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Abstract

Videos are more informative than images be-
cause they capture the dynamics of the scene.
By representing motion in videos, we can cap-
ture dynamic activities. In this work, we intro-
duce GPT-4 generated motion descriptions that
capture fine-grained motion descriptions of ac-
tivities and apply them to three action datasets.
We evaluated several video-text models on the
task of retrieval of motion descriptions. We
found that they fall far behind human expert
performance on two action datasets, raising
the question of whether video-text models un-
derstand motion in videos. To address it, we
introduce a method of improving motion un-
derstanding in video-text models by utilizing
motion descriptions. This method proves to
be effective on two action datasets for the mo-
tion description retrieval task. The results draw
attention to the need for quality captions involv-
ing fine-grained motion information in existing
datasets and demonstrate the effectiveness of
the proposed pipeline in understanding fine-
grained motion during video-text retrieval.

1 Introduction

Since the introduction of large-scale use of con-
trastive learning for image and text representa-
tion (Radford et al., 2021), various efforts have
been made to build video-text models (Ni et al.,
2022; Luo et al., 2022; Fang et al., 2021; Wang
et al., 2021) to relate video to text. Videos pro-
vide a way to access the dynamics or motion in the
scene that a single image cannot capture (Fermüller
et al., 2018; Fermüller and Maynord, 2022; Dessa-
lene et al., 2023). Motion in videos could be due
to the action depicted, the effect of camera move-
ment (for example, in egocentric action videos), or
a combination of camera motion and action (Ogale
et al.).

We investigate how existing video-text models
perceive motion due to the action. For this work,
we define motion in action videos as the movement

of actors or the movement of actors and objects.
The challenge is the lack of datasets that explic-
itly describe video motion. Figure 1 shows some
examples of captions from ActivityNet (Krishna
et al., 2017) and the MSR-VTT (Xu et al., 2016)
dataset. Although verbs are included in captions of
multimodal datasets like ActivityNet, MSR-VTT,
Howto100M (Miech et al., 2019), Spoken Mo-
ments in Time (Monfort et al., 2021), a detailed
description of motion is not available. This calls
for the need to have an exclusive benchmark to eval-
uate how video-text models interpret and respond
to motion descriptions.

We use the human action datasets Kinetics-
400 (Kay et al., 2017), UCF-101 (Soomro et al.,
2012), and HMDB-51 (Kuehne et al., 2011) to cir-
cumvent the lack of quality annotations of motion
descriptions. The advantage of action datasets is
that for every action label, we can obtain the cor-
responding characteristic motion of the action by
using large language models like GPT-3 (Brown
et al., 2020) and GPT-4 (OpenAI, 2023), which, to
a large degree, produce accurate descriptions of the
all the actions in the datasets. Figure 2 shows some
examples of the descriptions generated by GPT-4
and corresponding videos and original captions.

We evaluate several video-text models on the
motion description retrieval task using the HMDB-
51 and the UCF-101 datasets. We compare against
human performance and show that all models fall
far behind, raising questions about the design of
video-text models and the role of quality captions
in training better models to capture human motion.
To address this question, we propose a method de-
scribed in section 4 to investigate if providing better
motion description captions helps video-text mod-
els understand fine-grained motion descriptions.
To validate this fairly, we compare our method
with video-text models that similarly initialize their
video encoder and text encoder with pre-trained
CLIP (Radford et al., 2021) weights so that undue
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Figure 1: Example captions from ActivityNet, MSR-VTT, and our own GPT-4 generated fine-grained motion
description for Kinetics-400 classes. Our generated motion descriptions solely describe the motion of the action,
whereas other datasets typically use verbs to describe the scene.

performance gain is not obtained by pre-training on
video-text data. Our results show that our proposed
pipeline is very effective in learning fine-grained
motion descriptions on both the UCF-101 dataset
and the HMDB-51 dataset. In summary, our contri-
butions are:

1. Creating a dataset of human motion descrip-
tions for three action datasets.

2. Evaluating current video-text models repre-
senting motion description in videos on the
UCF-101 and HMDB-51 datasets against hu-
man expert evaluation.

