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Abstract

Advances in machine learning have made it
possible to perform various text and speech pro-
cessing tasks, such as automatic speech recog-
nition (ASR), in an end-to-end (E2E) manner.
E2E approaches utilizing pre-trained models
are gaining attention for conserving training
data and resources. However, most of their
applications in ASR involve only one of ei-
ther a pre-trained speech or a language model.
This paper proposes integrating a pre-trained
speech representation model and a large lan-
guage model (LLM) for E2E ASR. The pro-
posed model enables the optimization of the
entire ASR process, including acoustic feature
extraction and acoustic and language model-
ing, by combining pre-trained models with a
bridge network and also enables the application
of remarkable developments in LLM utiliza-
tion, such as parameter-efficient domain adap-
tation and inference optimization. Experimen-
tal results demonstrate that the proposed model
achieves a performance comparable to that of
modern E2E ASR models by utilizing power-
ful pre-training models with the proposed inte-
grated approach.

1 Introduction

Mainstream of automatic speech recognition (ASR)
has shifted from traditional pipeline methods
to end-to-end (E2E) ones (Graves et al., 2013;
Chorowski et al., 2015). Some of the key
techniques in E2E ASR include a connection-
ist temporal classification (CTC) (Graves et al.,
2013), and an attention-based encoder-decoder
model (Chorowski et al., 2015). Alternatively,
speech representation models trained in a self-
supervised manner using large amounts of unla-
beled speech data have also attracted considerable
attention (Baevski et al., 2020; Hsu et al., 2021).
Fine-tuning these models achieves a better per-
formance in downstream tasks, including ASR,
particularly in low-data settings. However, these

methods typically employ external language model-
fused decoding, which complicates the decoding
process. Although a more recent study (Radford
et al., 2023) showed remarkable success with a
single encoder-decoder model using 680k hours
of weakly supervised labeled data without such
pre-training models and decoding fusion, it is chal-
lenging to collect data on this scale.

In natural language processing (NLP) research,
large language models (LLMs) pre-trained on mas-
sive amounts of text data have significantly im-
pacted NLP benchmarks, such as question answer-
ing, knowledge retrieval, and natural language un-
derstanding (Radford et al., 2018; Black et al.,
2022; Chowdhery et al., 2023; Touvron et al.,
2023). In recent years, the success of LLMs
has sparked research interest in integrating LLMs
with other modalities such as images, audio, and
video (Alayrac et al., 2022; Li et al., 2023; Zhu
et al., 2024; Chang et al., 2023; Zhang et al., 2023;
Shen et al., 2023; Wang et al., 2023b; Rubenstein
et al., 2023; Fathullah et al., 2024; Wu et al., 2023;
Pan et al., 2023; Yu et al., 2024; Chen et al., 2023a).
Pioneering studies (Zhang et al., 2023; Shen et al.,
2023) utilized LLM as a control hub with several
well-trained speech expert models. Several stud-
ies have investigated feeding the audio information
to the LLM as a prompt so that the decoder-only
Transformer (Vaswani et al., 2017) can adapt to
speech processing tasks (Chang et al., 2023; Zhang
et al., 2023; Wang et al., 2023b; Rubenstein et al.,
2023; Fathullah et al., 2024; Wu et al., 2023; Pan
et al., 2023; Yu et al., 2024). These methods demon-
strate superior performance in various speech-text
processing tasks such as ASR and automatic speech
translation, benefiting from the powerful linguistic
knowledge of LLMs. In addition, some work on
ASR and speech synthesis have also shown the po-
tential of a pure decoder-only Transformer that has
yet to be pre-trained (Tsunoo et al., 2023; Wang
et al., 2023a).
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Inspired by recent successes in speech represen-
tation learning and LLMs, this paper proposes a
novel E2E ASR model by integrating two large-
scale pre-trained models, HuBERT (Hsu et al.,
2021) and GPT (Radford et al., 2018). Our pro-
posed method benefits from the powerful language
modeling and decoding capabilities of autoregres-
sive LLMs, eliminating the need for complex de-
coding processes, such as external language model-
fused decoding. Even with simple greedy decoding,
our approach achieves a performance comparable
to that of recent well-trained and carefully designed
ASR models. Furthermore, our model can take
advantage of recent rapid developments in LLM
research fields, such as inference optimization tools
and rich domain adaptation knowledge, which sug-
gest promising avenues for future progress. The
primary contributions of this paper are as follows:

• We propose a fully E2E ASR model capable of
directly generating text token sequences from
speech waveforms, integrating pre-trained Hu-
BERT and GPT models.

• Through ablation tests, we identify the op-
timal way to integrate these two pre-trained
models.

• We demonstrate the fine-tuning of the pro-
posed model for domain adaptation, which
will be helpful for insight into the deployment
of the proposed model in practical use cases.

We call the proposed model Nue-ASR1 and release
an inference code with the model checkpoint for
Japanese E2E ASR2.

2 Related Work

There has been a recent surge in the use of LLMs
for speech processing tasks, including ASR. This
emerging trend reflects a growing awareness of the
potential of LLMs to apply their ability to perform
a variety of tasks.

The primary approach to directly exploiting
LLMs for speech processing tasks is to feed the
continuous representation obtained from the speech
processing model (Fathullah et al., 2024; Wu et al.,
2023; Pan et al., 2023; Yu et al., 2024) or dis-
cretized features from its representation (Chang
et al., 2023; Zhang et al., 2023; Wang et al., 2023b;

1The name comes from the Japanese word “Nue,” one of
the Japanese legendary creatures “Yōkai.”

2https://huggingface.co/rinna/nue-asr

Rubenstein et al., 2023; Chen et al., 2023b) to the
LLM, empowering the decoder-only Transformer
to recognize and generate multimodal content, in-
cluding audio. In practice, continuous speech rep-
resentations or discrete audio tokens are injected
into a linguistic embedding space.

In the continuous representation-based approach,
Transformer-based speech encoders are often intro-
duced to obtain speech representations from acous-
tic features such as Mel filterbank outputs. The
sequence length of these features is longer than that
of text tokens since these kinds of features are often
50 and 100 frames per second. Therefore, down-
sampling using a convolution layer (Fathullah et al.,
2024) or CTC compression (Gaido et al., 2021; Wu
et al., 2023; Pan et al., 2023) is often employed.
Other approaches employ a Querying Transformer
(Q-Former) (Li et al., 2023) to convert variable-
length speech representations into fixed-length out-
put query representations, or an enhancement of
the Q-Former to extract segment-level query rep-
resentations (Yu et al., 2024). These approaches
involve pre-training the speech encoder module or
CTC compression network with paired speech and
text data using CTC loss, or leveraging the encoder
from a well-trained encoder-decoder ASR model.
This implies a substantial requirement for training
the speech processing model with ASR tasks.

In the discrete representation-based approach,
the outputs of speech representation models such as
HuBERT (Hsu et al., 2021) and w2v-BERT (Chung
et al., 2021) are discretized via k-means, or neu-
ral audio codec models such as EnCodec (Défos-
sez et al., 2023) are utilized to extract discrete to-
ken from speech waveforms. To address the gap
between the sequence lengths of speech and text
tokens, a technique has also been proposed to re-
move adjacent duplicate indices. Discrete speech
tokens can be treated similarly to text tokens by
extending the LLM vocabulary. However, detailed
information in speech may not be fully exploited,
and optimization is inherently a two-step process.

