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Abstract

Selective prediction minimizes incorrect pre-
dictions from vision-language models (VLMs)
by allowing them to abstain from answering
when uncertain. However, when deploying a
vision-language system with low tolerance for
inaccurate predictions, selective prediction may
be over-cautious and abstain too frequently,
even on many correct predictions. We intro-
duce ReCoVERR, an inference-time algorithm
to reduce the over-abstention of a selective
vision-language system without increasing the
error rate of the system’s predictions. When
the VLM makes a low-confidence prediction,
instead of abstaining ReCoVERR tries to find
relevant clues in the image that provide addi-
tional evidence for the prediction. ReCoVERR
uses an LLM to pose related questions to the
VLM, collects high-confidence evidences, and
if enough evidence confirms the prediction the
system makes a prediction instead of abstain-
ing. ReCoVERR enables three VLMs (BLIP2,
InstructBLIP and LLaVA-1.5) to answer up
to 20% more questions on the VQAv2 and A-
OKVQA tasks without decreasing system ac-
curacy, thus improving overall system reliabil-
ity. Our code is available at https://github.
com/tejas1995/ReCoVERR.

1 Introduction

Instruction-tuned vision-and-language models
(VLMs) (Dai et al., 2023; Liu et al., 2023; Lau-
rençon et al., 2023; Bai et al., 2023) have achieved
strong accuracy on reasoning benchmarks, which
typically require VLMs to produce an answer for
each instance. For downstream use, however, these
systems should abstain from answering when un-
certain (e.g., by saying “I don’t know") (Rajpurkar
et al., 2018). Selective prediction systems (De Ste-
fano et al., 2000; El-Yaniv et al., 2010) aim to bal-
ance the number of predictions made (coverage)
and the error rate on predicted instances (risk).

0Work done by Tejas as part of an internship at AI2.
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…and use the collected visual evidences to verify the VLM’s answer!
Premise: The colors of the 
floor tiles are red and white.
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two tile colors.
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Figure 1: Illustration of ReCoVERR. The VLM predicts
that the floor has two tile colors with low confidence.
Instead of abstaining, ReCoVERR collects reliable and rel-
evant visual evidences related to the question. ReCoVERR
makes salient the evidence that the floor tiles are red
and white, helping to verify the VLM’s original answer.

However, a vanilla selective prediction system
with low tolerance for incorrect predictions will
abstain too frequently to be practical, even when
the model answer may be correct (Whitehead et al.,
2022a). For example, if a user specifies that the
BLIP2 (Li et al., 2023) predictions should be right
at least 90% of the time, vanilla selective predic-
tion will make a prediction for just 4% of A-
OKVQA (Schwenk et al., 2022) questions, with
94% of the correct predictions being abstained on.

We introduce ReCoVERR (Reason by Collecting
Visual Evidences that are Reliable and Relevant),
an algorithm that increases the number of ques-
tions that a selective VLM system can answer con-
fidently while adhering to a specified risk tolerance,
without any additional training. When the VLM
is uncertain about its prediction for a given ques-
tion, instead of abstaining outright, ReCoVERR tries
to verify the prediction by recovering reliable sup-
porting (or contradicting) evidence. This ability is
predicated on two characteristics of VLMs. First,
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VLMs can produce well-calibrated confidence esti-
mates (§ 4.2.1). Second, VLMs can often correctly
and confidently recover information in the image
that entails a low-confidence initial prediction. For
instance, in Figure 1, when asked about the number
of floor tile colors, a VLM (here, BLIP2) correctly
answers “two” but with low confidence: simple
threshold-based abstention would abstain on this
instance. But, when asked to identify the colors of
the floor tiles, the model confidently answers “red
and white”. While it is obvious that “red and white”
entails “two colors”, the VLM was unable to con-
fidently make that inference. Based on these two
insights, ReCoVERR searches for additional visual
evidence by iteratively posing relevant questions
to the VLM, and collecting answers as visual evi-
dence if they are: a) reliable, i.e, the VLM is highly
confident in its answer, and b) relevant to the ques-
tion the VLM is trying to answer in the first place.

We experiment on the VQAv2 and A-OKVQA
visual reasoning tasks using three VLMs: BLIP2,
InstructBLIP and LLaVA-1.5. For all three VLMs,
ReCoVERR substantially increases the number of
questions answered by the selective VLM system,
while keeping system risk under the specified risk
tolerance (Section 5). ReCoVERR is particularly
helpful for BLIP2, which has not been trained on
the target task, by improving coverage by 20% and
recall by 25-30%. Our analysis reveals that the
ability to give accurate confidence estimates, and
high estimates for correct predictions, is crucial
to ReCoVERR’s performance. Further experiments
demonstrate the importance of ensuring evidences
are both reliable and relevant (Section 5.1), and that
ReCoVERR tuned for a single task can be directly
applied to new tasks without further tuning (Sec-
tion 5.3). Our findings suggest that ReCoVERR is a
promising solution towards building more reliable
multimodal reasoning systems.

2 Multimodal Selective Prediction

We consider the task of answering a textual ques-
tion about an image by drawing inferences from
what is visually observed. A vision-language
model (VLM) is given an input x = (I,Q) ∈ X
consisting of an image I and a question Q, and
aims to produce an answer a ∈ A from a closed or
open set of possible answers.

