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Abstract
Accurately modeling idiomatic or non-
compositional language has been a longstand-
ing challenge in Natural Language Processing
(NLP). This is partly because these expressions
do not derive their meanings solely from their
constituent words, but also due to the scarcity
of relevant data resources, and their impact
on the performance of downstream tasks such
as machine translation and simplification. In
this paper we propose an approach to model
idiomaticity effectively using a triplet loss that
incorporates the asymmetric contribution of
components words to an idiomatic meaning for
training language models by using adaptive
contrastive learning and resampling miners to
build an idiomatic-aware learning objective.
Our proposed method is evaluated on a
SemEval challenge and outperforms previous
alternatives significantly in many metrics. Our
code is available at our project1.

1 Introduction

Among multiword expressions (MWEs), idiomatic
expressions (IEs) are difficult to model as their
meaning is often not straightforwardly related to
the meaning of the component words (Sag et al.,
2002). These expressions, which are also com-
monly referred to as non-compositional expres-
sions, often take on figurative meanings. For exam-
ple, eager beaver has a figurative meaning of an
enthusiastic person who works very hard different
from the literal meanings of its component words
like impatient rodent (Sag et al., 2002; Villavicen-
cio and Idiart, 2019). They are a common occur-
rence across various genres (Haagsma et al., 2020).

Accurately understanding idiomatic expressions
has posed a significant challenge, as word and
phrase representations may favor inherently compo-
sitional usages at the levels of both words and sub-
words to minimize their vocabulary (Gow-Smith

1https://github.com/risehnhew/Enhancing-Idiomatic-
Representation-in-Multiple-Languages

et al., 2022). Indeed recent models are mainly
driven by compositionality, which is at the core
of tokenization (Sennrich et al., 2016) and self-
attention mechanism (Vaswani et al., 2017). Pre-
trained language models including static and con-
textualised embeddings do not seem to be well-
equipped to capture the meanings of IEs, as IEs
with similar meanings are not close in the embed-
ding space (Garcia et al., 2021b). This reveals
a need for models that can accurately capture id-
iomatic language. Ensuring precise representation
of IEs is crucial for their precise handling in various
downstream applications, such as sentiment anal-
ysis (Liu et al., 2017; Biddle et al., 2020), dialog
models (Jhamtani et al., 2021) and text simplifica-
tion (He et al., 2023).

To address this issue, previous methods often
rely on new datasets with human annotations or
on data augmentation (Liu et al., 2023a; Dankers
and Lucas, 2023). However, the use of alternative
training processes has also been effective, includ-
ing regression objective functions with a siamese
network (Tayyar Madabushi et al., 2021) or sub-
stitute objectives (Liu et al., 2022) to break the
compositionality of idiomatic phrases, as finding
an objective to stand for idiomatic representation
is difficult.

Our work focuses on the development of
idiomatic-aware language models, which are de-
signed to better represent MWEs of various de-
grees of idiomaticity in natural language text. To
achieve this, we adopt the definition of idiomatic-
aware models from SemEval 2022 task 2 (Tay-
yar Madabushi et al., 2022) that when using the
model, the semantic similarity between an IE and
its incorrect paraphrase equals the semantic similar-
ity between a correct and an incorrect paraphrase.
Our approach involves fine-tuning a pre-trained
model using a bespoke triplet loss function that
is specifically designed for capturing the asymme-
try between the surface forms of the component
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Figure 1: Triplet Resampling by using a specifically
designed miner. For a triplet, it can generate 2 samples
by treating the sentence containing IEs (IEs) and a cor-
rect (Cor) paraphrase sentence as positive and anchor
(and vice-versa) interchangeably and the Incorrect (InC)
sentence as a negative sample.

words and their semantic contribution to the mean-
ing of the expression. To build this idiomatic-aware
language model, we use in-batch positive-anchor-
negative triplets (Balntas et al., 2016). Our model
is trained on extracted triplets, where sentences
with the idiomatic expressions and their synonyms
correspond to positive and anchor respectively, and
vice-versa, Figure 1. The aim of this training is to
enable the model to learn the difference between
the literal meanings of the component words of an
MWE when used in isolation and their idiomatic
meanings as part of the MWE. We use the "learn-
to-compare" paradigm of contrastive learning (CL),
which has been successfully adopted for obtaining
better text embeddings (Ni et al., 2022b,a; Wang
et al., 2022) including for polysemous words (Liu
et al., 2019a). This framework fits well with our
objective of distinguishing between the figurative
and literal meanings of MWEs.