This paper integrates a pre-trained speech repre-
sentation model with the LLM to utilize the speech
representations extracted from speech waveforms
as continuous features directly. Our method, cat-
egorized as a continuous representation-based ap-
proach, diverges from prior studies by not relying
on signal processing-based acoustic features, thus
completely enjoying the advantages of a speech
representation model with self-supervised learn-
ing. The integrated model with a convolution-based
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Figure 1: Overview of the proposed model. All modules
of the speech encoder, bridge network, and LLM, except
the convolutional waveform encoder, are simultaneously
optimized in an E2E manner.

bridge network can be trained with only a single
causal language modeling objective. Consequently,
it achieves fully E2E ASR by directly processing
speech waveforms, exploiting the combined ca-
pabilities of speech models and LLMs. This pa-
per focuses on the ASR task, which is appropriate
as a first consideration for integrating pre-trained
speech and language models for E2E speech pro-
cessing tasks. It can assess whether speech infor-
mation is accurately passed to the LLM without
missing any content.

3 Methodologies

An overview of the proposed model is presented in
Fig 1. This model consists of three main compo-
nents: speech encoder, bridge network, and LLM.

3.1 Leveraging LLMs for speech recognition
The proposed model uses a decoder-only
Transformer-based LLM to perform speech
recognition as next-token prediction. Any LLM
can be used. We adopted the pre-trained GPT-
NeoX (Andonian et al., 2021), a GPT variant with
a modified architecture for the Transformer layer
and an alternative positional encoding mechanism
called rotary embedding (Su et al., 2021) to replace
the original learnable position embeddings. In
practice, a speech waveform x is fed into an
speech encoder to obtain speech representations,
followed by a bridge network to convert the
speech representations into the embedding space
of text tokens to feed LLM as speech prompts.
Given speech prompt s, the generation of the
corresponding text sequence y is formulated as

follows:

p(y|s; θLM) =
I∏

i=1

p(yi|y<i, s; θLM), (1)

where y<i is the generated text sequence before
time step i, I is the number of tokens contained in
the text sequence, and θLM denotes the parameters
of the LLM.

3.2 Prompting speech information
We adopted a pre-trained HuBERT model as the
speech encoder, focusing on the potential of self-
supervised speech representation learning with
large amounts of speech data. HuBERT contains a
convolutional waveform encoder and a BERT-like
Transformer-based encoder (Devlin et al., 2019),
that is trained in a self-supervised manner using a
masked prediction objective (Hsu et al., 2021).

The output of the speech encoder is fed into the
bridge network, which converts the speech repre-
sentations into the embedding space of the LLM.
Because the output of HuBERT is a 20 ms shifted
feature sequence, the sequence length is longer
than that of text tokens, making direct handling
by the LLM inefficient. Therefore, sequence com-
pression is performed when a bridge network maps
HuBERT features onto the LLM embedding space.
Several studies (Gaido et al., 2021; Wu et al., 2023;
Pan et al., 2023; Tsunoo et al., 2023) introduces
CTC compression based on the tokens predicted
by CTC (Graves et al., 2013). Motivated by the
success of previous studies, the following three
methods are considered for sequence compression
in bridge networks.

Downsampling: The output sequence from Hu-
BERT is downsampled to a quarter of its origi-
nal length using two convolutional layers with
a kernel size of 4 and a stride of 2.

CTC remove: The output frames of HuBERT that
CTC predicts as blank are removed. CTC
prediction is performed by adding a dedicated
softmax layer on top of the HuBERT encoder
as a CTC branch.

CTC average: The adjacent output frames of Hu-
BERT that CTC predicts as the same symbol
are averaged. CTC prediction is performed in
the same manner as CTC remove.

The details of the bridge network using these three
methods are shown in Fig 2. CTC remove and
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Figure 2: The details of the bridge network. In (b)
CTC remove and (c) CTC average, a dedicated softmax
layer is placed on top of the HuBERT encoder as a CTC
branch. An additional CTC loss is also introduced.

CTC average are denoted as CTC compression in
the following sections.

3.3 Training strategy
The proposed model can be trained using a causal
language modeling loss function as follows:

LLM = −
I∑

i=1

log p(yi|y<i, s). (2)

Furthermore, when CTC compression is applied
within the bridge network, the model should be
trained using CTC loss LCTC (Graves et al., 2006)
along with the causal language modeling loss, as
follows:

LLM+CTC = LLM + λCTCLCTC, (3)

where λCTC is a hyperparameter to controlling the
weight of CTC loss.

Intuitively, to maximize the performance of our
proposed model, it would be desirable to train
all parameters of the speech encoder, bridge net-
work, and LLM simultaneously. This holistic ap-
proach ensures complete integration and optimiza-
tion across all components in a fully E2E manner.
However, because pre-trained models, especially
LLM, have many parameters, full-parameter fine-
tuning of these models is computationally expen-
sive. It is also worth considering the effectiveness
of the built-in capabilities of these pre-trained mod-
els for ASR tasks. Therefore, this paper will also
consider cases where each model is frozen through
experiments in Section 4.2.

As a popular technique for adapting large-scale
LLMs to new datasets or tasks at a minimal cost,
parameter efficient fine-tuning (PEFT) (Houlsby
et al., 2019) has recently gained attention. Most of
the previous studies (Zhang et al., 2023; Fathullah
et al., 2024; Wu et al., 2023; Pan et al., 2023) to
extend LLMs to speech processing tasks have use
low-rank adaptation (LoRA) (Hu et al., 2022) to
perform PEFT. LoRA allows for efficient adapta-
tion by modifying a smaller subset of model’s pa-
rameters, enabling task-specific adjustments with-
out the extensive computational overhead typically
associated with training large models. Therefore,
this study will also examine the optimization of an
efficient LLM part using LoRA.

Through these methodologies, our study aims
to create an efficient and effective bridge between
speech and text modalities, harnessing the strengths
of pre-trained speech and language models.

4 Experiments

4.1 Setup

To evaluate the performance of the proposed model,
we conducted Japanese ASR experiments using
publicly available speech corpora. We used the
ReazonSpeech corpus (v1.0) (Yin et al., 2023), a
19,000-hour speech corpus collected from Japanese
TV programs with a 16 kHz sampling. We used
1,000 utterances as development data, 1,000 dif-
ferent utterances as test data, and the remainder as
training data. Before ASR training, all symbols ex-
cept hyphens, apostrophes, punctuation, and ques-
tion marks were removed as part of the text normal-
ization process. Further details of the dataset are
provided in the Appendix A.

To initialize the speech encoder, we used a
pre-trained japanese-hubert-base3 model (Sawada
et al., 2024), which was trained on the Reazon-
Speech corpus, consisting of 7-layer convolutions
and a 12-layer Transformer with 768 hidden units
and 12 attention heads. To initialize the LLM,
we used a pre-trained japanese-gpt-neox-3.6b4

model (Sawada et al., 2024), which was trained on
approximately 312.5 billion tokens, consisting of a
36-layer Transformer with 2,816 hidden units and
22 attention heads. We used a SentencePiece (Kudo
and Richardson, 2018)-based tokenizer. The tok-

3https://huggingface.co/rinna/
japanese-hubert-base

4https://huggingface.co/rinna/
japanese-gpt-neox-3.6b
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enizer had a vocabulary size of 32,000. The pro-
posed models were trained on four NVIDIA A100
80GB GPUs for a single run of five epochs with
four gradient accumulations. The total batch size
was set to 64 utterances per GPU. The optimizer
was AdamW (Loshchilov and Hutter, 2019) with
parameters β1 = 0.9, β2 = 0.999, and a weight
decay factor of 0.05. The learning rate was lin-
early warmed up over a quarter of the epoch up
to a peak value of 0.0001 followed by a cosine-
decaying schedule. The wall-time required to train
the proposed model was approximately 56 hours.
For CTC compression, λCTC was set to 0.5. To
efficiently train the proposed model with CTC com-
pression, HuBERT was fine-tuned in advance using
only the CTC loss. This CTC fine-tuned model is
referred to as HuBERT-CTC hereinafter. In the
preliminary experiments, we found that the convo-
lutional waveform encoder in HuBERT should be
frozen for stable training of the proposed model.