3. Introducing a method to validate the need for
better captioning in video-text models to un-
derstand motion descriptions and demonstrate
the method’s effectiveness in capturing fine-
grained motion descriptions.

2 Background and related work

Multimodal datasets and video understanding
tasks: Howto100M and Spoken moments in time
are popular video caption datasets used in pre-
training video-text models. ActivityNet, MSR-
VTT, DiDeMo (Hendricks et al., 2018), VaTex
(Wang et al., 2019) are representative datasets used
for video-language alignment tasks like video-to-
text retrieval or text-to-video retrieval. To our

knowledge, we are the first to introduce fine-
grained motion descriptions in video datasets,
which is not the focus of existing datasets. We intro-
duce motion descriptions on Kinetics-400, HMDB-
51, and UCF-101 datasets.

Video-text models: Various efforts have been
made to build video-text models (Luo et al., 2022;
Fang et al., 2021) mainly for video-to-text retrieval
tasks. These models have developed mechanisms
based on CLIP and extended them to video frames.
Video-text models (Wang et al., 2021; Ni et al.,
2022; Wu et al., 2023; Rasheed et al., 2023; Mo-
meni et al., 2023a) have also been used for gen-
eral video recognition both in the supervised and
the zero-shot action recognition setting. (Momeni
et al., 2023a) introduced verb-focused contrastive
training to improve better verb reasoning by learn-
ing with hard negative verb examples. (Park et al.,
2022) introduced contrast sets to identify pitfalls
in video-text models and recommended the need
for fine-grained action understanding to tackle hard
negatives in contrast sets. We differ from them as
we utilize motion descriptions, which has its unique
challenge. We compare our video-text model with
Vanilla CLIP (Radford et al., 2021), XCLIP (Ni
et al., 2022), Text4Vis (Wu et al., 2023) and Vi-
fiCLIP (Rasheed et al., 2023), primarily because
they utilize the pre-trained CLIP for fair evaluation
purposes.
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3 Benchmark

Designing a motion description benchmark:
We perform experiments on Kinetics-400, UCF-
101, and HMDB-51 datasets. For each class in
these action datasets, we prompt GPT-4 to pro-
duce the characteristic motions of the action (given
by the caption annotation). Figure 2 shows the
overall process of obtaining the motion descrip-
tions. More details about the dataset statistics
and generation are described in Appendix D. The
dataset can be accessed at https://github.com/
chinmayad/motiondescriptions.git

We conducted a user study to evaluate the qual-
ity of generated motion descriptions. Following
(Karpinska et al., 2021), which questions the use
of Amazon Mechanical Turk for such studies, we
conducted this study with expert graduate student
volunteers who have taken courses in computer
vision and natural language processing. The evalu-
ators were shown different questions in a training
session. All the evaluators were trained with dif-
ferent questions and explained the project’s overall
goal and how they contributed to it. We asked two
volunteer graduate students of different ages and
ethnicities to participate in this study.

The following definitions were given.

1. Conciseness: Conciseness is related to the
length and non-redundancy of the generated
text.

2. Hallucinations: Hallucinations are related to
generating physically non-plausible motion
descriptions.

3. Relevance: Relevance refers to how much cor-
respondence there is between the objects, ac-
tion, and motion description.

4. Correctness: Correctness refers to how accu-
rate the motion description is.

5. Harmfulness: Is there any objectionable or
harmful content in the generated motion de-
scription?

Each of the above attributes is evaluated on a 5-
point Likert scale. We report the mean 5-point Lik-
ert score and IAA%, the inter-annotator agreement
that measures the percentage of descriptions where
annotators gave the same rating. We asked the vol-
unteers to rate the generated motion description

Method Mean IAA%
Conciseness 3.86 47.5

Hallucinations 1.12 19.35
Relevance 3.4 87

Correctness 3.92 72
Harmfulness 1 100

Table 1: Evaluation of the quality of generated motion
descriptions

with the above attributes for each motion descrip-
tion in each dataset. The study results are given in
table1.