To evaluate the approach, a set of models with
varying sizes and pre-training strategies is trained
using this novel training method that we proposed.
The best models achieved new state-of-the-art re-
sults in the dataset containing expressions of vary-
ing levels of idiomaticity, and our best model
demonstrated a substantial improvements in both
idiom-only performance and overall performance
compared to the previous best results. Our contri-
butions are:

An efficient approach for creating language mod-
els that can represent MWEs of varying lev-
els of idiomaticity. This is achieved through
a specialized training process using a triplet
loss function and in-batch positive-anchor-
negative triplets.

An idiomatic-aware loss function tailored to di-
rectly optimize the representation of idiomatic
language and the potentially asymmetric and
non-compositional contributions of the com-
ponent words. This function plays a crucial
role in training to discern the nuanced differ-
ences between idiomatic and literal meanings
of MWEs.

New state-of-the-art performance models that
enable the understanding of idiomatic lan-
guage. This advancement represents a major
leap forward opening up new possibilities for
more nuanced and accurate language under-
standing.

The paper starts with an overview of previous
work on idiomaticity representation in Section 2. It
also introduces contrastive learning in NLP and IE
evaluation methods. Section 3 presents our method
using a triplet loss and data mining to do efficient
training. Section 4 describes our experiments, and
Section 5 analyzes the results.

2 Related Work

Idiomaticity representation can be challenging even
for large language models (King and Cook, 2018;
Nandakumar et al., 2019; Cordeiro et al., 2019a;
Hashempour and Villavicencio, 2020; Garcia et al.,
2021b; Klubička et al., 2023). For instance, GPT-
3 (Brown et al., 2020) reaches only 50.7% ac-
curacy in idiom comprehension (Zeng and Bhat,
2022a). This may be possibly due to idiomatic ex-
pressions being non-compositional and having figu-
rative meanings that go beyond its individual words
(Baldwin and Kim, 2010). Methods that have been
used for representing idiomaticity include com-
bining compositional components with adaptive
weights (Hashimoto and Tsuruoka, 2016; Li et al.,
2018a), representing MWEs with single tokens
(Yin and Schütze, 2015; Li et al., 2018b; Cordeiro
et al., 2019b; Phelps, 2022) and creating phrase
embeddings that effectively capture both composi-
tional and idiomatic expressions (Hashimoto and
Tsuruoka, 2016). The latter involves an adaptive
learning process that adjusts to the nature of the
phrases to generate accurate representation. An
adapter-based approach is proposed that augment-
ing the BART model with an "idiomatic adapter"
trained on dedicated idiom datasets (Zeng and Bhat,
2022b). This adapter acts as a lightweight ex-
pert, enhancing BART’s ability to capture figu-
rative meanings alongside literal interpretations.
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PIER (Zeng and Bhat, 2023), a language model
based on BART, specifically addresses the chal-
lenge of representing non-compositional expres-
sions, such as idioms, in natural language. Tradi-
tional compositionality-based models often strug-
gle with these expressions, as their meaning cannot
be simply derived from the sum of their parts. PIER
overcomes this by incorporating an "idiomatic
adapter" which learns to represent figurative mean-
ings alongside literal ones. Additionally, Liu et al.
(2023b) proposed a novel approach to idiomatic
machine translation through retrieval augmentation
and loss weighting, which significantly improves
the translation quality of idiomatic expressions by
leveraging context retrieval mechanisms and adjust-
ing loss functions to better handle idiomaticity.