We optimized the inference process of the
GPT in the proposed model using DeepSpeed-
Inference (Aminabadi et al., 2022). Greedy search
was used for inference the proposed model. We
investigated suitable decoding strategies for the
proposed model in Appendix C.1.

4.2 Ablation study
The performance of the proposed model was com-
pared under various conditions. In addition to
the ReazonSpeech test set, we used two other
Japanese speech corpora for evaluation: 1) JSUT
basic5000 (Sonobe et al., 2017), which contains
5,000 utterances by a single female speaker with
high-quality recordings for speech synthesis, and
2) Common Voice 8.0 (CV8.0) Japanese test
set (Ardila et al., 2020), which consists of 4,483
utterances by multiple speakers. The detailed in-
formation of additional datasets is provided in Ap-
pendix A.

As introduced in Section 3.2, we compared three
methods of bridging the HuBERT output space and
the GPT input embedding space: Downsampling
with convolution, CTC remove, and CTC average.
In each case, we compared whether to fine-tune
the HuBERT encoder and GPT. Following previ-
ous studies (Fathullah et al., 2024), we investigated
using LoRA to efficiently fine-tune GPT param-
eters with a rank parameter R = 32 instead of
full-parameter fine-tuning (Full FT). We also in-
cluded a method that uses only HuBERT-CTC in
this comparison. We measured ASR performance

IDs Model description CER [%] (↓)

HuBERT GPT Reazon JSUT CV8.0

HuBERT + GPT (w/ Downsampling)
A1 Frozen Full FT 9.7 10.4 10.2
A2 Full FT Frozen 10.8 19.1 13.4
A3 Full FT Full FT 8.4 8.6 9.2
A4 Full FT PEFT 10.4 14.8 12.1

HuBERT-CTC + GPT (w/ CTC remove)
B1 Frozen Full FT 9.1 12.1 11.9
B2 Full FT Frozen 13.6 18.5 18.4
B3 Full FT Full FT 7.8 12.1 10.4
B4 Full FT PEFT 10.2 21.6 14.6

HuBERT-CTC + GPT (w/ CTC average)
C1 Frozen Full FT 8.6 11.9 10.6
C2 Full FT Frozen 10.5 17.0 15.1
C3 Full FT Full FT 7.8 11.5 9.7
C4 Full FT PEFT 10.1 15.3 13.0

HuBERT-CTC
D Frozen - 16.3 23.8 21.5

Table 1: ASR results of ablation test with Reazon-
Speech test set, JSUT basic5000, and Common Voice
8.0 (CV8.0) test set.

by calculating character error rates (CERs) for text
by removing all symbols, including punctuation
marks, and converting numbers to words using
num2words5.

The results are presented in Table 1. All mod-
els integrating HuBERT and GPT (A1–4, B1–4,
C1–4) significantly outperformed HuBERT-CTC
(D). The results show that integrating HuBERT
with GPT, which has vast linguistic knowledge,
improves recognition accuracy. In addition, fine-
tuning the full parameters of both HuBERT and
GPT (A3, B3, C3) achieved lower CERs, regard-
less of the bridge network type. We also observed
that GPT fine-tuning was more effective than Hu-
BERT fine-tuning. When GPT was frozen (A2,
B2, C2), the bridge network was forced to map the
speech representation to the LLM embedding space
suitable for text tokens to perform the ASR task via
GPT in a zero-shot manner. By contrast, GPT fine-
tuning enhanced the ability to handle speech infor-
mation directly and appropriately. When HuBERT
was frozen (A1, B1, C1), the recognition accuracy
decreased only slightly because GPT could be op-
timized to handle speech information. This also
implies that pre-trained HuBERT and HuBERT-
CTC already have the potential to extract useful
features for ASR.

In evaluating the system that performed PEFT
with LoRA on GPT (A4, B4, C4), we observed that

5https://github.com/savoirfairelinux/num2words
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its performance exceeded that of the corresponding
system with a frozen GPT (A2, B2, C2). However,
it did not reach the level of systems that had un-
dergone full-parameter fine-tuning (A3, B3, C3).
These results suggest that GPT optimization signif-
icantly contributes to achieving high recognition
accuracy in the proposed model.

Here, we compare sequence compression tech-
niques in bridge networks among models using
the same training strategies. When comparing the
CTC-based compression methods, CTC average
groups (C1–3) demonstrated better performance
in all training strategies than CTC remove groups
(B1–3), particulally for the JSUT basic5000 and
CV8.0 test sets. This result differs from previous
ASR studies that employed a decoder-only Trans-
former model (Tsunoo et al., 2023), which could
be attributed to whether or not pre-training models
were used or the fact that a different target lan-
guage may have affected the results. In contrast,
Downsampling (A1–3) showed different trends for
different test sets. CTC average (C1–3) showed
improved performance on the ReazonSpeech test
set, yet Downsampling (A1-3) consistently outper-
formed CTC on JSUT basic5000 and CV8.0, mark-
ing a departure from prior findings (Tsunoo et al.,
2023; Wu et al., 2023). The results suggest that
CTC-based compression is sensitive to the domain
match between the training and evaluation data. Al-
though CTC compression can effectively compress
the sequence of speech representations to be close
to the text length, CTC compression’s inaccuracies,
often due to prediction errors, can negatively im-
pact GPT-driven text generation. In addition, allow-
ing the speech encoder to perform CTC prediction
implies a shift to a two-stage model, potentially
compromising end-to-end optimization compared
to downsampling. A detailed analysis can be found
in Appendix B.1. We also investigated the utilizing
different speech encoder in Appendix C.2.

4.3 Comparison with other ASR models

We evaluated the performance of the proposed
model in comparison with publicly available ASR
models. The proposed model is denoted A3 in Ta-
ble 1. We also compared the results of the proposed
model with and without DeepSpeed-Inference op-
timization. The following models were used as
baseline E2E ASR models:

reazonspeech-espnet-v16: An encoder-decoder
model using a Conformer-based encoder and

Transformer-based decoder trained on the Rea-
zonSpeech corpus (Yin et al., 2023). This is a
character-level ASR model with joint decod-
ing by combining both attention-based and
CTC scores. Language model fused decoding
was also performed using an external LSTM-
based language model.

Whisper7: An encoder-decoder Transformer
model trained on the large-scale weakly
labeled speech data (Radford et al., 2023).
The base, small, medium and large-v2 models
were trained on 680k hours of multilingual
speech data, including 7k hours of Japanese
speech data. The large-v3 model was trained
on 1M hours of weakly labeled and 4M hours
of pseudo-labeled data.

These models operate on the 80-dimensional log
Mel-spectrograms instead of raw waveforms, un-
like the proposed model.