Different from popular benchmarks of this form
which require models to make a prediction for each
instance, we evaluate models on the selective pre-

diction setting, where abstention on individual in-
stances is allowed (De Stefano et al., 2000). A
decision function g, which has access to the image,
question, VLM prediction, and associated confi-
dence1 determines whether the system produces an
answer or abstains (denoted by ∅). The selective
VLM system SVLM : X → A∪ {∅} is defined as:

a = MVLM(x)

SVLM(x) =

{
a, if g(a) = 1

∅, if not g(a) = 0

Prior work (Whitehead et al., 2022a) employs
confidence-based selection, where instead of as-
suming access to a VLM which has been trained
to abstain with explicit supervision, we assume a
VLM that can produce both an answer, as well as
a confidence score for that answer πVLM : A →
[0, 1] that estimates πVLM(a) = P (a|Q, I;MVLM).
Confidence-based selection relies on the confidence
πVLM(a) being higher for correct answers than in-
correct ones, on average. The decision function g
is a simple thresholding function, with a threshold
γ: g(a; γ) = 1{πVLM(a) ≥ γ}. We refer to this
method as vanilla selective prediction.

2.1 Evaluating Selective Predictors
We evaluate selective prediction systems via cov-
erage and risk (El-Yaniv et al., 2010). Given a
labeled evaluation dataset D = {(Ii, Qi, ai)}Ni=1.
Coverage (C) is the percentage of questions in D
where the system chooses to make a prediction.
Risk (R) is the error rate on the questions where
a prediction is made. For a γ-threshold selective
prediction system, these metrics are computed as:

R(γ) =

∑
xi∈D(1− Acc(ai)) · g(ai; γ)∑

xi∈D g(ai; γ)
(1)

C(γ) =
∑

xi∈D g(ai; γ)

| D | (2)

where a lower γ trades off increased coverage for
increased risk. In practice, when deploying a selec-
tive VLM system with an application-specific risk
tolerance r ∈ [0, 1], the system designer would de-
termine an appropriate setting for the hyperparam-
eters of g using a calibration set. For example, if
g is the simple γ-thresholding function, one would
choose γ@r to maximize coverage while being be-
low the risk threshold on the calibration set:

γ@r = argmin
γ∈[0,1]

R(γ) ≤ r

1For brevity, we note arguments for g when relevant.
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If VLM is sufficiently confident, answer. Otherwise, collect 
evidences to verify VLM Hypothesis: The floor has 2 tile colors.
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No

Red and 
white

Yes

VLM Answer

Figure 2: The ReCoVERR algorithm. If the VLM is uncertain in its prediction (1), ReCoVERR tries to verify the VLM
hypothesis by collecting evidences. ReCoVERR undertakes multiple turns of evidence collection, which involves
generating visual evidences by using an LLM to ask questions to the VLM (2), retaining the reliable (3) and relevant
(4) evidences, and checking whether the collected evidence entails the hypothesis (5).

3 ReCoVERR

In practice, reasonable risk tolerance thresholds of-
ten lead to untenable coverage, with many accurate
predictions being discarded. A threshold-selective
BLIP2 (Li et al., 2023) system, for example, an-
swers fewer than 4% of questions in A-OKVQA at
10% risk, but these represent only 6% of questions
for which the model prediction was correct.

We introduce ReCoVERR (Reason by Collecting
Visual Evidences that are Reliable and Relevant),
an algorithm that increases a selective VLM sys-
tem’s coverage while remaining under the given
risk tolerance (Figure 2). For each question Q
for which the VLM predicts an answer a with
πVLM(a) < γ@r, instead of abstaining, ReCoVERR
uses large language models to generate follow-up
questions about the image. These questions are an-
swered by the VLM, and the resulting QA-pair is
added as evidence if it is both reliable—the VLM
confidence in the answer is high—and relevant—
the introduction of the new evidence affects the
downstream confidence in the hypothesized answer
a to Q. If sufficient evidences are collected to con-
fidently entail the hypothesis, ReCoVERR elects to
make a prediction instead of abstaining.

Let D∅ be the subset of test set D where the
selective prediction system would have abstained,
based on the confidence threshold γ@r, and DS be
the set of questions that were answered.

D∅ = {xi ∈ D;πVLM(ai) < γ@r};DS = D\D∅

ReCoVERR aims to answer additional instances
DR ⊆ D∅, while keeping the combined risk of
DS ∪ DR under r. Since risk of DS is already esti-
mated to be r, the risk of DR must also be ≤ r. For
each instance in D∅, ReCoVERR makes an online
decision of whether to answer the question, inde-
pendent of other instances in D∅. Therefore, the
expected risk of any instance xi ∈ DR should be,
at most, r; in other words, the likelihood of each
instance in DR being correct should be ≥ 1−r. For
example, if our system has a specified risk toler-
ance of 20%, ReCoVERR aims to answer additional
questions of which 80% are correct.

Algorithm 1 describes ReCoVERR in detail, in-
cluding all hyperparameters. Given an image I and
a question Q, ReCoVERR begins by generating an
answer a using the VLM MVLM. The VLM also
returns a confidence score πVLM(a) ∈ [0, 1]. If the
confidence is higher than our confidence threshold
for selective prediction γ@r, we can simply return
the answer. If not, we use a model MQA→S that
converts the question-answer pair (Q, a) into a hy-
pothesis statement H. ReCoVERR will now try to
verify this hypothesis by collecting reliable and
relevant visual evidences.

