
Findings of the Association for Computational Linguistics ACL 2024, pages 13526–13544
August 11-16, 2024 ©2024 Association for Computational Linguistics

Competition-Level Problems are Effective LLM Evaluators

Yiming Huang1*†, Zhenghao Lin2*†, Xiao Liu1‡, Yeyun Gong1‡, Shuai Lu1,
Fangyu Lei, Yaobo Liang1, Yelong Shen3, Chen Lin2‡, Nan Duan1, Weizhu Chen3‡

1 Microsoft Research Asia, 2 Xiamen University, 3 Microsoft Azure AI
{xiaoliu2,yegong, wzchen}@microsoft.com, chenlin@xmu.edu.cn

Abstract
Large language models (LLMs) have demon-
strated impressive reasoning capabilities, yet
there is ongoing debate about these abilities
and the potential data contamination problem
recently. This paper aims to evaluate the reason-
ing capacities of LLMs, specifically in solving
recent competition-level programming prob-
lems in Codeforces, which are expert-crafted
and unique, requiring deep understanding and
robust reasoning skills. We first provide a com-
prehensive evaluation of GPT-4’s perceived
zero-shot performance on this task, consider-
ing various aspects such as problems’ release
time, difficulties, and types of errors encoun-
tered. Surprisingly, the perceived performance
of GPT-4 has experienced a cliff like decline
in problems after September 2021 consistently
across all the difficulties and types of problems,
which shows the potential data contamination,
as well as the challenges for any existing LLM
to solve unseen complex reasoning problems.
We further explore various approaches such as
fine-tuning, Chain-of-Thought prompting and
problem description simplification. Unfortu-
nately, none of them is able to consistently mit-
igate the challenges. Through our work, we
emphasize the importance of this excellent data
source for assessing the genuine reasoning ca-
pabilities of LLMs, and foster the development
of LLMs with stronger reasoning abilities and
better generalization in the future.

1 Introduction

The rise of LLMs has generated significant inter-
est in the artificial intelligence community. These
models, notably GPT-4 (OpenAI, 2023), have dis-
played impressive reasoning capabilities that are
being harnessed in various fields (Bubeck et al.,
2023). However, questions1 have been raised about

* Equal contribution.
† This work was done during their internship at MSRA.
‡ Corresponding authors.
1https://twitter.com/keirp1/status/

1724518513874739618

2010
2012

2014
2016

2018
2020

2022
2024

Problem Release Date

0.0

0.2

0.4

0.6

0.8

AC
C#

G

2021-09-30

GPT-4's Performance on Codeforces
D1
D2
D3

Figure 1: The perceived zero-shot performance of GPT-
4 sees a sharp decline on problems of varying difficulties
(D1, D2 and D3 means easy, medium and difficult, re-
spectively) in Codeforces after September 2021.

how to accurately evaluate the reasoning abilities of
LLMs and the extent of data contamination issues
(Mialon et al., 2023; Zhou et al., 2023).

Regarding these issues, our study aims to as-
sess the reasoning capabilities of LLMs through
their ability to generate algorithms for solving
competition-level programming problems. These
questions are meticulously crafted by experts to
form rigorous competitions. They possess high
quality, are unique, and exhibit excellent discrim-
inative ability. The testing cases are also metic-
ulously prepared. This necessitates that LLMs
deduce the solution from the presented scenario,
which requires a thorough understanding of algo-
rithms, combined reasoning and coding skills, and
strong problem-solving abilities. These problems
thus present a significant challenge to both human
coders and LLMs. Consequently, competition-level
programming problems serve as effective tools
for evaluating the two issues previously discussed:
they assess the reasoning abilities of LLMs and,
due to the strict problem selection process in com-
petitions, reduce the likelihood of data contamina-

13526

https://twitter.com/keirp1/status/1724518513874739618
https://twitter.com/keirp1/status/1724518513874739618

tion in new problems.
Our research provides an in-depth analysis of the

zero-shot performances of GPT-4 and other code
LLMs on competition-level programming prob-
lems in Codeforces, considering factors such as
release time, problem difficulty, and the types of
errors encountered. The main insights of our study
include: (1) GPT-4 performs significantly worse on
programming problems released after September
2021, casting doubt on its actual reasoning abili-
ties. (2) GPT-4 shows limited capability to solve
difficult problems, indicating potential weaknesses
in complex problem-solving. (3) GPT-4 struggles
with the first test case, suggesting errors may stem
from its understanding of the problem at hand. (4)
The related phenomenon can be also observed in
other LLMs, indicating that insufficient reasoning
ability may be a common problem.