This experiment was performed using the Rea-
zonSpeech test set, JSUT basic5000, and CV8.0
test sets and three evaluation sets from the Corpus
of Spontaneous Japanese (CSJ) (Maekawa et al.,
2000) to evaluate robustness to a broader domain.
The CSJ data are recordings of actual and mock
conference lectures that contain more fillers, dis-
fluency, and mispronounced words than the other
corpora. Note that the transcription tendency dif-
fers from that of the written text. We measured
the average real-time factor (RTF) on an NVIDIA
T4 GPU using the first 100 utterances from JSUT
basic5000.

The results are presented in Table 2. The in-
ference speed of the proposed model improved
1.4 times faster with DeepSpeed-Inference while
maintaining recognition accuracy. Next, we fo-
cused on the results of recognition accuracy. The
results on ReazonSpeech test set shows that the pro-
posed model outperforms the all beam size settings
of reazonspeech-espnet-v1, which is the encoder-
decoder model trained on the same ReazonSpeech
corpus, in the in-domain scenario. On the JSUT
basic5000 and CV8.0 test sets, the proposed model
achieved a lower CER than reazonspeech-espnet-
v1 with a beam size of 1, although the CER was
slightly worse than reazonspeech-espnet-v1 with
beam sizes of 5 or 20. The proposed model
achieved comparable performance with a lower

6https://huggingface.co/reazon-research/
reazonspeech-espnet-v1

7https://github.com/openai/whisper
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Model name
Model

params.
Beam
size

CER [%] (↓)

RTF (↓)Reazon
test

JSUT
basic5000

CV8.0
test

CSJ

Eval1 Eval2 Eval3

reazonspeech-espnet-v1 90M
1 12.0 8.7 10.5 22.9 20.1 15.3 0.06
5 9.1 7.6 9.0 21.4 18.6 15.3 0.20

20 8.7 7.5 8.9 21.8 19.1 15.5 0.27

Whisper-base 74M 1 38.6 23.5 25.7 29.9 27.5 25.9 0.06
5 35.4 22.2 23.6 28.0 25.7 24.2 0.08

Whisper-small 244M 1 27.3 14.1 14.9 21.7 21.5 18.0 0.10
5 24.0 13.6 13.9 20.9 20.2 17.4 0.14

Whisper-medium 769M 1 21.6 9.6 10.8 19.3 17.6 15.0 0.21
5 20.6 9.4 10.7 18.5 17.3 14.9 0.28

Whisper-large-v2 1,541M 1 21.8 8.1 9.4 23.7 17.1 19.6 0.31
5 20.3 7.9 9.2 17.9 16.3 16.3 0.49

Whisper-large-v3 1,541M 1 12.4 7.1 8.2 17.2 15.6 14.8 0.30
5 11.9 7.1 8.0 17.0 15.6 15.6 0.46

Proposed model
w/o DeepSpeed-Inference 3,708M 1 8.4 8.6 9.1 31.0 26.6 22.9 0.22
w/ DeepSpeed-Inference 1 8.4 8.6 9.2 30.9 26.6 22.9 0.15

Table 2: ASR results of the proposed model and the publicly available ASR models on the ReazonSpeech test set,
JSUT basic5000, CV8.0 test set, and three evaluation sets from CSJ. We compared different beam sizes in beam
search decoding for inference of baseline models. Beam size 1 means greedy decoding.

RTF and without complicated decoding procedures
such as explicit language model fused decoding,
indicating the high potential of decoder-only model-
based ASR. Compared with Whisper models, our
model achieved the same performance as the large-
v2 model, with a lower RTF than the medium ver-
sion. It does not reach the CER of the large-v3
model; one reason was the amount of training data
used. Training the proposed model on a larger
speech corpus may close the gap. Additional analy-
sis of this experiment is provided in Appendix B.2.

All models exhibited worse CERs on CSJ Eval
sets than on the other test sets. This is because
the compared models tended to ignore some words,
such as fillers and disfluencies. Note that our model
performed significantly worse than the other mod-
els. A possible reason for this difference is that in
the proposed model, the weight of the LLM part
was initialized with GPT pre-trained on written
texts where fillers and disfluencies did not appear.
Since the proposed model leverages on the text gen-
eration ability of the LLM to recognize speech, it
tends to drop some words corresponding to such
disfluencies and fillers.

In addition, we found that the proposed model
lost the first or last sentence when a given speech
segment contained multiple sentences. Since the
CSJ corpus consists of 5 to 20 minutes of lecture
speech and no manual annotation of full stops, the

speech files were automatically segmented for eval-
uation, resulting in some segments containing mul-
tiple sentences. This problem of dropping a part of
the text to be recognized possibly stems from the ar-
chitecture of the decoder-only Transformer. In the
standard encoder-decoder models, source-target at-
tention layers can explicitly capture the alignment
between speech and text, while in the proposed
model, self-attention layers in the decoder-only
Transformer capture the alignment. This structural
difference to capture alignments may affect the
robustness of such a segment within multiple sen-
tences. This problem might be mitigated by in-
creasing the diversity of the training data, such as
by including longer speech segments.

4.4 Domain adaptation

Adapting models to specific domains is widely used
to address the issue of robustness to out-of-domain
data, including speech recognition. However, since
the amount of adaptive data is often limited in prac-
tical use, it is beneficial to consider efficient adap-
tation for proposed models with a large number of
model parameters. Therefore, we conducted ad-
ditional experiments to evaluate the domain adap-
tation performance of the proposed model with
PEFT, which has recently been demonstrated to
have significant adaptation performance for vari-
ous generation tasks such as LLM and image gen-
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eration. The base model without adaptation is A3
in Table 1. Considering with the practical conve-
nience required for domain adaptation, this section
explores PEFT using LoRA for both HuBERT and
GPT. We set the LoRA parameter to R = 32 to
adjust the self-attention parameters for HuBERT
and GPT. We used the same objective (2) as for
regular training on a single A100 80GB GPU with
a batch size of 64. The total number of updat-
ing parameters in adapting all modules, including
HuBERT and GPT, was only 22 million. We per-
formed domain adaptation experiments with five
different scenarios using two dataset: CV8.0 train
set and CSJ train set. Two data sizes were used as
adaptation scenarios for CSJ: core data only (34
hours) and all data (520 hours). The case of simul-
taneous adaptation to CV8.0 and CSJ data was also
considered.

The results are listed in Table 3. The models
adapted to CV8.0, slightly improved the CER on
CV8.0 test set. This limited improvement could be
attributed to the small amount of adaptation data
available. It should also be noted that the CV8.0
adapted models also outperformed the non-adapted
model not only on the CV8.0 dataset but also on
the JSUT and CSJ datasets. The ReazonSpeech
corpus, which we used as training data for the base
model, suffers from a partial mismatch between
speech and text, owing to the automatic collection
and segmentation of TV program recordings with
a pre-trained ASR model. Although the CV8.0
corpus contains speeches of poor recording quality
and by non-native speakers, it has been verified
by comparing transcriptions to recorded speech by
the contributors. This result suggests that model
optimization with limited human-validated data im-
proves recognition accuracy, regardless of the spe-
cific domain.