We noticed that many of the actions in the UCF-
101 and HMDB-51 datasets involve objects, and the
retrieval task is easier when an object is present in
the generated motion description. For this reason,
we also created another set of motion descriptions
in which we replaced the names of objects with the
generic word “object,” which made the task slightly
more challenging.

4 Proposed method

This section describes our proposed video-text
model that incorporates the textual motion descrip-
tion. A typical vision-language model like CLIP
is usually trained using contrastive learning loss or
its variations (Miech et al., 2020; Momeni et al.,
2023a). The quality of representations learned from
the video-text model (Momeni et al., 2023b) will
depend on the captions used during pre-training.
Since no large video-caption dataset containing
motion descriptions exists, we can’t directly train
a video-text model using contrastive learning. We,
therefore, propose a method that utilizes the rich
linguistical understanding of motion in actions
from GPT-4 to give us the captions required for
training. Our approach has two parts: Generating
the required motion descriptions of actions using
GPT-4 described in section 3 and training video-
text models to utilize these motion descriptions
described in section 4.2.

4.1 Problem setting

The model is trained on kinetics-400 as source
dataset Ds and tested on target datasets Dt:
UCF101 and HMDB51. The source dataset Ds

consists of videos xs and labels Ls belonging to
classes Cs. The target dataset Dt consists of videos
xt and labels Lt belonging to classes Ct. We use
a zero-shot setting such that Cs ∩ Ct = ∅. Let the
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Figure 2: Schematic representation of the generation of motion descriptions in existing action datasets.

Figure 3: Schematic representation of our approach encoding motion description in video-text model pipeline:
We integrate motion information as classifier weight in a supervised training paradigm. We finetune the image
encoder to integrate the motion information while classifying videos in the kinetics400 dataset.

generated motion descriptions from GPT-4 for Ls

and Lt be Ms and Mt respectively.

4.2 Architecture setting
Figure 3 gives an overview of our approach. While
training, we freeze the text encoder from CLIP and
fine-tune the visual encoder to learn the motion
representation. While testing, motion descriptions
are passed through the network to obtain classifier
weights. Given a video from the target dataset, we
obtain the logits indicating the probability that a
video matches the corresponding motion descrip-
tion. A detailed discussion on training, testing, and
implementation details is given in Appendix A.

4.3 Theoretical justification
We provide a theoretical justification for our pro-
posed approach. Consider a large-scale dataset
D containing visual samples with ground-truth
labels. Denoting our labeled dataset D =
(x1, y1), (x2, y2), ..., let X represent input data
x1, x2, ... and Y represent the labels y1, y2, ...

A typical supervised learning framework
with a linear predictor involves minimizing
L(XTW,Y ) + Sigma(W ) where W contains the
parameters to be learned, Sigma is the regulariz-
ing function, and L is the loss function. Here, W is
learned independently on D and will not be helpful
for new classes or other downstream datasets. As
proposed in (Romera-Paredes and Torr, 2015), to
make the approach tractable for zero-shot learning,
we need to make W so it carries valuable infor-
mation for new classes. The authors of (Romera-
Paredes and Torr, 2015) introduce

W = V ST , (1)

which we refer to as equation 1, where S is the
signature of classes obtained from attributes of
classes in D, and V is a new set of parameters
to be learned.

For our scenario, we want to fine-tune the video-
text model on the Kinetics dataset so that it can
learn the motion description.
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Let us denote VE as the visual encoder
from CLIP or any pre-trained video-text model.
The supervised learning formulation to learn
V ∗
E and W ∗

proj as in (Wu et al., 2023) can
now be represented in minimizing cross-entropy
H(y|σ(Wproj .VE(x))) referred to as equation 2,
where H(p ∗ |p) stands for the Cross Entropy be-
tween the predicted distribution p and the ground-
truth distribution p∗. σ denotes the softmax op-
eration, Wproj ∈ Rc×d denotes the linear projec-
tion matrix for classification where c is number of
classes and d is the dimension of embedding from
VE . The above formulation in equation 2 is a stan-
dard visual feature transferring paradigm, where
the visual encoder VE . and the projection matrix
(classifier) Wproj are learned simultaneously. We
need to introduce a motion description to make
the formulation in equation 2 learn the motion de-
scription and be useful for recognizing new motion
descriptions for zero-shot settings.