To explore possible ways to enhance the zero-
shot performances of these LLMs on competition-
level programming problems, we investigate sev-
eral methods to improve performance on unseen
problems. These methods include supervised
fine-tuning with code-specific LLMs, Chain-of-
Thought prompting (Wei et al., 2022), and prob-
lem statement simplification. Specifically, we
fine-tuned CodeLlama(Rozière et al., 2023) and
DeepSeek-Coder(AI, 2023), which are specialized
language models designed to handle programming-
related tasks. However, none of these methods
consistently mitigated the issue or resulted in no-
ticeable performance improvements, particularly
for more difficult problems. This finding indicates
that difficult and unseen programming problems
are effective evaluators of LLMs.

Overall, the primary contributions of this
study lie in proposing and validating that recent
competition-level programming problems serve as
an excellent data source for assessing the genuine
reasoning capabilities of LLMs. We aim to fos-
ter further research in this field by innovating new
approaches to address the challenge of complex
reasoning problems in LLMs and by establishing
reliable evaluation benchmarks for LLMs that min-
imize the risk of data contamination.

2 Problem Setup

2.1 Competition-level Programming

Competition-level programming presents a unique
arena for testing and developing the reasoning abil-
ities of AI models. In competitive programming, a

problem typically consists of a narrative that sets
the context, which models need to understand and
convert into an algorithmic problem. The chal-
lenge lies in comprehending the narrative, identi-
fying the underlying algorithmic issues, and imple-
menting an efficient solution in programming lan-
guages such as C++ and Java. Accepted programs
must satisfy stringent testing conditions, includ-
ing producing outputs that exactly match with test
cases, executing within memory limits, and termi-
nating within time constraints. In contrast to prior
works (Chen et al., 2021a; Austin et al., 2021; Cas-
sano et al., 2023) focusing on basic coding abilities,
competition-level programming problems require
advanced reasoning and mathematical modeling
skills, essential for AI.

Unlike the previous works that focused on Leet-
Code2 (Bubeck et al., 2023; Shen et al., 2023; Sakib
et al., 2023), we follow AlphaCode (Li et al., 2022)
and choose Codeforces3. Codeforces is universally
acknowledged by competitors and enthusiasts in
the International Collegiate Programming Compe-
tition4 (ICPC) and the International Olympiad in
Informatics5 (IOI) as a popular and suitable plat-
form for developing abilities for algorithm contests.
The regular contests hosted on this platform are
crafted by human experts, and contain plenty of
intricate programming problems and contests of
high quality. These contests come with compre-
hensive and robust test cases and exhibit a low
degree of problem overlap. The unique nature of
these contest problems makes it highly unlikely to
find similar content on the internet before the com-
petition concludes. As a result, utilizing specific
time-segmented datasets, like those from contests
conducted post the introduction of LLMs, serves as
an effective strategy to prevent data contamination
(Zhou et al., 2023).

Codeforces employs the Elo rating system6

to rank its users and problems, categorizing all
problems into 28 distinct difficulties, ranging from
800 to 3500. Compared to commonly utilized
metrics such as the ratio of accepted submissions
or users, this difficulty rating mechanism is more
suitable as it is based on the ranking and perfor-
mance of the participants during the competition.7

2https://leetcode.com/
3https://codeforces.com/
4https://icpc.global/
5https://ioinformatics.org/
6https://codeforces.com/blog/entry/102
7https://codeforces.com/blog/entry/62865

13527

https://leetcode.com/
https://codeforces.com/
https://icpc.global/
https://ioinformatics.org/
https://codeforces.com/blog/entry/102
https://codeforces.com/blog/entry/62865

Kefa and Park
The semester is already ending, so Danil
made an effort and decided to visit a lesson
on harmony analysis to know how does the
professor look like, at least. Danil was very
bored on this lesson until the teacher gave
the group a simple task: find 4 vectors in 4-
dimensional space, such that every
coordinate of every vector is 1 or  - 1 and
any two vectors are orthogonal. Just as a
reminder, two vectors in n-dimensional
space are considered to be orthogonal if and
only if their scalar product is equal to zero,
that is: \n.\nDanil quickly managed to come
up with the solution for this problem and the
teacher noticed that the problem can be
solved in a more general case for 2k vectors
in 2k-dimensinoal space. When Danil came
home, he quickly came up with the solution
for this problem. Can you cope with it?