The models adapted to CSJ significantly im-
proved CER on CSJ evaluation sets in both the core
and all data settings. However, the adapted models
had a worse CER for out-of-domain test data such
as JSUT basic5000 and CV8.0, in contrast to the
results for the CV8.0 adaptation. Upon inspecting
the recognition results of the adapted model, we no-
ticed that fillers that should only be present in CSJ
data were sometimes included in the recognized
texts of JSUT basic5000 and CV8.0, even though
they were not present in the actual speech. The
possible reason for this is that model optimization
could have been promoted to insert such fillers as a
text-generation task rather than an ASR task. This

Adaptation CER [%] (↓)

HuBERT Bridge
network

GPT JSUT
basic5000

CV8.0
test

CSJ

Eval1 Eval2 Eval3

No adaptation
8.6 9.2 30.9 26.6 22.9

Adaptation to CV8.0 train (9 hours)
✓ 7.6 8.6 28.1 24.9 20.7

✓ ✓ 7.7 8.9 30.5 26.2 23.0
✓ ✓ ✓ 7.7 8.9 29.4 25.8 22.4

Adaptation to CSJ core (34 hours)
✓ 8.7 11.2 7.9 7.0 4.9

✓ ✓ 8.8 15.1 7.4 6.2 4.4
✓ ✓ ✓ 8.5 12.4 7.0 6.2 4.1

Adaptation to CSJ all (520 hours)
✓ 8.6 14.9 6.6 5.3 4.1

✓ ✓ 9.5 15.9 5.8 4.6 3.4
✓ ✓ ✓ 8.7 15.5 5.4 4.4 3.4

Adaptation to CV8.0 train and CSJ core (43 hours)
✓ 7.2 8.9 7.9 6.9 4.7

✓ ✓ 8.1 8.7 7.5 6.3 4.4
✓ ✓ ✓ 7.7 8.7 7.2 6.1 4.3

Adaptation to CV8.0 train and CSJ all (529 hours)
✓ 7.8 9.0 6.6 5.3 4.0

✓ ✓ 7.9 9.0 5.6 4.5 3.8
✓ ✓ ✓ 7.8 9.1 5.4 4.5 3.5

Table 3: ASR results with different adaptation settings.
The gray color means the same domain of test sets as
that of adaptation data.

hallucination phenomenon was particularly promi-
nent in the CV8.0 test set. The CER on CV8.0 test
of the adapted models was significantly lower than
that of JSUT basic5000 compared with the non-
adapted models. The features of CV8.0 speech are
similar to CSJ with some noise and reverberation,
whereas JSUT consists of clean speech. Similari-
ties in the characteristics between CV8.0 and CSJ
datasets caused the CER on CV8.0 to worsen the
more the model adapted to the CSJ dataset.

Models adapted to both CV8.0 and CSJ enabled
the adaptation of CSJ while maintaining the same
or better recognition performance for CV8.0 test
set. Furthermore, these adapted models were able
to achieve a better CER for JSUT basic5000 as well
as models adapted to only CV8.0.

Appendix C.3 also discusses the results of inde-
pendently adapting each model within the proposed
framework. As an additional example of extend-
ing the proposed model, we conducted adaptation
experiments to output a Japanese mora sequence in-
stead of plain text as ASR outputs in Appendix C.4.

It is difficult to adapt to the target domain while
maintaining the recognition accuracy for the out-of-
target domain of adaptation, depending on the par-
ticularities of the adaptation domain. Nevertheless,
owing to the recent PEFT methods, because fine-
tuning a large-scale model does not always require
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enormous computational costs or large amounts
of adaptation data, domain adaptation each time
for each domain is not a significant problem for
practical application.

5 Conclusions

This paper proposed a fully E2E ASR model that in-
tegrates a pre-trained speech representation model
and an LLM. In the proposed model, the pre-trained
HuBERT and GPT are connected by a convolution-
based bridge network and are fully fine-tuned,
where the bridge network passes meaningful con-
tinuous latent representations extracted from the
speech waveform sample to the LLM as speech
prompts. Experiments demonstrated that the pro-
posed model achieved a performance comparable
to that of publicly available modern ASR models.
We also investigated the domain adaptation capa-
bilities of different text and speech domains using
PEFT. The strength of the proposed model lies in
its potential to be easily integrated with various
speech and language pre-trained models, including
multilingual LLMs such as Yong et al. (2023). Fu-
ture work includes further comparison of existing
E2E baseline models, use of different pre-training
models, and extension to multilingual ASR.

While this paper focused on the ASR task as an
extension of pre-trained models, we believe that it
is essential to investigate ways to improve perfor-
mance in specific domains to advance multi-task
speech-text processing capabilities by leveraging
these models. Extending pre-trained models to en-
compass a wider range of multimodal speech and
text tasks, such as automatic speech translation,
speech question answering, and other related areas,
is a promising future direction.

6 Limitations

Based on our experimental results and analyses, we
discuss some limitations and avenues for address-
ing them.

The primary consideration in the proposed
method is the amount of data required. As men-
tioned in Section 4.1 and Appendix A, the pro-
posed model was trained on over 15,000 hours of
speech/text pair data to integrate pre-trained Hu-
BERT and GPT. This is a concern when consider-
ing extensions to languages for which such large
amounts of speech data do not exist, especially
for low-resource languages. Although it is intu-
itively expected that the performance of the inte-

grated model will decrease as the amount of data
decreases, an investigation into the actual trade-
off between data volume and performance is war-
ranted. Future directions to overcome this lim-
itation include exploring data augmentation and
applying transfer learning techniques from other
languages. The adaptation experiments presented
in Section 4.4 are expected to facilitate extension
of multilingual ASR and transfer learning to low-
resource languages.

Moreover, given that it is impractical to construct
pre-trained models exclusively with low-resource
languages, one direction is to use a multilingual
pre-training model (Yong et al., 2023). However,
since the parameter size tends to increase with the
size of the training data, the relationship between
the model size and pre-training model size should
be investigated.

The second limitation concerns inference speed.
A significant challenge of the proposed method
is the difficulty of performing inferences on low-
resource devices, mainly because of the large num-
ber of parameters in the LLM. Recently, ASR on
compact devices such as smartphones and smart
speakers has become widespread as a input method
for natural human-computer interactions. In these
scenarios, there is demand for on-device ASR from
a privacy perspective and off-line inference.

These limitations are not unique to the proposed
model but are a common issue in recent multimodal
processing that utilizes self-supervised learning
models and LLMs. Starting various speech and lan-
guage processing tasks on the common foundation
of these pre-trained models leads to a multifaceted
understanding of these models. Research address-
ing these challenges is expected to continue.

The third limitation relates to the evaluation
method for ASR systems in languages that exhibit
orthographic variations. For example, in the case of
Japanese, the correct forms are written in hiragana
and kanji. It should be noted that the current stan-
dard evaluation metric in ASR, which directly uses
the Levenshtein distance against the correct text,
fails to proper consider orthographic variations.

7 Ethics Statement

The proposed model shares ethical concerns with
the other ASR models. Because it uses human
speech as input, differences in user attributes, such
as age, gender, dialect, and whether the speaker
is native or non-native, could potentially impact
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recognition accuracy. For instance, it has been re-
ported that various characteristics of elderly voices
differ significantly from those of younger people,
such as hoarseness, slower speech, and unclear
pronunciation (Winkler et al., 2003; Takeshi et al.,
2010). In addition, non-native speakers may pro-
duce more ambiguous pronunciations close to their
native language. From a text perspective, it would
also be ethically controversial if the recognition re-
sults showed extreme accuracy or inaccuracy only
for specific topics, such as certain political or re-
ligious beliefs. Given the data-driven nature of
recent ASR approaches, the variability in the do-
mains of speech and text data used for training
requires careful consideration in the practical ap-
plication of ASR systems.