Inspired by equation 1 where W = V ST , we
introduce motion description by making Wproj the
signature of classes S, and VE the new set of pa-
rameters of the visual encoder to be learned. In
(Romera-Paredes and Torr, 2015) S was obtained
from an attribute matrix, and in our work, we ob-
tain Wproj as embeddings of a motion descriptor
obtained from a CLIP text encoder.

Method Object Masked Object
Vanilla CLIP 25.92 23.33

Text4Vis 51.23 33.80
XCLIP 52.37 32.01

ViFiCLIP 52.70 34.76
Our Method 58.46 47.80

Human estimate 98 98

Table 2: Evaluation of percentage accuracy in motion
description retrieval task on UCF-101 dataset.

5 Results

Task: For the target datasets UCF-101 and HMDB-
51, the input is a video and the list of generated
motion descriptions for all the classes in the dataset.
The video-text model predicts the closest motion
description that describes the video. The metric
used is the percentage accuracy of correctly pre-
dicted motion descriptions.

The models we evaluate are Vanilla CLIP (Rad-
ford et al., 2021), XCLIP (Ni et al., 2022), Text4Vis
(Wu et al., 2023) and VifiCLIP (Rasheed et al.,

Method Object Masked Object
Vanilla CLIP 25.26 16.67

XCLIP 29.35 19.35
Text4Vis 34.12 24.93
VifiCLIP 36.20 28.9

Our Method 39.24 28.41
Human estimate 97.5 96

Table 3: Evaluation of percentage accuracy in motion
description retrieval task on HMDB-51 dataset.

2023). Details about the models are given in Ap-
pendix B.

Human estimated performance: We sampled
five videos randomly from each class in UCF-101
and HMDB-51. A human expert was asked to se-
lect the motion description that correctly describes
the video from the list of descriptions generated
by GPT4. Human experts are graduate students
who have taken computer vision and NLP graduate
courses and volunteered for this study.

Table 2 reports the performance of various ap-
proaches on the UCF101 dataset. Our proposed
method beats previous methods by over 5% for mo-
tion descriptions containing the names of objects
involved and by over 10% for motion descriptions
where the word “object” replaces the object’s name.
We noticed that all the video-text models perform
very poorly compared to human-estimated perfor-
mance. We also see that video-text models have a
strong bias toward nouns. When the specific name
of the object involved is not used, there is an av-
erage 10% drop in performance for all methods,
indicating the strong bias video-text models have
for objects. Table 3 reports the performance of var-
ious approaches on the HMDB-51 dataset. Similar
trends are found in the HMDB-51 dataset.

6 Conclusion

We introduced a benchmark to understand how mo-
tion is understood in video-text models. We high-
lighted the limitations in obtaining quality annota-
tions describing motion in video. We also showed
that the performance of video-text models for re-
trieving motion descriptions is poor compared to
human expert performance. Our proposed method
circumvents some of these issues and improves
over other video-text models. While designing
video-text models, we leave it to future work to
build better models to capture motion and ignore
the biases due to the object or the scene.
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7 Limitations

We use a CLIP text encoder trained on image-text
data to represent motion descriptions. This is not
the best thing to do as, in practice, the CLIP text
encoder would never have encountered the dynam-
ics of videos while training. However, we hope the
method works if we replace this CLIP text encoder
with any other video-text model text encoder. An-
other limitation is that we trained on the Kinetics-
400 dataset and tested on the UCF-101 and HMDB-
51 datasets. As shown in the results section, the
presence of an object or scene can often impact
the performance during the retrieval task on these
datasets. Furthermore, since we fine-tune image
encoders on the source dataset, the possibility of
overfitting the source dataset exists, leading to poor
transferability on another target dataset. There are
also potential biases in generated descriptions by
GPT-4, and human quality estimation is expensive.
For our experiments, volunteers spent a total of 16
hours.