Initialize Evidences from Vision Tools: We
first gather some general information about the
image by invoking a set of vision models, MVis,
that capture visual information in language form
(the specific tools we use in our instantiation of
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Algorithm 1: ReCoVERR Pseudocode
Selective prediction hyperparameters:
r ∈ [0, 1] : Risk tolerance of system
γ@r : VLM conf threshold corresponding to risk r
ReCoVERR Model-based Tools:
MVis: Set of additional vision models that output
information about the image in text form
MQGen: Question generation model
MQA→S: LM to paraphrase QA pair into sentence
MNLI: NLI model
ReCoVERR hyperparameters:
δmin. : minimum relevance of “relevant” evidences
πNLImin: Minimum entailment confidence to answer
N : Maximum number of turns of evidence collection
K: Questions generated at each turn
Inputs: Question Q, image I , VLMMVLM

1 a, πVLM(a)←MVLM(I,Q)
2 if πVLM(a) ≥ γ@r then
3 return a

4 H ←MQA→S(Q, a)
5 ER, ERR ←INITIMAGEEVIDENCES(I;MVis)
6 for i = 1 to N do
7 e1...K ←COLLECTKEVIDENCES(I,Q, ER;
8 MQGen,MVLM)
9 for j = 1 to K do

10 if VLMCONFIDENCE(ej ;MVLM) ≥ 1− r
then

11 ER ← ER + [ej ]
12 if RELEVANCE(ej ;MNLI) ≥ δmin. then
13 ERR ← ERR + [ej ]

14 if P (ERR entailsH;MNLI) ≥ πNLIMin then
15 return a

16 return ∅

ReCoVERR are highlighted in Section 4.3). Informa-
tion from these tools instantiate two evidence sets:
ER, a set of reliable evidences about the image, and
ERR, a set of reliable and relevant evidences.
ReCoVERR performs up to N turns of evidence

collection. In each turn, K new visual evidences
are generated from the VLM, the reliable and rele-
vant ones are retained, and we check whether the
collected evidences sufficiently entail the hypothe-
sis. If we are unable to verify the hypothesis at the
end of N turns, we abstain from answering.

Generating Visual Evidences: We prompt a
question generation model MQGen to generate a set
of K sub-questions q1...K , conditioned on the target
question Q and the already-collected reliable evi-
dences ER. For each sub-question qj , j ∈ {1...K},
the VLM produces an answer aj with confidence
πVLM(aj). The paraphraser model MQA→S para-
phrases the pair (qj , aj) to a declarative sentence
Sj . Each 4-tuple

(
qi, aj , πVLM(aj), Sj

)
represents

an evidence ej .

Check Evidence Reliability: Since ReCoVERR
decides to make a prediction based on the collected
evidences, the correctness likelihood of a given
evidence is an upper bound for the correctness like-
lihood of the prediction. Since ReCoVERR aims
to make predictions with correctness likelihood
≥ 1− r, we only consider evidences ej that satisfy
πVLM(aj) ≥ 1 − r as reliable for ER. ReCoVERR
requires that the confidence estimate πVLM(a) is
calibrated. A confidence estimate being calibrated
means that for all predictions whose confidence is
α ∈ [0, 1], α% of the predictions are actually cor-
rect. In our experiments, we first evaluate calibra-
tion of our VLMs’ confidence estimates (§ 4.2.1).

Check Evidence Relevance: To decide whether
a reliable evidence ej is also relevant, we adopt
a defeasible reasoning approach (Rudinger et al.,
2020). An evidence ej is considered relevant if its
truth value affects the entailment probability of the
hypothesis. We measure the absolute difference
between the entailment probabilities of the hypoth-
esis H conditioned on the evidence premise Sj and
its negated counterfactual i.e. S̄j .

δ(ej) =| πNLI(H|Sj)− πNLI(H|S̄j) |
Evidence ej is added to the relevant evidence set
ERR if the relevance δ(ej) ≥ δmin.

Check Sufficiency of Collected Evidences: Af-
ter each round of evidence collection, we concate-
nate the Sj for all evidences ej ∈ ERR into a
premise sentence SRR and calculate the hypoth-
esis’s entailment probability πNLI(H|SRR). If that
probability meets πNLImin, we return prediction a,
increasing coverage with sufficient estimated confi-
dence that risk will not increase above r as a result.
Else, after N rounds, we abstain and return ∅.

4 Experiments

We instantiate a selective prediction task using the
A-OKVQA benchmark and compare ReCoVERR to
simple threshold-based selective prediction with
two different backbone VLMs with calibrated confi-
dence estimates, using metrics that capture aspects
and tradeoffs of risk and coverage.

4.1 Vision-Language Reasoning Tasks:
A-OKVQA and VQAv2

A-OKVQA (Schwenk et al., 2022) is a VQA task
designed to require reasoning over external knowl-
edge and commonsense alongside image-based in-
formation. VQAv2 (Goyal et al., 2017) is a VQA
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Figure 3: Calibration curves for BLIP-2, InstructBLIP and LLaVA-1.5 on A-OKVQA questions.

task that requires reasoning about images, some-
times involving commonsense reasoning. We eval-
uate on the A-OKVQA validation set (n = 1, 075)
and 1,000 examples from the VQAv2 validation set.
Both tasks involve open-ended answer generation,
without any choices provided to the model.

For evaluating answer correctness, the stan-
dard VQA accuracy metric (Antol et al., 2015)
has been shown to penalize correct VLM an-
swers if they do not exactly match reference an-
swers (Agrawal et al., 2023). Therefore, we use
LAVEGPT-3.5 (Mañas et al., 2023) to measure the
accuracy of predicted answers. LAVE uses a large
language model2 to estimate the semantic similarity
of each predicted answer to the 10 crowdsourced
answers in the benchmark.

4.2 Vision-Language Models
We experiment with three VLMs: BLIP2 (Li
et al., 2023), InstructBLIP (Dai et al., 2023), and
LLaVA-1.5 (Liu et al., 2023). Both BLIP mod-
els use FlanT5-XL as the LLM backbone.3 In-
structBLIP and LLaVA-1.5 are instruction tuned
on both VQAv2 and A-OKVQA; BLIP2 has not
been trained on either task.