Input
The only line of the input contains a single
integer k (0 ≤ k ≤ 9).

Output
Print 2k lines consisting of 2k characters
each. The j-th character of the i-th line
must be equal to ' * ' if the j-th coordinate
of the i-th vector is equal to  - 1, and must
be equal to ' + ' if it's equal to + 1. It's
guaranteed that the answer always
exists.\nIf there are many correct answers,
print any.

Time limit per test
3 seconds

Memory limit per test
256 megabytes

Example
input
2\n
output
++**\n+*+*\n++++\n+**+\n

Note
none

// generated by GPT4
#include<bits/stdc++.h>
using namespace std;
vector<vector<int>> v(1, vector<int>(1, 1));
void solve(int k) {
 if(k == 0) return;
 int sz = 1 << (k - 1);
 for(int i = 0; i < sz; i++) {
 for(int j = 0; j < sz; j++) {
 v[i].push_back(v[i][j]);
 v.push_back(v[i]);
 }
 }
 for(int i = 0; i < sz; i++) {
 for(int j = 0; j < sz; j++) {
 v[i + sz][j] *= -1;
 }
 }
 solve(k - 1);
}
int main() {
 int k;
 cin >> k;
 solve(k);
 int sz = 1 << k;
 for(int i = 0; i < sz; i++) {
 for(int j = 0; j < sz; j++) {
 cout << (v[i][j] == 1 ? '+' : '*');
 }
 cout << "\n";
 }
 return 0;
}

Online Jugde AC/WA/CE/…

Figure 2: The figure depicts the problem statement (left), comprising a problem set in a narrative context for
participants to decipher, detailed input and output format specifications, and one or more example input-output pairs.
In some cases, additional notes may be provided to assist competitors in understanding these example tests. This
information is fed into the LLM, aiming to generate relevant code (right). The generated code is then submitted to
an online judge for correctness evaluation.

Hence, it is not subject to inaccuracies stemming
from temporal changes, repeated submissions,
plagiarism, and other potential distortions.

2.2 Problem Definition

Figure 2 presents an example of the problem state-
ment π. The input of LLM is instantiated with the
problem statement π and a prompt ρ (like ρ1 in
Table 8). The LLM Γ takes the input to generate
the code as α = Γ(ρ(π)). The generated code α is
then evaluated by an online judge (OJ). The evalu-
ation process can be summarized in the following
equation:

OJ(α) = OJ(Γ(ρ(π))) ∈ {AC, WA, CE, ...}

In this equation, Γ(ρ(π)) denotes the code gener-
ated by LLM with the prompt ρ. The OJ platform
then rigorously assesses the code for its correctness,
computational efficiency, and adherence to speci-
fied input/output formats. With an extensive testing
mechanism, the platform employs a wide range of
test cases and hidden scenarios to ensure the code’s
robustness across diverse scenarios. The platform
provides a spectrum of outcomes, OJ(Γ(ρ(π))),
offering a holistic evaluation of the code’s perfor-
mance. This includes results such as Accepted

(AC), Wrong Answer (WA), and Compilation Er-
ror (CE), among others.

2.3 Dataset Collection

The dataset is compiled from the Codeforces web-
site, extracting all publicly available problem state-
ments from completed contests spanning February
2010 through November 2023. For simplicity, prob-
lems requiring interaction, featuring non-standard
input/output formats, or incompatible with C++
submission are excluded. For detailed explanations,
see Appendix B.

The analysis is confined to problems with dif-
ficulty levels ranging from 800 to 2400. Based
on their difficulty levels, the dataset is divided
into three subsets: D1 (800-1100 difficulty, 1683
problems), D2 (1200-1600 difficulty, 1821 prob-
lems), and D3 (1700-2400 difficulty, 1453 prob-
lems). These problems encompass more than 20
distinct categories of algorithms, as illustrated in
Table 7. This diversity in problem types further
enhances the comprehensiveness of the dataset and
enables a comprehensive assessment of GPT-4’s
problem-solving abilities across a wide range of
competition-level programming problems.