Contrastive Learning Contrastive learning is a
method in machine learning that trains a model to
distinguish between similar and dissimilar pairs of
data. In recent times, significant progress has been
made in sentence embeddings through contrastive
learning (Gao et al., 2021; Giorgi et al., 2021a;
Kim et al., 2021; Wu et al., 2022; Zhang et al.,
2022; Xu et al., 2023). It also has been widely
applied in other NLP research fields, such as text
classification (Fang et al., 2020), machine transla-
tion (Pan et al., 2021), information extraction (Qin
et al., 2021), question answering (Karpukhin et al.,
2020) and text retrieval (Xiong et al., 2020). De-
spite their shared goal of acquiring high-quality text
representations (Reimers and Gurevych, 2019; Gao
et al., 2021; Neelakantan et al., 2022; Giorgi et al.,
2021b), the exploration of idiomatic representation
and related research through contrastive learning
is still yet to be fully explored. Contrastive learn-
ing with triplet loss involves training the model
on triplets: an anchor sample, a positive sample
(similar to the anchor), and a negative sample (dis-
similar to the anchor). The goal is to minimize
the distance between anchors and positive samples
while maximizing the distance between anchors
and negative samples. This approach has recently
been applied to tasks such as idiom usage recogni-
tion and metaphor detection (Zhou et al., 2023).

Idiomaticity Representation Evaluation As-
sessing idiomatic representation in language mod-
els has included both extrinsic and intrinsic eval-
uations. Extrinsic methods evaluate how well the
model’s idiomaticity representation impacts down-
stream tasks, such as machine translation (Dankers
et al., 2022), sentence generation (Zhou et al., 2021)

or conversational systems (Adewumi et al., 2022).
Intrinsic methods evaluate the model’s understand-
ing of idiomaticity itself, using approaches like
probing to investigate and understand the linguistic
information encoded in the representation (Garcia
et al., 2021a). Datasets like AStitchInLanguage-
Models (Tayyar Madabushi et al., 2021) and Noun
Compound Type and Token Idiomaticity (NCTTI)
dataset (Garcia et al., 2021a) offer labelled exam-
ples for intrinsically testing how much the simi-
larities perceived by a model are compatible with
human judgements about similarity. More broadly,
SemEval-2022 task 2B (Tayyar Madabushi et al.,
2022), evaluates idiomaticity representation in mul-
tilingual text while also requiring models to predict
the semantic text similarity (STS) scores between
sentence pairs, regardless of whether or not either
sentence contains an idiomatic expression. The
main objective of this task is to address the short-
comings of existing state-of-the-art models, which
often struggle to handle idiomaticity. We use this
dataset to evaluate our methods.

3 Idiomaticity-aware Objective

Our strategy for improving IE representation in
language models utilizes a contrastive triplet loss
adapted to prioritize idiomaticity and employs a
miner to generate positive-anchor-negative triplets
for training the model.

3.1 Triplet Loss

Triplet loss is a powerful tool for training language
models to learn representations of data that are
useful for a variety of NLP tasks (Neculoiu et al.,
2016). It has also been widely used in training mod-
els for tasks such as image retrieval, and face recog-
nition (Schroff et al., 2015; Khosla et al., 2020).

Triplet loss is a distance-based loss function de-
fined as

La,p,n = max(d(ai, pi)− d(ai, ni) +m, 0),
(1)

where the triplets (ai, pi, ni), i = 1 · · ·N , corre-
spond to anchor, positive and negative exam-
ples, where ai and pi are semantically identical and
ni is semantically dissimilar from them. d(x, y)
is a distance measure and in our method we use
cosine similarity (denoted here by sim)

d(x, y) = sim(x, y). (2)
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Finally, the margin m controls the minimum dis-
tance between anchor-positive pairs and anchor-
negative pairs.

Selecting the right margin is crucial for our
method. If it is too small, the task becomes too easy,
lacking meaningful distinctions. Conversely, if it
is too large, it can slow down convergence or yield
suboptimal solutions (Schroff et al., 2015). The
margin is a hyperparameter and its tuning requires
experimentation based on the specific dataset and
application.

In this paper we use a miner to build triplets for
learning idiomaticity more efficiently.

3.2 Modelling IEs with Adaptive Contrastive
Tripet Loss

This section explains how to improve the language
model’s ability to understand IEs in text without
STS scores by adapting triplet loss to the IE-aware
training strategy. We will describe the process step-
by-step and discuss its benefits.