This work used publicly available datasets and
pre-trained models, which ensured the transparency
of the experiments. The additional data used in the
evaluation and adaptation experiments are also pub-
licly available and widely used in Japanese speech-
related research.

The proposed model output the recognized text
by a decoder-only Transformer as a next-token pre-
diction, similar to recent LLMs. This may cause
hallucinations, as is the case with existing LLMs,
leading to the generation of a recognized text that
differs from the actual spoken content. However,
such recognized errors are a potential risk com-
mon to all speech recognition models, not just the
proposed method, and further improvements are
required from both data and method perspectives.
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A Dataset and Preprocessing Details

We used the following datasets in the experiments:
ReazonSpeech, JSUT, Common Voice 8.0, and CSJ.
All datasets are publicly available and used in the
Japanese speech-related research community. The
details of each dataset are summarized below.

ReazonSpeech: This corpus is a large-scale
Japanese speech corpus constructed from audio
and caption data from recorded TV programs (Yin
et al., 2023). It encompasses various sounds, rang-
ing from clean audio to recordings mixed with au-
dience cheers and background music.

We used 1,000 utterances as development data,
1,000 different utterances as test data, and the re-
mainder as training data by following a publicly
available ASR recipe8. We found some duplica-
tion between the utterances in the development/test
set and those in the training data. Therefore, we
performed a transcript-level de-duplication to de-
velopment and test set and finally removed utter-
ances that matched more than 5 characters. This
corpus contains audio files with little or no hu-
man speech because of the properties of the corpus,
which is automatically constructed from audio and
caption data from recorded TV programs. Thus, we
pruned the data with a few speech segments based
on the length of the transcribed text and speech
waveforms, wherein 10 million utterances (approx-
imately 15,700 hours) were used.

JSUT: This corpus is a Japanese speech corpus
designed for end-to-end speech synthesis (Sonobe
et al., 2017). It consists of clean speech data
recorded with a 48 kHz sampling in an anechoic
room by one female native Japanese speaker.

This corpus includes nine subsets, and basic5000
subset was used for the evaluation of the ASR mod-
els. This subset contains 5,000 utterances, covering
all main pronunciations of daily-use characters and
their individual onyomi (Japanese readings) and
kunyomi (Chinese readings). The audio was down-
sampled to 16 kHz for experiments.

Common Voice: This corpus is a massively
multilingual, multispeaker dataset of transcribed
speech intended to support research and devel-
opment in speech technologies, particularly for
ASR (Ardila et al., 2020). Because it relies on
crowdsourcing for data collection and validation,

8https://github.com/espnet/espnet/tree/
105e532/egs2/reazonspeech/asr1
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Figure 3: Letter-value plot of Levenshtein distance for ablation study of the proposed model. The IDs of each model
are the same as the IDs in the Table 1.

there are some recordings with a lot of background
noise due to poor recording environments and
recordings from non-native speakers.

For our study, we used the Japanese subset of
Common Voice 8.0. The test set was employed
to evaluate the ASR models, and the training and
development sets were further used for domain
adaptation experiments detailed in Section 4.4 and
Appendix C.3. Since the audio clips are provided as
16-bit MPEG-3 files with a 48 kHz sampling rate,
they were downsampled to 16 kHz for experiments.

CSJ: This corpus contains 660-hour sponta-
neously uttered Japanese speech and the morpho-
logically annotated transcriptions. Most of this
corpus consists of data recorded from academic
presentation speech and simulated public speaking.
Since the length of such speech is mostly 10 to 25
minutes, the audio files were segmented based on
the annotated pause information, following a pub-
licly available ASR recipe9. This corpus includes
speeches with text domains not commonly found
in standard speech corpora, such as those from
science and engineering, humanities, and society-

9https://github.com/kaldi-asr/kaldi/tree/
master/egs/csj/s5/local/csj_make_trans

related presentations. It also transcribes fillers, dis-
fluency, and mispronounced words found in spon-
taneous speech, which significantly differs from
the ReazonSpeech corpus. Hence, this dataset was
utilized to evaluate the out-of-domain performance
of the ASR models in Section 4.3 and as adap-
tation data for domain adaptation in Section 4.4
and Appendix C.3. This corpus contained the pro-
nunciative form notation, which was used in the
additional experiments in Appendix C.4.

The sampling rate of provided audio samples
was 16 kHz. The CSJ files are grouped into Core,
which contains detailed annotations but limited au-
dio data, and others, which do not. The same three
evaluation sets presented in the CSJ corpus were
used as test data.

B Supplementary Experimental Analysis

B.1 Analysis of ablation study

We analyzed the ablation study for the proposed
model in Section 4.2. Figure 3 shows the letter-
value plot of the Levenshtein distances between the
target and recognized texts of each utterance on the
ReazonSpeech development and test set, the JSUT
basic5000, and the CV8.0 test set.

13301

https://github.com/kaldi-asr/kaldi/tree/master/egs/csj/s5/local/csj_make_trans
https://github.com/kaldi-asr/kaldi/tree/master/egs/csj/s5/local/csj_make_trans


Model description CER [%] (↓)

IDs
HuBERT GPT

ReazonSpeech dev ReazonSpeech test JSUT basic5000 CV8.0 test

short mid long all short mid long all short mid long* all short mid long all

HuBERT + GPT (w/ Downsampling)
A1 Frozen Full FT 8.1 6.1 24.2 8.9 9.7 7.1 21.9 9.7 10.4 10.4 7.1 10.4 9.7 10.6 – 10.2
A2 Full FT Frozen 10.4 9.6 15.0 10.5 14.6 9.7 10.9 10.8 19.7 18.3 31.0 19.1 11.7 14.7 – 13.4
A3 Full FT Full FT 7.6 5.4 23.0 8.2 9.0 6.2 18.0 8.4 8.6 8.6 5.8 8.6 8.9 9.4 – 9.2
A4 Full FT PEFT 8.8 8.1 28.3 10.9 10.3 8.0 21.7 10.4 15.0 14.5 12.3 14.8 11.3 12.7 – 12.1

HuBERT-CTC + GPT (w/ CTC remove)
B1 Frozen Full FT 9.0 8.1 11.0 8.7 12.2 7.9 10.1 9.1 12.0 12.2 9.0 12.1 10.6 12.8 – 11.9
B2 Full FT Frozen 12.8 13.0 14.7 13.2 15.8 12.5 15.4 13.6 14.8 22.6 25.8 18.5 14.6 21.2 – 18.4
B3 Full FT Full FT 7.1 5.8 8.0 6.4 9.9 7.0 8.8 7.8 12.8 11.2 9.0 12.1 9.8 10.9 – 10.4
B4 Full FT PEFT 10.9 8.6 14.2 9.9 12.0 9.3 11.8 10.2 23.2 19.7 20.6 21.6 12.5 16.1 – 14.6

HuBERT-CTC + GPT (w/ CTC average)
C1 Frozen Full FT 9.0 6.9 15.0 8.5 10.9 7.4 11.2 8.6 12.4 11.4 11.6 11.9 9.9 11.0 – 10.6
C2 Full FT Frozen 12.1 9.8 14.9 11.0 12.0 10.1 9.9 10.5 15.7 18.5 15.5 17.0 12.4 17.1 – 15.1
C3 Full FT Full FT 7.5 6.1 6.8 6.6 8.8 7.1 9.4 7.8 12.3 10.6 3.2 11.5 9.2 10.0 – 9.7
C4 Full FT PEFT 9.2 8.0 12.8 8.9 11.7 9.0 12.9 10.1 15.2 15.5 11.6 15.3 11.1 14.4 – 13.0

HuBERT-CTC
D Frozen - 16.9 16.8 18.3 16.9 15.9 16.7 16.6 16.3 24.1 23.0 26.3 23.8 21.3 21.7 – 21.5

Table 4: Detailed ASR results of the ablation study on the ReazonSpeech development and test set, JSUT basic5000,
and CV8.0 test set. The CER was calculated based on the groups categorizing audio length as “short,” “mid,” and
“long.” The number of samples in each group is listed in Table. 5. Note that the results for long JSUT basic5000
(marked as “*”) are unreliable because they were computed from only two long utterance samples.

