@inproceedings{fazili-etal-2024-boosting,
title = "Boosting Zero-Shot Crosslingual Performance using {LLM}-Based Augmentations with Effective Data Selection",
author = "Fazili, Barah and
Agrawal, Ashish and
Jyothi, Preethi",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.795/",
doi = "10.18653/v1/2024.findings-acl.795",
pages = "13406--13422",
abstract = "Large language models (LLMs) are very proficient text generators. We leverage this capability of LLMs to generate task-specific data via zero-shot prompting and promote cross-lingual transfer for low-resource target languages. Given task-specific data in a source language and a teacher model trained on this data, we propose using this teacher to label LLM generations and employ a set of simple data selection strategies that use the teacher`s label probabilities. Our data selection strategies help us identify a representative subset of diverse generations that help boost zero-shot accuracies while being efficient, in comparison to using all the LLM generations (without any subset selection). We also highlight other important design choices that affect cross-lingual performance such as the use of translations of source data and what labels are best to use for the LLM generations. We observe significant performance gains across sentiment analysis and natural language inference tasks (of up to a maximum of 7.13 absolute points and 1.5 absolute points on average) across a number of target languages (Hindi, Marathi, Urdu, Swahili) and domains."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fazili-etal-2024-boosting">
<titleInfo>
<title>Boosting Zero-Shot Crosslingual Performance using LLM-Based Augmentations with Effective Data Selection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barah</namePart>
<namePart type="family">Fazili</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashish</namePart>
<namePart type="family">Agrawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preethi</namePart>
<namePart type="family">Jyothi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) are very proficient text generators. We leverage this capability of LLMs to generate task-specific data via zero-shot prompting and promote cross-lingual transfer for low-resource target languages. Given task-specific data in a source language and a teacher model trained on this data, we propose using this teacher to label LLM generations and employ a set of simple data selection strategies that use the teacher‘s label probabilities. Our data selection strategies help us identify a representative subset of diverse generations that help boost zero-shot accuracies while being efficient, in comparison to using all the LLM generations (without any subset selection). We also highlight other important design choices that affect cross-lingual performance such as the use of translations of source data and what labels are best to use for the LLM generations. We observe significant performance gains across sentiment analysis and natural language inference tasks (of up to a maximum of 7.13 absolute points and 1.5 absolute points on average) across a number of target languages (Hindi, Marathi, Urdu, Swahili) and domains.</abstract>
<identifier type="citekey">fazili-etal-2024-boosting</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.795</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.795/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>13406</start>
<end>13422</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Boosting Zero-Shot Crosslingual Performance using LLM-Based Augmentations with Effective Data Selection
%A Fazili, Barah
%A Agrawal, Ashish
%A Jyothi, Preethi
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F fazili-etal-2024-boosting
%X Large language models (LLMs) are very proficient text generators. We leverage this capability of LLMs to generate task-specific data via zero-shot prompting and promote cross-lingual transfer for low-resource target languages. Given task-specific data in a source language and a teacher model trained on this data, we propose using this teacher to label LLM generations and employ a set of simple data selection strategies that use the teacher‘s label probabilities. Our data selection strategies help us identify a representative subset of diverse generations that help boost zero-shot accuracies while being efficient, in comparison to using all the LLM generations (without any subset selection). We also highlight other important design choices that affect cross-lingual performance such as the use of translations of source data and what labels are best to use for the LLM generations. We observe significant performance gains across sentiment analysis and natural language inference tasks (of up to a maximum of 7.13 absolute points and 1.5 absolute points on average) across a number of target languages (Hindi, Marathi, Urdu, Swahili) and domains.
%R 10.18653/v1/2024.findings-acl.795
%U https://aclanthology.org/2024.findings-acl.795/
%U https://doi.org/10.18653/v1/2024.findings-acl.795
%P 13406-13422
Markdown (Informal)
[Boosting Zero-Shot Crosslingual Performance using LLM-Based Augmentations with Effective Data Selection](https://aclanthology.org/2024.findings-acl.795/) (Fazili et al., Findings 2024)
ACL