3.2.1 Task Definition
One widely used approach for measuring idiomatic-
ity is by calculating the distance between a dedi-
cated representation for the MWE as a single to-
ken and a compositional representation of its com-
ponents using operations like sum or multiplica-
tion (Mitchell and Lapata, 2008; Cordeiro et al.,
2019b). A good idiomatic expression representa-
tion, as framed by Madabushi et al. (2022), should
have the following property:

sim(SMWE , S→c) = 1

sim(SMWE , S→i) = sim(S→c, S→i)
(3)

where SMWE denotes a sentence containing the
idiomatic expression and S→c and S→i represent
sentences with the idiomatic expression replaced by
its correct and incorrect paraphrases, respectively.
Ensuring these properties hold for all MWEs dur-
ing training using standard loss functions can be
challenging.

Previous studies need annotated similarity scores
of pairs as labels for building the training set (Tay-
yar Madabushi et al., 2021; Phelps, 2022). Their
objective functions are as follows:

sim(SMWE , S→c) = 1

sim(SMWE , S→i) = score1

sim(S→c, S→i) = score2

(4)

where score1 and score2 are STS scores used to
measure the similarity between two pieces of text,

with scores typically ranging from 0 (no similarity)
to 1 (identical meaning). In previous methods, lan-
guage models were trained to predict STS scores
between text containing IEs and those without IEs,
in order to improve their ability to understand IEs.

In our method, we will utilize a triplet loss in
combination with a miner to extract triplets without
STS scores, approximating the definition in equa-
tions (3). It is worth noting that without using STS
scores, training data can be acquired more easily.

3.3 Mining to Extract Triplets
The original dataset only has IEs, the sentences
with IE and their correct and incorrect paraphrases.
To extract triplets for our idiomatic-aware training
we use a semantic meaning miner. We use batch
negatives approach that leverages the other samples
present in the same mini-batch for serving as nega-
tive instances. However, not all negatives in a batch
are useful for our training. Thus, we introduce a
special preprocessing step in our method.

Relabel Training Data For a triplet to be valid, it
must meet certain requirements. We first categorize
sentences into different groups. Each group con-
tains a sentence with the IE (s), its correct (c) and
incorrect (i) paraphrases, such as examples in Table
2. New labels will be assigned in each group based
on IEs and their paraphrases. Our approach assigns
identical labels to sentences with the same meaning
(original sentence and correct paraphrases). Firstly,
s and c must have the same label, which means
they represent the same meaning. Secondly, each i
must have different labels and differ from the label
of s and c, which means they represent different
meanings.

It also needs labels in different groups to be dis-
tinct to others. For example in Table 2, as sentences
with index 4 and 5 are a pair of s and c, they are
assigned with the same label en3. Other sentences
in Group 2 are assigned different labels because
they are incorrect paraphrases. The labels in Group
2 are distinct from labels in Group 1.

In this way, a triplet can be acquired easily since
anchor, positive are sentences with the same la-
bels, and a negative is a sentence with different
labels.

Selected Multi-negatives Negative instances re-
fer to sentences whose labels differ from the anchor
and positive in a batch. In the case of Multi Nega-
tive Ranking Loss (Sun et al., 2020) with triplet for-
mation, there are multiple negatives [n1, n2, ...nk]
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Group Index Label Instance

1
1 en1 So Aaron faced the same brutal racism other Black players of the era experienced, especially

as the slugger approached Ruth’s IDhomerunID record.
2 en1 So Aaron faced the same brutal racism other Black players of the era experienced, especially

as the slugger approached Ruth’s baseball run record.
3 en2 So Aaron faced the same brutal racism other Black players of the era experienced, especially

as the slugger approached Ruth’s house run record.

2

4 en3 Robinhood is supposed to be the revolutionary trading app that made it possible for the
IDsmallfryID to get together and crush the big boys.

5 en3 Robinhood is supposed to be the revolutionary trading app that made it possible for the
insignificant to get together and crush the big boys.

6 en4 Robinhood is supposed to be the revolutionary trading app that made it possible for the
little fry to get together and crush the big boys.

7 en5 Robinhood is supposed to be the revolutionary trading app that made it possible for the
little kid to get together and crush the big boys.

Table 2: Examples of training data. Sentences that have the same meaning are given the same labels. We treat IE
expressions as a single token and preprocess it as shown. For example, the IE home run is replaced as IDhomerunID.

for each anchor-positive pair, and the objective is
to ensure that the anchor is closer to the positive
than to any of the negatives by a margin.