Dataset
Short Mid Long

Total(<5.1s) (5.1s – 15.9s) (≥15.9s)

ReazonSpeech dev 332 349 28 709
ReazonSpeech test 292 375 31 698
JSUT basic5000 3,498 1,500 2 5,000
CV8.0 test 2,599 1,884 0 4,483

Table 5: Number of short, medium, and long utterances
in the development and test data. The boundaries for
each group, at 5.1 seconds and 15.9 seconds, correspond
to the median and maximum utterance lengths in the
filtered ReazonSpeech training set used to train the pro-
posed model.

The HuBERT-CTC model (D) had larger dis-
tances on average than other models integrating
GPT, yet it had fewer outliers across each test set.
In contrast, the overall tendency of the models in-
tegrating HuBERT and GPT was to have a wider
range of Levenshtein distance values and more out-
liers, especially for the ReazonSpeech development
and test sets. This indicates that the integrated
model is less stable in sequence generation than the
HuBERT-CTC model due to autoregressive decod-
ing by the GPT.

For a more detailed analysis, each development
and test set was divided into three groups based on
the length of the speech: short, mid, and long, and
the CER was calculated for each group. The results
of the CER aggregated for each group are summa-
rized in Table 4, and the number of utterances for

each group is summarized in Table 5.
Table 4 shows that the models with

downsampling-based sequence compression
(A1–A4) heavily depend on the length of the
speech for their performance. In particular, the
GPT fine-tuned models (A1, A3, and A4) suffer a
significant degradation in CER when processing
long utterances that do not appear in the training
data. This is because downsampling, with its fixed
compression rate, is sensitive to temporal structure
of speech, such as speaking rate and the number
and frequency of pauses. Conversely, the models
with CTC remove (B1–B4) and CTC average
(C1–C4) are less sensitive to utterance length than
those with downsampling-based ones. In fact,
the HuBERT-CTC model (D4) is likewise hardly
affected by speech utterance length. Thus, it can
be seen that CTC-based sequence compression is
superior in terms of robustness to utterance length.

B.2 Analysis of comparison with other ASR
models

We conducted additional analysis on the compar-
ative experiment results between our proposed
model and publicly available models in Section 4.3.
Figure 4 shows the letter-value plot of the Leven-
shtein distances between the target and recognized
texts of each utterance on the JSUT basic5000 and
the CV8.0 test set.

Each Whisper model, particularly with the JSUT
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Figure 4: Letter-value plot of Levenshtein distance for the comparison of the proposed model with the publicly
available ASR models. The proposed model employed greedy search, while the comparative models used beam
search with a beam size of 5. “DS” denotes DeepSpeed-Inference.

basic5000 dataset, resulted in a higher incidence of
undesirable outliers. Upon examining these recog-
nition results, it became apparent that the errors
were more frequently due to orthographic varia-
tions (such as kanji in Japanese texts being tran-
scribed as hiragana or katakana) rather than fail-
ures inherent to autoregressive models (such as
repeating some words). These orthographic vari-
ations are not incorrect but somewhat unnatural
as Japanese text. The reason why Whisper strug-
gles with such issues may stem from the quality
of the transcribed texts derived from training data
automatically collected from the Internet.

Meanwhile, as with reazonspeech-espnet-v1, the
proposed model did not generate samples with a
huge Levenshtein distance for either test set, unlike
Whisper model family. This demonstrates that in-
tegrating pre-trained speech and language models
enables the construction of an ASR model whose
performance is comparable to that of the typical
source-target attention-based ASR model utilizing
external language models in practical applications.

C Additional Investigation for the
Proposed Model

C.1 Decoding strategies

In this section, we compare the decoding strate-
gies for the proposed model. We conducted ex-
periments using four different decoding strategies:
greedy search, beam search, top-k sampling (Fan
et al., 2018), and nucleus sampling (Holtzman et al.,
2020), with different parameters.

The results are listed in Table 6. Table 6
shows that introducing beam search did not re-
sult in a noticeable improvement in CER, un-
like typical encoder-decoder ASR models such as
reazonspeech-espnet-v1 and Whisper model fam-

Decoding strategies
CER [%] (↓)

Reazon dev Reazon test

Greedy 8.2 8.4

Beam search (size=2) 8.6 8.9
Beam search (size=3) 8.6 8.7
Beam search (size=4) 8.4 8.7
Beam search (size=5) 8.7 8.6

Top-k sampling (k=2) 9.3 9.3
Top-k sampling (k=3) 9.9 9.6
Top-k sampling (k=4) 9.9 9.9
Top-k sampling (k=5) 10.5 10.3

Nucleus sampling (p=0.1) 8.2 8.4
Nucleus sampling (p=0.3) 8.3 8.5
Nucleus sampling (p=0.5) 8.4 8.7
Nucleus sampling (p=0.7) 8.9 8.8
Nucleus sampling (p=0.9) 9.6 9.3

Table 6: Comparison of decoding strategies for the pro-
posed model.

ily, as shown in Table 2. This could be because
the proposed model with the LLM has more pa-
rameters and a higher modeling capability than
other ASR models, allowing the LLM to decode
the text tokens of the recognition results from the
given speech prompts with high confidence. On the
other hand, unlike popular text generation tasks by
LLMs, such as story generation (Holtzman et al.,
2020), Table 6 also shows that decoding strategies
involving sampling are ineffective for ASR tasks.
The speech prompt is a powerful condition in ASR
tasks, making it sufficient to perform likelihood-
based deterministic decoding.

C.2 Integrating other speech pre-trained
models

We compared wav2vec 2.0 Base (Baevski et al.,
2020) and the encoder of Whisper small (Rad-
ford et al., 2023) with HuBERT Base (Hsu et al.,
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Architecture
of speech encoder

CER [%] (↓)

Reazon JSUT CV8.0

wav2vec2.0
Frozen 31.1 26.9 37.3

Updated 8.5 10.4 10.8

HuBERT
Frozen 9.7 10.4 10.2

Updated 8.4 8.6 9.2

Whisper-small
Frozen 9.7 10.1 9.8

Updated 8.2 8.6 10.0

Table 7: ASR results with different speech encoders.

2021) as pre-trained models for initializing the
speech encoder. All models contain 12 transformer
blocks, model dimension 768, inner feed-forward
network dimension 3,072, and 12 attention heads.
wav2vec 2.0 takes speech waveform directly as in-
put and then is fed into a convolutional waveform
encoder as the same in HuBERT, while Whisper
encoder takes an 80-dimensional mel-spectrogram
computed with a hop size of 10 ms. We used a pre-
trained japanese-wav2vec2-base10 model (Sawada
et al., 2024), which was a wav2vec 2.0 Base model
trained on the ReazonSpeech corpus. Under the
condition in GPT with full-parameter fine-tuned,
we compared whether or not the Speech encoder is
full-parameter fine-tuned in the case of each model.