4.2.1 Calibrated VLM Confidence Estimates
One key requirement for ReCoVERR is that, for a
prediction a, the VLM can also return a calibrated
confidence score πVLM(a) ∈ [0, 1]. Thus, a first step
when applying ReCoVERR to a new VLM is identify-
ing a confidence function that produces calibrated
confidence estimates.

Confidence estimates for generative VLMs are
not well defined. Straightforward estimates such
as the product of answer token likelihoods can
severely underestimate model confidence due to

2We utilize the gpt-3.5-turbo-16k-0613 checkpoint.
3https://github.com/salesforce/LAVIS

factors like surface form competition (Holtzman
et al., 2021). Inspired by Tian et al. (2023), we
devise a Self-Prompting technique for estimating
πVLM(a) by prompting the VLM to verify “yes” or
“no” correctness of its predictions and examine the
resulting probability distribution (full details in Ap-
pendix A). The Self-Prompting confidence can be
further calibrated using Platt scaling (Platt, 1999).

We compare three methods for extracting VLM
confidence scores: product of token probabilities,
mean of token probabilities, and Self-Prompting.
For each VLM, we evaluate the calibration error
of these confidence functions on a set of 5,000 ex-
amples from the A-OKVQA training data. The re-
maining 12,000 examples are used to calibrate Self-
Prompting with Platt scaling. We find that Self-
Prompting (both off-the-shelf and calibrated) has
the lowest calibration error for the BLIP models,
whereas the mean of token probabilities has low-
est error for LLaVA-1.5 (Figure 3). We therefore
use these respective methods for estimating VLM
confidence in our experiments with ReCoVERR.

4.3 ReCoVERR Implementation Details

ReCoVERR can be instantiated with different choices
of models and system hyperparameters.

4.3.1 ReCoVERR Model-based Tools
ReCoVERR leverages a set of vision tools MVis

for extracting general visual information. In our
experiments, the vision tools MVis consists of
LVIS (Gupta et al., 2019) for object detection, and
Qwen-VL (Bai et al., 2023) for region caption-
ing. We use FlanT5-XL as a zero-shot sentence
paraphraser MQA→S and entailment model MNLI.
Since our VLMs use FlanT5-XL as the LLM back-
bone, our ReCoVERR instantiation does not require
additional models. We use GPT-3.5 with tempera-
ture 1.0 for MQGen. See Appendix B for prompts.
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Risk tolerance r = 10% Risk tolerance r = 20%

VLM Method R(↓) Φ1(↑) C(↑) RSP(↑) R(↓) Φ1(↑) C(↑) RSP(↑)

BLIP2
(Off-the-shelf)

Vanilla SelPred 6.1 3.4 3.8 6.0 14.9 17.1 24.1 34.2
Vision Tools 13.8 17.4 23.5 33.5 17.0 23.5 35.1 48.3
ReCoVERR 14.3 18.8 26.0 37.1 21.7 27.1 47.3 61.5

BLIP2
(Calibrated)

Vanilla SelPred 4.1 3.2 3.4 5.5 11.9 16.8 21.9 32.0
Vision Tools 13.2 17.5 23.4 33.7 15.1 23.9 33.6 47.2
ReCoVERR 14.0 17.3 23.6 33.6 16.1 25.3 36.7 51.0

InstructBLIP
(Off-the-shelf)

Vanilla SelPred 9.3 20.5 25.1 34.8 17.2 38.3 57.7 72.2
Vision Tools 10.5 26.1 32.9 44.8 17.6 39.6 60.5 75.3
ReCoVERR 10.9 26.3 33.5 45.2 17.9 41.3 63.7 78.9

InstructBLIP
(Calibrated)

Vanilla SelPred 8.5 22.0 26.4 36.9 17.5 37.2 56.6 70.5
Vision Tools 10.4 27.2 34.1 46.5 17.8 38.8 59.7 74.2
ReCoVERR 11.8 29.8 38.7 51.8 18.6 41.4 65.0 79.8

LLaVA-1.5
Vanilla SelPred 8.2 21.5 25.1 33.0 16.5 40.1 59.3 69.9
Vision Tools 9.6 24.4 30.0 38.3 17.3 40.8 61.8 72.1
ReCoVERR 11.3 34.7 45.4 55.9 19.5 44.6 72.7 81.9

Table 1: Metric results as percentages on the A-OKVQA task at two risk tolerance levels. We evaluate selective
prediction methods on the overall system risk (R), effective reliability (Φ1), coverage (C) and recall (RSP). System
risks in red exceeded tolerance. Measurements in blue indicate when ReCoVERR outperformed both baselines.

4.3.2 ReCoVERR Hyperparameters
We set N = 10 rounds of evidence collection with
K = 10 evidences generated per turn. To count
an evidence e as reliable, we set relevance thresh-
old δmin = 0.2. The minimum final hypothesis
entailment confidence is πNLImin = 0.9.

4.4 Selective Prediction Baselines
We compare ReCoVERR to a Vanilla Selective Pre-
diction baseline (Whitehead et al., 2022a), where
the model abstains if the VLM prediction confi-
dence g(a) = {1 if πVLM(a) ≤ γ@r else 0}, and to
a Vision Tools baseline. For Vision Tools, image
caption from the VLM, objects detected by LVIS,
and region captions from Qwen-VL are provided as
evidence to the NLI model MNLI directly, with no
rounds of evidence collection, equivalent to lines
1-5 of Algorithm 1 followed by lines 14-15.