Lmulti-negative(a, p, [n1, . . . , nk])

=

k∑

i=1

max(d(a, p)− d(a, ni) +m, 0)
(5)

We take the SemEval 2022 task 2B training set as
our source to build our training data. The dataset
comprises approximately 8, 600 annotated exam-
ples in multiple languages, including English and
Portuguese. It was divided into 4,840 training sen-
tences, 739 development sentences, 483 evaluation
sentences and 2,342 test sentences. The original
training data already includes information on cor-
rect and incorrect paraphrases. The context sen-
tences help disambiguate the IE’s meaning. This
annotated data is crucial for training machine learn-
ing models to detect idiomatic expressions in varied
linguistic contexts, facilitating multilingual natural
language understanding and processing.

After relabeling, the training dataset will be a list
of sentences with their corresponding label. We do
not shuffle the training data to maintain its order,
as sentences that belong to a triplet are adjacent in
the training set. The batch size is set to 64, which
is a balance between easy training and ensuring a
sufficient number of sentences to build triplets.

However, not all negatives contribute equally to
our learning. Some triplets may already satisfy the
constraint (easy triplets), such as triplets with neg-
atives that are sentences from other groups. They
provide little to no information of IEs understand-
ing for the model to learn from.

Mine Triplets In our methods, a semantic simi-
larity miner calculates Euclidean distance between
all possible pairs of embeddings in a batch and se-
lects according to its similarity margin. The miner
similarity margin is the difference between the
anchor-positive distance and the anchor-negative
distance. It is also a hyperparameter in our method.
The miner select the triplets that violate the miner
similarity margin to make the model learn nuanced
differences between figurative and literal meanings
of IEs. For instance, a triplet of sentences could
include an idiomatic expression as the anchor, its
paraphrases as the positive, and a sentence with a
literal meaning as the negative.

Table 2 illustrates the newly build training data.
In this case, SMWE and S→c can act as anchor
and positive to each other, and S→i can only be
treated as the negative in a triplet. It is worth noting
that SMWE and S→c are interchangeable to form
pairs (ai, pi), which can build more triplets for our
training. For example, in Table 2, with the miner, it
will only take sentences in the same group because
the semantic meanings of different groups are not
similar. In this way, sentences in Group 1 can build
2 triplets with index 1 and 2 being the anchor and
positive interchangeably. Sentences in Group 2 can
build 4 triplets.

3.4 Objective Transformation

In our approach, both SMWE and S→c can serve
as anchors. However, since we assign different
labels to various incorrect paraphrases, no positive
sentence in a group can be associated with any
S→i as the anchor. As a result, there are only two
possible scenarios in our approach.
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If SMWE is the anchor,

sim(SMWE , S→c)− sim(SMWE , S→i) ≤ ma

(6)
if S→c is the anchor,

sim(S→c, SMWE)− sim(S→c, S→i) ≤ mb (7)

The margin m is a predefined fixing value. If we
set ma = mb, then combining Eq. (6) and Eq. (7),
the objective function can be transformed to:

sim(SMWE , S→c)− sim(SMWE , S→i) ≈
sim(S→c, SMWE)− sim(S→c, S→i)

(8)

The similarity measure is symmetric, therefore
sim(SMWE , S→c) = sim(S→c, SMWE). In this
way, our objective function equivalent to:

sim(SMWE , S→i) ≈ sim(S→c, S→i) (9)

Equation (9) approximates the definition of the
good idiomatic aware model in Equation (3). In this
way, by using our specific triplet loss, we can train
a model to be idiomatically aware more directly
without STS scores.

4 Experiment

This section presents the comprehensive methodol-
ogy employed to our model training. We begin by
detailing the experiment implementation, including
the hyperparameter setting, models used, evalua-
tion method, and the overall setup.

4.1 Implementation Details
The method is implemented by using the Trans-
formers (Wolf et al., 2020) and PyTorch Met-
ric Learning (Musgrave et al., 2020) libraries.
Some of the pre-trained models are fetched from
Sentence-transformer library2 and HuggingFace
Model repositories3.