The ASR results using the ReazonSpeech test set,
JSUT basic5000, and CV8.0 test set are listed in
Table 7. HuBERT integrated models demonstrate
a lower CER compared to wav2vec 2.0 integrated
ones, with notable improvements, especially in sce-
narios when the speech encoder is frozen. This
indicates that HuBERT, which performed repre-
sentation learning via masked prediction using a
pseudo-discrete label, can provide more useful fea-
tures for the proposed model as a speech encoder
compared to wav2vec 2.0, which performed con-
trastive learning along with auxiliary diversity loss
to encourage the use of discrete units. Moreover,
models integrated with HuBERT have shown per-
formance comparable to the ones integrated with
Whisper encoder, which has already been trained
on a large amount of multi-lingual speech data for
ASR tasks, even though pre-trained HuBERT is not
fine-tuned in the ASR task. These results confirmed
that integrating HuBERT as the pre-trained speech
encoder suits the proposed model framework.

10https://huggingface.co/rinna/
japanese-wav2vec2-base

Adaptation CER [%] (↓)

HuBERT Bridge
network

GPT JSUT
basic5000

CV8.0
test

CSJ

Eval1 Eval2 Eval3

No adaptation
8.6 9.2 30.9 26.6 22.9

Adaptation to CV8.0 train (9 hours)
✓ 7.8 9.8 30.5 26.5 23.7

✓ 7.7 8.9 31.1 27.6 25.3
✓ 7.6 8.6 28.1 24.9 20.7

Adaptation to CSJ core (34 hours)
✓ 12.7 13.0 17.4 16.9 13.5

✓ 9.9 13.9 8.0 6.8 4.7
✓ 8.7 11.2 7.9 7.0 4.9

Adaptation to CSJ all (520 hours)
✓ 9.2 14.6 13.8 13.5 10.3

✓ 10.4 15.9 6.4 5.3 4.0
✓ 8.6 14.9 6.6 5.3 4.1

Adaptation to CV8.0 train and CSJ core (43 hours)
✓ 12.1 9.7 17.4 16.5 13.3

✓ 8.8 9.4 8.4 7.0 7.0
✓ 7.2 8.9 7.9 6.9 4.7

Adaptation to CV8.0 train and CSJ all (529 hours)
✓ 9.1 9.8 14.0 13.1 10.4

✓ 9.2 9.7 6.6 5.2 4.1
✓ 7.8 9.0 6.6 5.3 4.0

Table 8: ASR results with different adaptation settings.
The gray color means the same domain of test sets as
that of adaptation data.

C.3 Additional results of domain adaptation

We conducted additional experiments to evaluate
the effectiveness of domain adaptation of each mod-
ule of the proposed model to better understand do-
main adaptation. The setting for the adaptation data
is the same as in Section 4.4.

The results are listed in Table 8. From the table,
domain adaptation to HuBERT alone had a limited
effect, unlike the bridge network and GPT. Hu-
BERT may have been robust to differences in the
domain of input speech (e.g., the age group of the
target speaker, microphone, and noise conditions)
and enables the extraction of domain-independent
speech features without being affected by such do-
main differences. On the other hand, adapting
bridge networks or GPT led to a significant im-
provement in CER, especially for the adaptation to
CSJ data.

While it is intuitively understandable that GPT
adaptation plays a crucial role in improving perfor-
mance for different text domains, the interesting
result is that adaptation effective for bridge net-
works alone is significant. Bridge networks reduce
the temporal resolution of speech representations
to be close to the text embedding and embed their
representations as speech prompts. Adaptation to
bridge networks helped generate speech prompts
from speech representations that would facilitate
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the generation of text in different domains for sub-
sequent GPT.

C.4 Mora-level ASR experiments
In order to further evaluate the adaptability of
the proposed model to different ASR scenarios,
we conducted experiments to adapt the proposed
model to Japanese mora-level ASR. In Japanese,
a mora is a rhythmic unit that plays a key role
in the language’s rhythm and is defined as a unit
represented by a single sound of kana and long
sound symbol. Note that the contracted sounds do
not form a mora by themselves and are attached
to other kana. All the other of the kana form a
mora on their own. For example, the word “研究”
(research in Japanese) is considered to have four
morae “ケ/ン/キュ/ー” (ke / N / kyu / –). In this
experiment, the text in the pronunciative form nota-
tion contained in the CSJ annotation data was used
as the target mora sequence. We conducted experi-
ments with two different data sizes: core data only
(34 hours) and all data (520 hours), as the same in
the Section 4.4. The mora set conforms to the CSJ
corpus and consists of 145 types.

One approach to extending a pre-trained speech
recognition model for mora recognition involves
replacing the tokenizer with a vocabulary set of
morae. However, this approach may face issues
with mismatching the text embedding space, which
could prevent leveraging the capabilities of the ac-
cumulated language knowledge in the proposed
model. Therefore, as an alternative approach, this
experiment treated the mora sequences as plain text,
using the same tokenizer before and after adapta-
tion. In the case of Japanese, the mora sequence
can be noted in both katakana and hiragana; for
the aforementioned “研究,” it is represented as “ケ
ンキュー” in katakana and ”けんきゅー” in hi-
ragana. Hence, both cases were examined in the
same configuration except for the mora notation.

The results are listed in Table 9. This table shows
that the proposed model adapted to the mora-level
transcription achieved a low CER of less than 6.0%.
In particular, the model adapted only to GPT re-
vealed a performance decrease of only approxi-
mately 1% compared to the model adapted to all
modules, suggesting that the proposed model is
highly adaptable to various scenarios by simply
switching the adaptation module. It is also inter-
esting to note that ASR systems targeting the mora
sequence in hiragana notation had a lower CER
than those targeting the mora sequence in katakana

Adaptation CER [%] (↓)

HuBERT Bridge
network

GPT
CSJ

Eval1 Eval2 Eval3

“Katakana” mora adaptation to CSJ core (34 hours)
✓ 5.9 4.4 4.2

✓ ✓ 5.1 3.6 3.4
✓ ✓ ✓ 4.8 3.7 3.2

“Hiragana” mora adaptation to CSJ core (34 hours)
✓ 5.7 4.2 3.9

✓ ✓ 4.8 3.6 3.3
✓ ✓ ✓ 4.5 3.3 3.2

“Katakana” mora adaptation to CSJ all (520 hours)
✓ 4.9 3.9 3.4

✓ ✓ 4.4 2.8 2.6
✓ ✓ ✓ 3.9 2.7 2.6

“Hiragana” mora adaptation to CSJ all (520 hours)
✓ 4.6 3.3 3.0

✓ ✓ 4.2 2.8 2.6
✓ ✓ ✓ 3.7 2.6 2.4

Table 9: ASR results with different adaptation settings
for Japanese Mora-level ASR. We used two mora no-
tations, katakana and hiragana, as the target transcrip-
tions.

notation. This may be because katakana is more
commonly used for foreign words and technical
terms, while hiragana is more prevalent in ordinary
Japanese texts, including particles and auxiliary
verbs. Therefore, GPT integrated with the pro-
posed model may be more adept at generating text
sequences in hiragana.
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