achieves this by
harnessing the full capabilities of LLM learning,
using the interleaved attributes of image-text pairs,
and implementing meticulous text data re-blending.

F VL Benchmarks

The 18 VL benchmarks presented in Table 2 in-
clude OKVQA (Schwenk et al., 2022), Icon-
VQA (Lu et al., 2021), VQAv2 (Goyal et al., 2017),
GQA (Hudson and Manning, 2019), VizWiz (Gu-
rari et al., 2018), SQAI: ScienceQA-IMG (Lu
et al., 2022), VQAT: TextVQA (Singh et al., 2019),
POPE (Li et al., 2023k), MMEP: MME Per-
ception (Fu et al., 2023), MMEC: MME Cogni-
tion (Fu et al., 2023), MMB: MMBenchmark (Liu
et al., 2023g), MMBCN: MMBench-Chinese (Liu
et al., 2023g), SEEDI: SEED-Bench (Image) (Li
et al., 2023c), LLaVAW: LLaVA-Bench (In-the-
Wild) (Liu et al., 2023a), MM-Vet (Yu et al.,
2023c), QBench (Wu et al., 2023b), HM: Hate-
fulMemes (Kiela et al., 2020), and VSR (Liu et al.,
2023a).

G Training Dataset

The statistics for MM PT and MM IT datasets are
presented in Table 3 and Table 4, respectively.
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Dataset Name X Modality #.X #.T #.X-T

ALIGN (Jia et al., 2021) Image 1.8B 1.8B 1.8B
LTIP (Alayrac et al., 2022) Image 312M 312M 312M
MS-COCO (Lin et al., 2014) Image 124K 620K 620K
Visual Genome (Krishna et al., 2017) Image 108K 4.5M 4.5M
CC3M (Sharma et al., 2018) Image 3.3M 3.3M 3.3M
CC12M (Changpinyo et al., 2021) Image 12.4M 12.4M 12.4M
SBU (Ordonez et al., 2011) Image 1M 1M 1M
LAION-5B (Schuhmann et al., 2022) Image 5.9B 5.9B 5.9B
LAION-400M (Schuhmann et al., 2021) Image 400M 400M 400M
LAION-en (Schuhmann et al., 2022) Image 2.3B 2.3B 2.3B
LAION-zh (Schuhmann et al., 2022) Image 142M 142M 142M
LAION-COCO (Schuhmann et al., 2022b) Image 600M 600M 600M
Flickr30k (Young et al., 2014) Image 31K 158K 158K
AI Challenger Captions (Wu et al., 2017) Image 300K 1.5M 1.5M
COYO (Byeon et al., 2022) Image 747M 747M 747M
Wukong (Gu et al., 2022) Image 101M 101M 101M
COCO Caption (Chen et al., 2015) Image 164K 1M 1M
WebLI (Chen et al., 2022b) Image 10B 12B 12B
Episodic WebLI (Chen et al., 2023h) Image 400M 400M 400M
CC595k (Liu et al., 2023e) Image 595K 595K 595K
RefCOCO (Kazemzadeh et al., 2014) Image 20K 142K 142K
RefCOCO+ (Yu et al., 2016) Image 20K 142K 142K
Visual-7W (Zhu et al., 2016) Image 47.3K 328K 328K
OCR-VQA (Mishra et al., 2019) Image 207K 1M 1M
ST-VQA (Biten et al., 2022) Image 23K 32K 32K
DocVQA (Mathew et al., 2021) Image 12K 50K 50K
TextVQA (Singh et al., 2019) Image 28.4K 45.3K 45.3K
DataComp (Gadre et al., 2023) Image 1.4B 1.4B 1.4B
GQA (Hudson and Manning, 2019) Image 113K 22M 22M
VGQA (Krishna et al., 2017) Image 108K 1.7M 1.7M
VQAv2 (Goyal et al., 2017) Image 265K 1.4M 1.4M
DVQA (Kafle et al., 2018) Image 300K 3.5M 3.5M
OK-VQA (Schwenk et al., 2022) Image 14K 14K 14K
A-OKVQA (Schwenk et al., 2022) Image 23.7K 24.9K 24.9K
Text Captions (Sidorov et al., 2020) Image 28K 145K 145K
Multimodal Arxiv (Li et al., 2024b) Image 32K 16.6K 16.6K
M3W (Interleaved) (Alayrac et al., 2022) Image 185M 182GB 43.3M (Instances)
MMC4 (Interleaved) (Zhu et al., 2023c) Image 571M 43B 101.2M (Instances)
Obelics (Interleaved) (Laurençon et al., 2023) Image 353M 115M 141M (Instances)
MSRVTT (Xu et al., 2016) Video 10K 200K 200K
WebVid (Bain et al., 2021) Video 10M 10M 10M
VTP (Alayrac et al., 2022) Video 27M 27M 27M
AISHELL-1 (Chen et al., 2023b) Audio – – 128K
AISHELL-2 (Chen et al., 2023b) Audio – – 1M
WaveCaps (Mei et al., 2023) Audio 403K 403K 403K
VSDial-CN (Ni et al., 2024) Image, Audio 120K (Image), 1.2M(Audio) 120K 1.2M

Table 3: The statistics for MM PT datasets. #.X represents the quantity of X, #.T represents the quantity of Text,
and #.X-T represents the quantity of X-Text pairs, where X can be Image, Video, or Audio.
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Dataset Name Type I→O Source Method Multi-Turn #.I/V/A #.Dialog Turn #.Instance