4.5 Evaluation Metrics
We measure risk (R) and coverage (C) (Eqs 1,
2) across system predictions and abstentions.
Additionally, we calculate Effective Reliability
Φc (Whitehead et al., 2022a), a metric that rewards
correct predictions, assigns a penalty c to incorrect
predictions, and assigns zero reward to abstentions.
We assign a penalty of c = 1 for incorrect an-

swers (Φ1). Finally, we define Selective Prediction
Recall (RSP), the percentage of correct answers
(Acc(a) = 1) in the dataset that were answered.

RSP =

∑
xi∈D g(ai) · 1{Acc(ai) = 1}∑

xi∈D 1{Acc(ai) = 1}

We note that the only stochastic component in
our instantiation of ReCoVERR is the question gener-
ation model. We run three seeds for each ReCoVERR
experiment and report average metric results. Ta-
ble 8 shows full results with standard deviation.

5 Results and Analysis

We evaluate selective prediction methods on A-
OKVQA at two specified risk tolerances: 10% and
20% risk. Table 1 shows the results of ReCoVERR
when applied to InstructBLIP and BLIP2, both with
and without Platt scaling calibration.

At 20% risk tolerance, we find that ReCoVERR
improves coverage, effective reliability, and recall
over both baselines while staying at the specified
risk tolerance. At 10% risk tolerance, ReCoVERR
and the Vision Tools baseline tend to slightly over-
shoot the risk tolerance (by 1-2% for InstructBLIP
and LLaVA-1.5, and 3-4% for BLIP2). We fur-
ther see that ReCoVERR shows large improvements
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Figure 4: Distribution of VLM prediction confidences
on A-OKVQA calibration set.

VLM Method R(↓) Φ1(↑) C(↑) RSP(↑)

BLIP2
(Off-the-shelf)

Vanilla SelPred 7.9 13.5 15.9 21.3
Vision Tools 11.8 20.5 26.6 34.0
ReCoVERR 11.9 21.3 27.8 35.4

BLIP2
(Calibrated)

Vanilla SelPred 7.7 13.1 15.5 20.9
Vision Tools 11.3 21.8 27.9 35.9
ReCoVERR 11.8 22.9 29.7 38.1

InstructBLIP
(Off-the-shelf)

Vanilla SelPred 10.0 31.8 39.5 45.8
Vision Tools 10.8 34.8 43.1 50.2
ReCoVERR 10.7 35.5 45.0 51.9

InstructBLIP
(Calibrated)

Vanilla SelPred 10.3 32.3 41.1 47.5
Vision Tools 11.2 35.4 44.3 51.1
ReCoVERR 11.0 35.9 45.8 52.6

LLaVA-1.5
Vanilla SelPred 10.4 49.4 62.3 74.5
Vision Tools 11.0 49.7 63.1 75.5
ReCoVERR 11.8 51.5 67.9 79.2

Table 2: Metric results as percentages on the VQAv2
task at a risk tolerance of 10%. We evaluate selective
prediction methods on overall system risk (R), effective
reliability (Φ1), coverage (C) and recall (RSP). System
risks in red exceeded tolerance. Measurements in blue
indicate when ReCoVERR outperformed both baselines.

of up to 20% on coverage, 15% on effective reli-
ability and 33% on recall for off-the-shelf BLIP2,
calibrated InstructBLIP and LLaVA-1.5.

We highlight several takeaways (T*). T1: For
the same risk tolerance, vanilla selective prediction
has lower coverage and recall for BLIP2 than In-
structBLIP and LLaVA-1.5. BLIP2 has not been
trained on A-OKVQA, unlike the other two VLMs,
and therefore produces more uncertain answers.
We further see that ReCoVERR results in larger im-
provements for BLIP2. T2: Off-the-shelf BLIP2
sees largest risk increase with ReCoVERR. The cali-
bration curves in Figure 3 indicate that off-the-shelf
BLIP2 makes overconfident estimates, leading to
more unreliable evidences being collected and re-
sulting in a large risk increase for ReCoVERR. T3:
At 10% risk, most of the additional risk and recall
is caused by Vision Tools, rather than ReCoVERR’s

evidence collection. T4: At 20% risk tolerance,
ReCoVERR’s evidence collection leads to greatest
recall improvement for off-the-shelf BLIP2, cali-
brated InstructBLIP and LLaVA-1.5.

T3&4 can be understood by examining the con-
fidence distribution of the VLMs’ predictions (Fig-
ure 4). We see that off-the-shelf BLIP2 has more
predictions with greater than 80% confidence com-
pared to calibrated BLIP2, with the trend reversed
for InstructBLIP. This means that ReCoVERR finds
more reliable evidences (πVLM(a) ≥ 1 − r) with
off-the-shelf BLIP2 and calibrated InstructBLIP,
resulting in higher recall for ReCoVERR with those
two VLMs, thus explaining T3&4. These findings
indicate that ReCoVERR works best when the VLM
is strongly confident on correct answers.

We also experiment on VQAv2, at 10% risk toler-
ance.4 In Table 2, we see that ReCoVERR improves
system reliability and recovers more correct an-
swers than the baselines, while crossing the risk
threshold by only 1–2%. However, the improve-
ments are smaller compared to the more complex
A-OKVQA task, indicating that ReCoVERR may be
more useful for complex reasoning tasks. We also
observe that, similar to A-OKVQA, the largest im-
provements are for BLIP2, which wasn’t finetuned
on the VQAv2 task.