8 Ethical Considerations

We aim to highlight the neglected aspect of mod-
eling motion in video-text models. We think in-
corporating motion descriptions and reducing the
biases of video-text models to objects and scenes
positively impacts the design of video-text models.
However, there could be a potential risk introduced
in our method, as we rely on GPT-4 to provide us
with motion descriptions of actions.
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A Implementation details of our method

A.1 Problem Setting:

The model is trained on kinetics-400 as source
dataset Ds and tested on target datasets Dt: UCF-
101 and HMDB-51. The source dataset Ds consists
of videos xs and labels Ls belonging to classes Cs.
The target dataset Dt consists of videos xt and la-
bels Lt belonging to classes Ct. We use a zero-shot
setting such that Cs ∩ Ct = ∅. Let the generated
motion descriptions from GPT-4 for Ls and Lt be
Ms and Mt respectively.

A.2 Training

Motion descriptions Ms are passed through a
frozen CLIP text encoder to obtain the class pro-
totypes of Ls. Our intuition is that these class pro-
totypes can be approximated as classifier weights
of the supervised video classifier. The concept
takes its motivation from the work of (Nukrai et al.,
2022; Liang et al., 2022), which shows that text em-
beddings from CLIP and vision embeddings from
CLIP are very similar and fall within a ball of small
radius. The obtained CLIP embeddings of motion
descriptions from the frozen text encoder would
approximately translate to visual class prototypes
if obtained visually. With that intuition, we use the
class prototypes from the frozen CLIP text encoder
as the classifier weights of a visual classifier.

Given a video vs from the source dataset Ds, T
frames are sampled uniformly. The sampled frames
are passed through a CLIP pre-trained Image en-
coder and temporally pooled to obtain a visual fea-
ture of the video. Then, the logits are obtained
by computing the dot product of this video feature
with the transpose of the classifier weights Ws. The
model is trained using cross-entropy loss over log-
its and labels Ls, and the parameters of the CLIP
image encoder are updated.

A.3 Testing

The motion descriptions Mt are passed through
the network to obtain classifier weights Wt. Given
a video vt from the target dataset Dt, we obtain
the logits indicating the probability that a video
matches the corresponding motion description Mt.

A.4 Experimental details

Our model uses a VIT-B/16 pre-trained CLIP text
and image encoder. We use eight frame samples
per video. The CLIP text encoder was kept frozen
during the training, and the CLIP image encoder

was fine-tuned. We train the model for 10 epochs
on the Kinetics-400 dataset with a learning rate of
0.00005 with a batch of the size of 20 on 4 NVIDIA
RTX A5000 for 40 GPU hours. We use a learning
warm step of 5 and a weight decay of 0.2. We use
the Adam optimizer with the cross-entropy loss for
training on the Kinetics dataset with a clip ratio
of 0.1. Here, we describe more details about our
baselines. We report the best results after running
experiments on 5 runs.

A.5 Temporal modeling
We experimented with adding a 6-layer temporal
transformer on the video head of the VIT-B/16
transformer. The results are shown below in table
4 and 5. Contrary to our initial hypothesis, having
a temporal transformer didn’t improve the perfor-
mance over mean average pooling.

Method Object Masked Object
Temporal

transformer
57.02 44.4

Mean Average
Pooling

58.46 47.80

Table 4: Evaluation of percentage accuracy in motion
description retrieval task on UCF-101 dataset.

Method Object Masked Object
Temporal

transformer
37.53 26.84

Mean Average
Pooling

39.24 28.41

Table 5: Evaluation of percentage accuracy in motion
description retrieval task on HMDB-51 dataset.