13528

Metric D1 D2 D3
Time1 Time2 ∆ Time1 Time2 ∆ Time1 Time2 ∆

ACC#G 81.42% 11.73% -69.69% 43.72% 0.00% -43.72% 11.41% 0.00% -11.41%
pass@1 78.11% 10.54% -67.57% 42.38% 0.61% -41.77% 9.45% 0.18% -9.27%
ACC1#1 78.05% 9.38% -68.68% 43.37% 0.00% -43.37% 8.48% 0.00% -8.48%
ACC1#5 94.03% 20.09% -73.94% 69.02% 3.06% -65.96% 21.24% 0.88% -20.36%
ACC2#5 88.34% 11.83% -76.51% 54.41% 0.00% -54.41% 12.36% 0.00% -12.36%
ACC3#5 81.82% 9.38% -72.44% 42.42% 0.00% -42.42% 7.51% 0.00% -7.51%

Table 1: Performance of GPT-4 on different groups of problems: Time1 is the problems released from October 2010
to September 2021, and Time2 is the problems released from October 2021 to November 2023.

Metric Definition
ACC#G Proportion of accepted solutions using

greedy sampling (temperature t = 0).
ACC#GN The number of accepted solutions using

greedy sampling (temperature t = 0)
within the sliding window.

ACCk#n Proportion of problems with k or more ac-
cepted solution with top-p samplings (t =
0.7, p = 0.95) for n times.

pass@k Estimated proportion of problems with at
least one accepted solution.

Table 2: Definitions of evaluation metrics.

2.4 Experiment Details

In Codeforces, each problem belongs to a contest.
Once the contest concludes, the problems are dis-
closed and become publicly submittable. There-
fore, we submit the solutions to the contests that
have concluded for evaluation.

To evaluate the results, we employ ACC#G,
ACC#GN, ACCk#n and pass@k as defined in
Table 2. Specifically, for ACCk#n metric, we
consider two settings: (1) k = n = 1 and (2)
k ∈ {1, 2, 3} with n = 5. Following Codex (Chen
et al., 2021b), pass@k is computed as

pass@k := E
Problems

[
1−

(
n−c
k

)
(
n
k

)
]

where n is defined as the total number of generated
samples per problem used for evaluation, and c
represents the count of correct samples out of n
that have successfully passed the unit tests. Here
we use k = 1 and n = 5 for pass@k.

In our experiment, we follow the zero-shot set-
ting. To select an appropriate prompt, we conduct
preliminary experiments with three prompts, ρ1, ρ2,
and ρ3, as listed in Table 8, using two subsets of D1
problems: one from February to December 2010
and the other from January to October 2023, each
comprising approximately 100 problems. The stan-
dard deviations are 0.015 and 0.018, respectively,
indicating consistent performance. Therefore, we

choose ρ1 as the prompt in the subsequent experi-
ments. Furthermore, we employ a sliding window
approach for all temporal analyses to smooth the
data, addressing the sporadic release schedule of
the problems. This ensures a sufficient number of
test problems at each time point, using a window
size of 51 (25 before and 25 after the time point).

3 Insights and Implications

3.1 Faltering on Unseen Problems

In this section, we delve into a temporal analysis
of GPT-4 (gpt-4-0613)’s performance on program-
ming problems. Figure 1 illustrates GPT-4’s per-
formance using the ACC#G metric. On problems
released prior to September 2021, GPT-4 exhibits
minor fluctuations at different levels across prob-
lems of varying difficulty. However, for problems
released after September 2021, a significant devia-
tion from the normal fluctuation range is observed.
Interestingly, this timing coincides with the cut-
off date for the GPT-4 training data as announced
by OpenAI8. We then calculate the average per-
formance on problems before and after September
2021, as shown in Table 1. On D1 problems, GPT-
4’s ACC#G plummets from 81.42% to 11.73%,
marking a stark decrease of 69.69%. Even more
strikingly, the ACC#G drops to 0.00% on both D2
and D3 problems, from 43.72% and 11.41%, re-
spectively. To validate the reliability of the conclu-
sion, we also calculate the pass@1 metric, which
exhibits a similar trend. This observation raises
thought-provoking questions about the severity of
the drop and the correlation between the data cut-
off date and the performance decline.