5.1 Reliability and Relevance Ablations

We perform an ablation of the reliability and rel-
evance components of ReCoVERR for calibrated
BLIP2 and InstructBLIP, at a risk tolerance of 20%.
In the ReCoVERR formulation, for an evidence ej
to be considered reliable, the VLM confidence
πVLM(aj |I,Qj) must be at least 1 − r, and for it
to be considered relevant, the defeasible relevance
δ(ej) must be at least δmin = 0.2. For the relia-
bility ablation, we lower the minimum evidence
confidence to be 0.5 instead of 1 − r = 0.8. For
the relevance ablation, we set δmin = 0.

Table 3 shows the results of the reliability and
relevance ablation. We see that loosening the evi-
dence confidence bound to be 0.5 instead of 1− r
causes a marked increase in risk for both VLMs,
with system risk crossing the risk tolerance signifi-
cantly. Ablating the relevance component results
in a decrease in recall and effective reliability for
InstructBLIP, but virtually no effect for BLIP2.

4Since the VLMs have strong performance on VQAv2, we
do not perform experiment at 20% risk tolerance.
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Method R(↓) Φ1(↑) RSP(↑)

VLM : Calibrated BLIP2

ReCoVERR 16.1 25.3 51.0
- Reliability 28.4 31.6 85.9
- Relevance 16.1 25.3 51.1

VLM : Calibrated InstructBLIP

ReCoVERR 18.6 41.4 79.8
- Reliability 25.9 40.5 91.9
- Relevance 18.6 39.7 76.9

Table 3: Ablation of the reliability and relevance com-
ponents of ReCoVERR, at risk tolerance of 20%.

Calibrated VLM Method R(↓) RSP(↑)

Task: OK-VQA (20% risk tolerance)

BLIP2
Vanilla 15.4 25.4
ReCoVERR 25.7 45.0

InstructBLIP
Vanilla 18.5 56.3
ReCoVERR 22.8 70.8

Task: Sherlock (10% risk tolerance)

BLIP2
Vanilla 11.1 24.9
ReCoVERR 15.7 25.8

InstructBLIP
Vanilla 9.7 33.4
ReCoVERR 10.9 35.5

Table 4: ReCoVERR using a VLM calibrated for A-
OKVQA can be directly applied to new tasks.

5.2 Question Generation Model Ablations

The specific instantiation of ReCoVERR involves a
choice of LLM for the question generation model,
MQGen. While our experiments so far have used
GPT-3.5, we demonstrate that ReCoVERR works
similarly well with open-source LLMs as well.
We compare ReCoVERR performance with GPT-
3.5 against two open-source LLMs: Mistral-7B-
Instruct (Jiang et al., 2023) and Tulu-2-7B (Ivison
et al., 2023). Our results in Table 5 demonstrate that
the specific instantiation of MQGen did not make a
significant difference to ReCoVERR’s performance,
for both calibrated BLIP2 and InstructBLIP.

5.3 Generalizing to New Tasks

We examine whether our instantiation of ReCoVERR
calibrated for the A-OKVQA task can be directly
applied to new tasks without additional tuning (Ta-
ble 4). When we apply ReCoVERR with A-OKVQA-

MQGen R(↓) Φ1(↑) C(↑) RSP(↑)

VLM : Calibrated BLIP2

ChatGPT 16.1 25.3 36.7 51.0
Mistral-7B 16.9 25.4 37.9 52.2
Tulu-2-7B 15.8 24.8 35.8 50.0

VLM : Calibrated InstructBLIP

ChatGPT 18.6 41.4 65.0 79.8
Mistral-7B 19.1 39.9 63.8 77.8
Tulu-2-7B 18.0 40.9 63.3 78.2

Table 5: Effect of different question generation models
on ReCoVERR performance, at 20% risk tolerance.

calibrated VLMs to OK-VQA (Marino et al., 2019)
at 20% risk tolerance, we observe strong improve-
ments in recall (15-20%), but also increased risk (2-
5% above the risk tolerance). Applying ReCoVERR
to Sherlock (*Hessel et al., 2022), an abductive
reasoning task, at 10% risk we observe smaller im-
provements in recall. These results indicate that
ReCoVERR requires some degree of task-specific
tuning. Appendix C contains full task details.

5.4 Qualitative ReCoVERR Examples

We present some examples of evidences collected
by ReCoVERR in Table 6. The collected evidences
ERR can be used to either corroborate correct VLM
predictions, or contradict incorrect ones. In exam-
ple 1, when the VLM predicts that a vegetarian
is likely to eat this meal, ReCoVERR collects sup-
porting evidences indicating that the food does not
contain any meat products. In example 2, when the
VLM predicts that the colors of the bus match those
of the U.K. flag, ReCoVERR finds that the color of
the bus is highly likely to be yellow and blue, thus
contradicting the VLM’s prediction (since the U.K.
flag does not contain yellow).

6 Conclusion and Related Works

We introduce ReCoVERR, an algorithm to improve
the coverage of a selective VLM system while
respecting a user-specified risk tolerance level.
ReCoVERR verifies low-confidence VLM predic-
tions by recovering high-confidence evidences in
the image that support the prediction. We instan-
tiate a selective prediction task on the A-OKVQA
reasoning benchmark and demonstrate the quanti-
tative advantages of ReCoVERR for inference-time
selective prediction that holds across different back-
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Evidences ERR collected by ReCoVERR
Image Initial prediction {LLM Question qj} {VLM Answer aj} [πVLM(aj)]

Question: What kind of a person
usually eats food like this?
G.T. answers: vegetarian, vegan,
healthy
VLM: vegetarian (conf=0.57)

Does the image depict a variety of plant-based in-
gredients? yes [0.95]
Does the food predominantly consist of fruits and
vegetables? yes [0.80]
Are there any meat items in the image? no [0.86]

Result: Correctly predicted

Question: The colors on the bus
match the colors on what flag?
G.T. answers: Sweden, Ukraine
VLM: U.K. (conf=0.53)

Is there any blue color on the bus? yes [0.95]
What is the color of the bus? yellow and blue [0.93]

Result: Correctly abstained

Table 6: Examples from the A-OKVQA task where, given a low-confidence VLM prediction, ReCoVERR collects a
set of highly-confident evidences ERR that corroborate (example 1) or contradict (example 2) the prediction.

bone VLMs, choice of underlying LLM generators,
and even gains some ground when transferred to
different benchmarks without recalibration.