A.6 Does fine-tuning cause overfitting?
As in any fine-tuning method, there is a risk of
overfitting the source dataset. We performed exper-
iments to see if overfitting is an issue. Based on our
experiments, the degree to which the model over-
fits is negligible compared to the method’s overall
improvement. Table 6 and Table 7 below show the
accuracies at different epochs of fine-tuning the
vision encoder.

B Baselines

B.1 Vanilla CLIP:
We use VIT-B/16 pre-trained CLIP text and im-
age encoder obtained from (Radford et al., 2021)
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Number of Epochs Object Masked Object
Epoch 5 57.50 46.59
Epoch 10 58.46 47.80
Epoch 20 58.2 47.02

Table 6: Evaluation of percentage accuracy in motion
description retrieval task on UCF-101 dataset.

Number of Epochs Object Masked Object
Epoch 5 38.25 27.82
Epoch 10 39.239 28.41

Table 7: Evaluation of percentage accuracy in motion
description retrieval task on HMDB-51 dataset.

and temporally average the frame outputs while
evaluating HMDB-51 and UCF-101 datasets.

B.2 XCLIP

We use the XCLIP (Ni et al., 2022) model and
code available from https://huggingface.co/
docs/transformers/model_doc/xclip. We use
"microsoft/xclip-base-patch16-zero-shot" model
from huggingface.co while evaluating the HMDB-
51 and UCF-101 datasets.

B.3 Text4Vision

We use the VIT-B/16 base architecture with 8
frames per video. We use pre-trained weights
from https://github.com/whwu95/Text4Vis/
tree/main

B.4 VifiCLIP

We use the VIT-B/16 architecture and obtain the
model and code from the official implementation
of VifiCLIP (Rasheed et al., 2023) from https:
//github.com/muzairkhattak/ViFi-CLIP.

C Dataset

C.1 Kinetics-400

Kinetics-400 is a large-scale dataset containing 400
classes downloaded from YouTube. It has 240K
training videos and 20K validation videos. Some
videos are missing if the YouTube user has removed
them.

C.2 UCF-101

The UCF-101 human action dataset consists of 13
K YouTube videos belonging to 101 classes. We
report results on full classes on one split provided
by the authors.

C.3 HMDB-51
It contains approximately 7K videos belonging to
51 classes. We report results on the split provided
by the authors.

D Motion Description Generation

We use the GPT -4 API to obtain motion descrip-
tions. The generated motion descriptions for the
three datasets are provided as supplementary data
along with this submission.

We noticed from experiments that we needed
to provide some example motion descriptions in
the prompt to obtain motion descriptions in the for-
mat we are interested in. The prompt we used is
“Characteristic motion of air drumming action is:
doing rhythmic, exaggerated hand and arm move-
ment. The characteristic motion of abseiling is:
doing a controlled descent down a vertical drop.
The characteristic motion of swing dancing is: do-
ing energetic, bouncy movements with lots of spins,
kicks, and lifts. Similarly, provide the characteristic
motions of action X.”.

D.1 GPT-4 generated motion descriptions
quality control

5 volunteers evaluated the generated motion de-
scriptions for pairwise comparison. The pairwise
comparison included selecting the best one among
two generated motion descriptions. A vote of ma-
jority was used to select the final motion descrip-
tion. Volunteers with diverse experience and age
groups were selected to reduce bias.

D.2 Dataset statistics
The kinetics-400 dataset consists of 400 classes,
the UCF-101 human action dataset consists of 101
classes and HMDB-51 consists of 51 classes. We
generate a characteristic motion description for
each class in all three datasets. For UCF101 and
HMDB-51, we mask objects manually after obtain-
ing the motion description. Table D.2 provides the
motion description dataset statistics.
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Dataset Number of
videos

Number of
unique motion
descriptions

Average number
of verbs per

motion description

Average number
of words per

motion description

Number of
verbs in the

motion descriptions
Kinetics 400 246000 400 3.4 19 1371

UCF 101 13320 101 3.2 19 325
HMDB 51 6849 51 3.2 17 164

Table 8: Statistics of motion description dataset
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