We calculate sentence similarity using the co-
sine similarity of the mean pooling of the last two
hidden layers. Empirically, we set the similarity
margin for the miner to 0.4, and the training loss
margin to 0.3. Given the limited availability of id-
iomatic text data, relying solely on the training sig-
nal from our contrastive objective is insufficient for
learning general semantic representations. There-
fore, we initialize our model with other pre-trained
semantic-aware models (Reimers and Gurevych,

2https://www.sbert.net/docs/pretrained_models.html
3https://huggingface.co/models

2019). Our best model uses a pre-trained multilin-
gual model, ‘paraphrase-multilingual-mpnet-base-
v2’4, and fine-tunes it with our method to fit the
task. It is pre-trained with millions of paraphrases,
so it can represent sentence semantic meanings
well (Reimers and Gurevych, 2019).

4.2 Evaluation

We perform intrinsic evaluation (Reimers et al.,
2016) using the SemEval-2022 task 2 Subtask B5

(Sem2B). We use Spearman’s rank correlation (ρ)
between model-generated scores and human judg-
ment scores to see how well models understand
idioms in sentences. Instead of comparing exact
scores, this method focuses on how the sentence
pairs are ranked based on predicted similarity com-
pared to human judgments. A higher correlation
means the model is better at understanding rela-
tionships, including those involving idioms, even if
the exact predicted scores themselves aren’t always
perfect matches.

4.3 Comparative Analysis

We compare our method with well-performed Se-
mantic Textual Similarity models and recent large
language models (LLMs). Some training-based
methods are from SemEval-2022 task 2 Fine Tune
solutions (Madabushi et al., 2022). Here are brief
descriptions:

YNU-HPCC (Liu et al., 2022) is the previous best
method, which uses contrastive learning ap-
proaches in sentence representation. However,
it treats negatives in a batch equally.

drsphelps (Phelps, 2022) introduces a method for
improving idiom representation in language
models by incorporating idiom-specific em-
beddings using BERTRAM into a BERT sen-
tence transformer.

baseline is the SemEval task’s baseline results. It
is fine-tuned using multilingual BERT (Devlin
et al., 2019) and adding single tokens for each
MWE in the data.

GTE large 6 is a powerful text embedding model
trained with multi-stage contrastive learning,
delivers impressive performance across NLP

4https://huggingface.co/sentence-
transformers/paraphrase-multilingual-mpnet-base-v2

5https://codalab.lisn.upsaclay.fr/competitions/8121
6https://huggingface.co/thenlper/gte-large
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Method Model Size Subset AllIdiom STS
YNU-HPCC 183M 0.428 0.664 0.665

drsphelps 420M 0.412 0.819 0.650
baseline 110M 0.399 0.596 0.595

GTE large 334M 0.236 0.806 0.465
E5 large 334M 0.252 0.807 0.514
LLama2 13,000M 0.171 0.486 0.399
Our best 558M 0.548 0.716 0.690

Table 3: Test results of Task 2 on Spearman’s rank cor-
relation coefficient between the two sets of STS scores.

and code tasks despite its modest size (Li et al.,
2023).

E5 large 7 uses weakly-supervised contrastive pre-
training for text embeddings that achieves ex-
cellent for general-purpose text representation
(Wang et al., 2022).

LLama2 (Touvron et al., 2023) achieved excellent
performance in a series of NLP tasks. We
select the LLama2-13B for comparison.

5 Results and Analysis

In this section, we report results and analyze them
in different settings.

5.1 Overall Results

Table 3 demonstrates that our method outperforms
all other models both overall and in the Idiom Only
subset. The "STS only" score refers to the per-
formance of systems on Semantic Text Similarity
data that does not necessarily contain idioms. In
contrast, the "Idiom only" score pertains to the
performance on idiom STS data. "All" represents
the overall performance of a model across the en-
tire dataset. In the Idiom Only subset, our method
achieves a score of 0.548, which is higher than the
score of the next best model, YNU-HPCC (0.428).
In the overall performance, it achieves a score of
0.690, exceeding the score of the next best model,
YNU-HPCC (0.665). In the STS subset, drsphelps
achieves the highest score of 0.819. These results
suggest that our method is a powerful and effec-
tive idiom-aware text embedding model that can be
used for a variety of idiomatic expressions related
NLP tasks.