A large breadth of prior work has studied the
ability of models to abstain from answering (Chow,
1957; De Stefano et al., 2000; El-Yaniv et al.,
2010). This ability is especially important when the
model’s prediction cannot be trusted (Jiang et al.,
2018), particularly for OOD (Kamath et al., 2020)
and adversarial (Varshney et al., 2022) inputs. Sim-
ilar to our work, low coverage caused by low risk
tolerance has also been observed and mitigated in
text-only selective prediction systems (Varshney
and Baral, 2023).

In the multimodal domain, previous works have
explored abstention for error recovery (Wu et al.,
2023; Khan and Fu, 2023). Whitehead et al.
(2022b) establish the ReliableVQA framework,
wherein VQA models have the option to abstain
from answering. Shukor et al. (2023) evaluates
VQA models on their ability to abstain when a
question does not apply to the image. Dancette
et al. (2023) trains VQA models to abstain for out-
of-distribution inputs. In contrast to learning to
abstain, we reduce abstention of multimodal selec-
tive prediction while maintaining reliability.

Using LLMs to query a pool of vision experts, ei-
ther through program generation (Gupta and Kem-
bhavi, 2023; Surís et al., 2023; Subramanian et al.,
2023), or iterative querying (Zeng et al., 2022; Shen
et al., 2023; You et al., 2023; Yang et al., 2023),
can decompose vision-language reasoning. We use
LLMs to query an image for visual evidence, simi-
lar to RepARe (Prasad et al., 2023) which extracts
additional visual context to rephrase underspecified
VQA questions.

Limitations

The plug-and-play capability of ReCoVERR, while
facilitating adaptability, does introduce a degree
of engineering complexity due to the sequential
dependencies in predictions. While it opens up
flexible choices in modules, it also introduces an
overhead on response time. Our primary method
black-box APIs, and we also tested it with open-
source models, as detailed in the Table 5. We
leave conducting comprehensive testing with vari-
ous open-source models for future work.

The curated benchmarks tailored for VLM eval-
uation, while being beneficial, may necessitate fur-
ther exploration into scenarios that better align with
ecological validity (de Vries et al., 2020) and real-
world applications for abstaining. Notably, our
focus on image understanding excludes consid-
erations of underspecified, ambiguous, or safety-
related abstaining, opening avenues for expanding
the scope of our approach in the future.

Our experiments are restricted to English, a
consequence of leveraging pretrained VLMs and
LLMs, offers opportunities for future advance-
ments in multilingual contexts.

Finally, we assume that the base VLMs are cal-
ibrated for confidence estimation. Although this
is effective to some extent, it leaves room for fu-
ture exploration into alternative methodologies for
making the models well-calibrated.
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A Self-Prompting for Producing
Calibrated VLM Confidence Estimates

In order to do selective prediction, it is important
that we use a calibrated confidence estimate i.e. the
model confidence g(x) reflects the true probabil-
ity of its output being correct (Platt, 1999). The
calibration of a model’s confidence measure is typ-
ically evaluated using the Expected Calibration Er-
ror (Guo et al., 2017) over a calibration set.

Calibration has typically been studied in discrim-
inative models, using the probability of the pre-
dicted class as the confidence estimate. However,
it is unclear what makes for a good confidence esti-
mate for a generative VLM that produces an answer
a with multiple tokens. One solution is to sum or
average all the log probabilities in the answer token
sequence string; however, this will be an underesti-
mate of the model’s confidence due to surface form
competition (Holtzman et al., 2021).

Instead, we experiment with a self-prompting,
approach where the VLM is prompted to verify the
correctness of its answer. Specifically, after pre-
dicting an answer a from the VLM for the question
Q, we present the following prompt prompt(Q, a)
to the VLM:

Question: {Q}
Answer: {a}
Is the given answer correct for the ques-
tion? Answer yes or no:

We look at the VLM’s next token probability dis-
tribution P (·|prompt, I), and compute confidence
estimate by looking at the next token probabilities
for the yes and no tokens:

PVLM(a|Q) =
P (yes|prompt, I)

P (yes|prompt, I) + P (no|prompt, I)

A.1 Platt Scaling

Platt scaling (Platt, 1999) is a technique for cali-
brating classifiers by training a logistic regression
model over the logits for the output classes. To train
a Platt scaling calibrator, for 12,000 examples in the
A-OKVQA training data, we use Self-Prompting
as described above for the off-the-shelf VLMs to
extract logits for the yes and no tokens. We train a
logistic regression model over these logits to pre-
dict whether the VLM prediction was correct or
not. Figure 3 shows the effect of Platt scaling cali-
bration on the VLM confidence estimates.

B Prompts for Text-Only Language
Models

Table 7 contains the prompts we used for the vari-
ous language-only functions of ReCoVERR.

C OK-VQA and Sherlock Task Details

We apply ReCoVERR using A-OKVQA-calibrated
VLMs for two new tasks, OK-VQA and Sherlock.