MiniGPT-4’s IT (Zhu et al., 2023a) SFT I+T→T CC3M, CC12M Auto. % 134M/–/– 1 5K
StableLLaVA (Li et al., 2023i) SFT I+T→T SD (Rombach et al., 2022) Auto.+Manu. % 126K/–/– 1 126K
LLaVA’s IT (Zhang et al., 2023h) SFT I+T→T MS-COCO Auto. " 81K/–/– 2.29 150K
SVIT (Zhao et al., 2023a) SFT I+T→T MS-COCO, Visual Genome Auto. " 108K/–/– 5 3.2M
LLaVAR’s IT (Zhang et al., 2023h) SFT I+T→T MS-COCO, CC3M, LAION LLaVA+Auto. " 20K/–/– 2.27 174K
ShareGPT4V’s IT (Chen et al., 2023f) SFT I+T→T LCS, COCO, SAM, TextCaps, WikiArt Auto.+Manu. % 100K/–/– – –
DRESS’s IT (Chen et al., 2023i) SFT I+T→T LLaVA’s IT, VLSafe Auto.+Manu. " 193K/–/– ∼4 –
SoM-LLaVA’s IT (Yan et al., 2024a) SFT I+T→T ShareGPT4V’s IT, LLaVA-1.5’s IT, CogVLM’s IT Auto.+Manu. " –/–/– ∼5 695K
VideoChat’s IT (Li et al., 2023f) SFT V+T→T WebVid Auto. " –/8K/– 1.82 11K
Video-ChatGPT’s IT (Maaz et al., 2023) SFT V+T→T ActivityNet (Caba Heilbron et al., 2015) Inherit " –/100K/– 1 100K
Video-LLaMA’s IT (Zhang et al., 2023e) SFT I/V+T→T MiniGPT-4, LLaVA, and VideoChat’s IT Auto. " 81K/8K/– 2.22 171K
InstructBLIP’s IT (Dai et al., 2023) SFT I/V+T→T Multiple (InstructBLIP’s Figure 2) Auto. % – – ∼1.6M
X-InstructBLIP’s IT (Panagopoulou et al., 2023) SFT I/V/A/3D+T→T Multiple (X-InstructBLIP’s Figure 4) Auto. % – – ∼1.8M
MIMIC-IT (Li et al., 2023a) SFT I/V+T→T Multiple Auto. % 8.1M/502K/– 1 2.8M
PandaGPT’s IT (Su et al., 2023) SFT I+T→T MiniGPT-4 and LLaVA’s IT Inherit " 81K/–/– 2.29 160K
MGVLID (Zhao et al., 2023b) SFT I+B+T→T Multiple Auto.+Manu. % 108K/–/– – 108K
M3IT (Li et al., 2023h) SFT I/V/B+T→T Multiple Auto.+Manu. % –/–/– 1 2.4M
LAMM (Yin et al., 2023b) SFT I+3D+T→T Multiple Auto.+Manu. " 91K/–/– 3.27 196K
BuboGPT’s IT (Zhao et al., 2023d) SFT (I+A)/A+T→T Clotho, VGGSS Auto. % 5K/–/9K – 9K
mPLUG-DocOwl’s IT (Ye et al., 2023b) SFT I/Tab/Web+T→T Multiple Inherit % – – –
T2M (Wu et al., 2023d) SFT T→I/V/A+T WebVid, CC3M, AudioCap Auto. % 4.9K/4.9K/4.9K 1 14.7K
MosIT (Wu et al., 2023d) SFT I+V+A+T→I+V+A+T Youtube, Google, Flickr30k, Midjourney, etc. Auto.+Manu. " 4K/4K/4K 4.8 5K

Osprey’s IT (Yuan et al., 2023a) SFT I+T→T
MS-COCO, RefCOCO, RefCOCO+,

LLaVA’s IT etc. (fine-grained region-text dataset)
Auto.+Manu. " –/–/– ∼4 724K

LLaVA-RLHF (Sun et al., 2023b) RLHF I+T→T Collected human preference Manu. % –/–/– – 10K
DRESS’s IT (Chen et al., 2023i) RLHF I+T→T LLaVA’s IT, VLSafe Auto.+Manu. " 33K/–/– ∼4 –
RLHF-V’s IT (Yu et al., 2023b) RLHF I+T→T Collected human preference Manu. % –/–/– – 1.4K
VLFeedback (Li et al., 2023g) RLHF I+T→T Responses generated by 12 MM-LLMs Auto. % –/–/– – 80K

RTVLM (Li et al., 2024c) RLHF I+T→T
New question-image pairs based on publicly available images

or originally diffusion-generated images (Gallegos et al., 2023)
Auto.+Manu. % –/–/– – 5K

VLGuard’s IT (Zong et al., 2024) RLHF I+T→T Source image data from various datasets Auto. % 3K/–/– – 3K
MMViG (Yan et al., 2024b) RLHF I+T→T MS-COCO Manu. % 16K/–/– – 16K

Table 4: The statistics for MM IT datasets. I→O: Input to Output Modalities, T: Text, I: Image, V: Video, A: Audio,
B: Bounding box, 3D: Point Cloud, Tab: Table, and Web: Web page.
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