GTE large and E5 large both show a similar
pattern of lower performance in the Idiom task
(0.236 and 0.252, respectively) but strong results
in the STS task (0.806 and 0.807, respectively).

7https://huggingface.co/intfloat/e5-large

Language
Subset

All
Idiom Only STS Only

EN 0.560 0.759 0.757
PT 0.570 0.657 0.707
GL 0.515 - 0.515
3L 0.548 0.716 0.690

Table 4: Our test results of Task 2 on Spearman’s rank
correlation coefficient in English (EN), Portuguese (PT),
and Galician (GL) separately. 3L is the combination of
3 languages.

Their overall scores (0.465 and 0.514, respectively)
suggest that while they are proficient in semantic
textual similarity, their capacity to handle idiomatic
expressions is not as developed. LLama2 has the
lowest scores across all three categories, with a
particularly low score for Idiom (0.171). It reveals
a surprising lack of ability to represent idiomatic
expressions for such recent general large language
model.

5.2 Performance on Different Languages

Method Lang(s) Idiom STS ALL

drsphelps

EN 0.486 0.834 0.764
PT 0.464 0.791 0.731
GL 0.286 - 0.286
3L 0.412 0.819 0.650

E5 large

EN 0.242 0.919 0.607
PT 0.276 0.646 0.551
GL 0.247 - 0.247
3L 0.252 0.807 0.514

LLama2

EN 0.156 0.512 0.391
PT 0.206 0.496 0.510
GL 0.185 - 0.185
3L 0.171 0.486 0.399

Table 5: Spearman’s rank correlation coefficients for
drsphelps, E5 large, and LLama2 methods across id-
iomatic only, STS only, and overall results in English
(EN), Portuguese (PT), Galician (GL), and their combi-
nation (3L).

The results in Table 4 show that our best model
performed well on Sem2B and in all three lan-
guages. The best results were achieved, with over-
all ρ values of 0.757 for English, 0.707 for Por-
tuguese, and 0.515 for Galician. The best overall
results on Sem2B were achieved for English, and
the best Idiom Only score was achieved for Por-
tuguese. There is no STS-only score for Galician in
the test set. The models performed best on English,
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Model
Subset

All
Idiom Only STS Only

Original
roberta-base 0.184 0.626 0.492

x-r-large 0.138 0.284 0.444
p-v2 0.225 0.838 0.532

After Training
roberta-base 0.454 0.622 0.613

x-r-large 0.484 0.465 0.639
p-v2 0.548 0.716 0.690

Table 6: Test results across three models roberta-
base, xlm-roberta-large (x-r-large) and paraphrase-
multilingual-mpnet-base-v2 (p-v2) before and after
training.

followed by Portuguese and Galician. This is due
to the fact that there is more training data available
for English than for Portuguese or Galician. The
results also show that the models were able to gen-
eralize well, even when the amount of training data
was limited. For example, the models achieved ρ
values of 0.707 and 0.515 for Portuguese and Gali-
cian, even though the training data for these two
languages was smaller than the training data for
English. Compared to other methods in Table 5,
our model excels particularly in handling idiomatic
expressions, outperforming other models in the Id-
iom Only subset. Additionally, while drsphelps and
E5 large show strong results in the STS subset, our
model maintains a balanced performance across all
datasets, demonstrating its robustness.

5.3 Impact of Our Training

Table 6 presents comparative performance re-
sults of three language models, roberta-base (Liu
et al., 2019b), xlm-roberta-large (Conneau et al.,
2020) (x-r-large) and paraphrase-multilingual-
mpnet-base-v2 (p-v2), across three different sub-
sets of data: Idiom Only, STS Only, and All. The
first two models are widely used language models
with general and multilingual properties, respec-
tively. The third model is the base model we used
in our best model. The results are split into two
categories: ‘Original’, which indicates the perfor-
mance before additional training, and ‘After Train-
ing’, showing the performance post-training.