OK-VQA (Marino et al., 2019) is a VQA
task that, similar to A-OKVQA, requires external
knowledge and commonsense reasoning. We eval-
uate on the OK-VQA validation set, consisting of
5,046 instances.

Sherlock (*Hessel et al., 2022) is an abductive
reasoning task, where images and image regions
are paired with inferences. The original task formu-
lations in Sherlock (retrieval, localization, human
rating comparison) do not directly apply to gen-
erative VLMs that take image and text inputs and
produce text outputs. We re-formulate the compar-
ison task into a binary judgment task, where the
VLM must output whether a given inference is true
for an image or not. An image-region-inference
triple is paired with two human ratings that rate
the inference as true, false, or neutral. We treat
instances where both humans agree that the infer-
ence is true as positive instances, and both humans
agree that it is false as negative instances. We end
up with a dataset of 561 image-region-inference
triples. Each triple is presented to the VLM by
drawing a region box onto the image, and forming
a templated question in the following format:

Is the given inference true for the given
image or not? { Inference } Options: yes,
no
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Function Model Inputs Prompt

Question genera-
tion

MQGen Q: The question the
VLM is trying to confi-
dently answer
a:The VLM prediction
for above question
ER = [e1, e2, ...]: A list
of reliable evidences that
have been collected about
the image so far
K: The number of ques-
tions to generate in this
turn.

You are an AI assistant who has rich visual commonsense knowledge
and strong reasoning abilities. You will be provided with:
1. A target question about an image that you are trying to answer.
2. Although you won’t be able to directly view the image, you will
receive a general caption that might not be entirely precise but will
provide an overall description.
3. You may receive some additional evidences about the image.
Your goal is: To effectively analyze the image and select the correct
answer for the question, you should break down the main ques-
tion into several sub-questions that address the key aspects of the image.

What you already know about the image:
e1
e2
...

Target question: {Q}. Generate K sub-questions that might
help you confirm whether the answer to the target question is ’{a}’.
Here are the rules you should follow when listing the sub-questions:
1. Ensure that each sub-question is independent. It means the latter
sub-questions shouldn’t mention previous sub-questions.
2. The sub-questions should be separated by a newline character.
3. Each sub-question should start with "What" or "Is".
4. Each sub-question should be short (less than 10 words) and easy to
understand.
5. The sub-question are necessary to distinguish the correct answer.

Sentence para-
phrasing

MQA→S Q, a: The question-
answer pair that needs to
be paraphrased into a sen-
tence

Rephrase the question and answer into a single statement.
The re-phrased statement should summarize the question and answer.
The re-phrased statement should not be a question.

Question: Is the dog herding or guiding the cows?
Answer: guiding
Statement: The dog is guiding the cows.

Question: Are there any other written numbers visible in the
image?
Answer: no
Statement: There are no other written numbers visible in the image.

Question: Which color of clothing is unique to just one of the
two people here?
Answer: black
Statement: The color of clothing that is unique to just one of the two
people here is black.

Question: Does the picture on the screen involve any human
subjects or animals?
Answer: human
Statement: The picture on the screen involves human subjects.

Question: {Q}
Answer: {a}
Statement:

Checking evidence
sufficiency

MNLI H: Hypothesis statement
ERR: A list of reliable
and relevant evidences
[e1, e2, ...]

Premise: {evidence statements in ERR concatenated together}

Hypothesis: {H}
Can we infer the hypothesis from the premise? Options: yes, no.
Answer:

Table 7: Prompts for text-only language models
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Risk tolerance r = 10% Risk tolerance r = 20%

VLM Method R(↓) Φ1(↑) C(↑) RSP(↑) R(↓) Φ1(↑) C(↑) RSP(↑)

BLIP2
(Off-the-shelf)

Vanilla SelPred 6.1 3.4 3.8 6.0 14.9 17.1 24.1 34.2
Vision Tools 13.8 17.4 23.5 33.5 17.0 23.5 35.1 48.3
ReCoVERR 14.3 18.8±0.2 26.0±0.5 37.1±0.6 21.7 27.1±0.8 47.3±0.3 61.5±0.8

BLIP2
(Calibrated)

Vanilla SelPred 4.1 3.2 3.4 5.5 11.9 16.8 21.9 32.0
Vision Tools 13.2 17.5 23.4 33.7 15.1 23.9 33.6 47.2
ReCoVERR 14.0 17.3 23.6 33.6 16.1 25.3±0.5 36.7±0.2 51.0±0.6

InstructBLIP
(Off-the-shelf)

Vanilla SelPred 9.3 20.5 25.1 34.8 17.2 38.3 57.7 72.2
Vision Tools 10.5 26.1 32.9 44.8 17.6 39.6 60.5 75.3
ReCoVERR 10.9 26.3 33.5 45.2 17.9 41.3±0.3 63.7±0.3 78.9±0.4

InstructBLIP
(Calibrated)

Vanilla SelPred 8.5 22.0 26.4 36.9 17.5 37.2 56.6 70.5
Vision Tools 10.4 27.2 34.1 46.5 17.8 38.8 59.7 74.2
ReCoVERR 11.8 29.8±0.8 38.7±1.3 51.8±1.4 18.6 41.4±0.3 65.0±0.7 79.8±0.8

Table 8: Metric results as percentages on the A-OKVQA task at two risk tolerance levels. We evaluate selective
prediction methods on the overall system risk (R), effective reliability (Φ1), coverage (C) and recall (RSP). System
risks in red exceeded tolerance. Measurements in blue indicate when ReCoVERR outperformed both baselines.
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