For the Idiom Only subset, the original scores
were 0.184 for roberta-base, 0.138 for x-r-large,
and 0.225 for p-v2. After training, these scores
improved significantly to 0.454 for roberta-base,
0.484 for x-r-large and 0.548 for p-v2. When

looking at the overall performance, the x-r-large
model’s performance originally was 0.444 and in-
creased to 0.639 after training. Similarly, the p-v2
model’s performance was initially 0.532 and rose
to 0.690 after training. In the STS Only subset,
there have been declines at p-v2 from 0.838 to
0.716. It is because our training only focuses on
improving idiom representation, and it may slightly
sacrifice the performance of specific fully-trained
models.

The size of our model’s parameters is slightly
larger than most, but it significantly outperforms
others, demonstrating the effectiveness of our pro-
posed method beyond just using a larger model. As
shown in Table 4, our method achieves superior
results in idiomatic representation even when com-
pared with implementations using the same model
sizes.

The results in Table 7 showcase that as the num-
ber of epochs increases, the overall performance
as well as the performance on the "Idiom Only"
subset generally improves. This suggests that the
model is learning and improving its IE understand-
ing ability during our training. The performance on
the "Idiom Only" subset starts very low at epoch 0,
with an accuracy of 0.225, which is expected since
the model has not learned much IE representation
yet. There is a significant improvement between
epoch 0 and epoch 8, with the score nearly dou-
bling to 0.499. The improvement in performance
starts to plateau after epoch 10, with only minor
increases observed at epochs 15 and 25. The "STS
Only" subset starts with a high performance even
at epoch 0, with an accuracy of 0.838. This is be-
cause the model has already been pre-trained with
STS tasks. Unlike the "Idiom Only" subset, the per-
formance on the "STS Only" subset decreases as
the number of epochs increases, dropping to 0.716
by epoch 25. This could indicate that the model
is becoming more specialized in the idiom task at
the expense of the STS task. In summary, while
the model is improving in its ability to understand
idioms with more training, this comes at the cost
of its performance on STS tasks. This trade-off can
be addressed by adjusting the training process.

In summary, our models were able to generalize
well to different settings, even when the amount of
training data was limited. This suggests that the
models are learning to capture the underlying prop-
erties of idiomatic expressions, rather than simply
memorizing a list of idiomatic expressions.
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Epoch
Subset

All
Idiom Only STS Only

0 0.225 0.838 0.532
8 0.499 0.785 0.670
10 0.531 0.740 0.682
15 0.539 0.740 0.688
25 0.548 0.716 0.690

Table 7: Test Results with different training epochs by
using same p-v2 model.

6 Discussion

The proposed model for training requires the iden-
tification of idiomatic expressions (IEs) in each
sentence beforehand. This step is crucial for reduc-
ing the difficulty of the training process. Without
identifying the IEs beforehand, the model may not
perform optimally, and its accuracy may be com-
promised. Therefore, it is essential to ensure that
the text has IEs identified to achieve the best re-
sults.

7 Conclusion

Idiom representations have always been a challenge
due to the non-compositional nature of idiomatic
expressions. The performance of downstream tasks,
such as translation and simplification, is dependent
on the quality of the representations. This paper
proposes a new method to train language models
using adaptive contrastive learning with triplets and
resampling miners. In this way, our method can
build a better optimization objective, which makes
the training very efficient.

The proposed method, evaluated on the id-
iomatic semantic text similarity tasks, significantly
outperforms previous methods. With limited id-
iomatic text data, the sole training signal of the
contrastive objective is not sufficient to learn gen-
eral semantic representations. Therefore, the model
is initialized with other pre-trained semantic-aware
models. A series of base models in different sizes
and pre-training strategies are trained in the pro-
posed training loss. The best models achieve new
state-of-the-art results with a significant improve-
ment in overall over the previous best in the evalu-
ation task.

8 Future Work

In the future, we plan to use the idiomatic-aware
model in other NLP tasks that require sensitivity

to idiomatic expressions, such as machine transla-
tion. Additionally, we aim to improve the model’s
training by adding more supervision, which will
help it focus on contextual information. This will
allow the model to better understand multiword
expressions based on different contexts.

9 Limitations

In order to train our model, we require triplets that
consist of three distinct parts: a sentence that con-
tains IEs, a correct paraphrase of those IEs, and an
incorrect paraphrase of those IEs. The quality of
triplets is crucial to the development of our model
and requires intensive human expert involvement
to ensure accuracy.
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