To explore the model’s potential to generate cor-
rect solutions, we perform random sampling multi-
ple times and calculate the pass rate. The average
pass rate are shown in Table 1. As observed, mul-
tiple samplings can enhance the chances of gen-

8https://platform.openai.com/docs/models/
gpt-4-and-gpt-4-turbo

13529

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo

2012
2014

2016
2018

2020
2022

2024

Problem Release Date

0.0

0.2

0.4

0.6

0.8

Performance of GPT-4 on D2 Problems with Top-p Sampling

ACC1#5
ACC2#5
ACC3#5
ACC1#1

Figure 3: Random sampling enhances the probability of
generating correct solutions on previously encountered
problems, but offers no assistance for unseen problems.

erating a correct solution. For instance, on the
unseen simple D1 problems, ACC1#5 improved by
10.71% compared to ACC1#1. However, across all
problems, the performance gap before and after the
cut-off date is more pronounced for ACC1#5 than
for both ACC1#1 and ACC#G. Figure 3 depicts the
performance on D2 problems over time. A notable
decline in performance metrics is observed around
September 2021. This observation underscores
the challenges that LLMs, including the advanced
GPT-4, face in addressing unseen programming
problems without similar pretraining data.

The observed decline in performance on prob-
lems outside the model’s training range may stem
from limitations in reasoning and generalization.
As highlighted by Yadlowsky et al. (2023), when
confronted with problems beyond their pretraining
data, transformer models exhibit various failure
modes and their generalization abilities deteriorate,
even for simple problems. Similarly, Lu et al.
(2023) suggest that the exceptional abilities
of large language models primarily stem from
in-context learning, and do not necessarily reflect
the emergence of reasoning abilities.

The observed performance drop on unseen
problems raises serious questions about GPT-4’s
intrinsic reasoning and generalization capabilities.
This suggests a potential over-reliance on pattern
recognition and reproduction from training, as
opposed to grasping underlying principles and
applying them to novel problems. This observation
aligns with recent debates on large models’ data
memorization tendencies (Carlini et al., 2023; Yang
et al., 2023). Therefore, future evaluations should

800 1000 1200 1400 1600 1800 2000 2200 2400
Difficulty

0.0

0.2

0.4

0.6

0.8

AC
C#

G r=-0.98
=-0.99

GPT-4's Performance Across Various Difficulties
2021/10~2023/11
2010/10~2021/9

Figure 4: For problems released before September 2021,
GPT-4’s ACC#G showed a negative linear correlation
with difficulty, followed by consistently poor perfor-
mance afterwards.

prioritize the minimization of overlap between test-
ing and training data to accurately assess a model’s
reasoning abilities, rather than simply its capacity
for memorization. Furthermore, it’s crucial to
explore methods that enhance model generalization
and reduce reliance on pre-training data.

3.2 Limited Ability to Solve Difficult
Problems

This section provides an analysis of performance
in relation to the problem difficulty. The results
of ACC#G for problems with different difficulties
are reported for two distinct periods: from October
2010 to September 2021, and from October 2021
to November 2023, as illustrated in Figure 4.

For the results from October 2010 to September
2021, we calculate Pearson correlation coefficient
(r = −0.97) and the Kendall rank correlation co-
efficient (τ = −0.88), which indicate strong linear
correlations. Notably, when the difficulty level
reaches 2400 (indicating greater challenge than ap-
proximately 57% of the problems on Codeforces),
the ACC#G drops to zero. However, from October
2021 to November 2023, ACC#G shows a dramatic
decrease across all difficulty levels.

These findings reveal a significant limitation in
the ability of GPT-4 to handle extremely complex
problems. Despite its vast knowledge on code and
algorithms, GPT-4 lacks of the competence in solv-
ing very challenging problems, particularly those
with higher difficulty levels, even in the context of
previously encountered problems. This indicates a
potential area for further improvement and devel-

13530

0.0 0.2 0.4 0.6 0.8 1.0

2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010

Error Category of GPT-4 from 2010 to 2023

Wrong answer on test 1
Wrong answer on test 2
Wrong answer on test 3
Wrong answer on test 4+

Runtime error
Compilation error
Time limit exceeded
Memory limit exceeded

Figure 5: Error categories in GPT-4’s solutions on prob-
lems released from 2010 to 2023.

opment in future iterations of the model.

3.3 Struggling with The First Test Case
In this section, we gather and analyze the errors
returned by GPT-4 upon submission to the Code-
forces website, as outlined in Table 6. The most
common error is "Wrong answer on test 1", which
on average accounts for 70% of the observed er-
rors. Test 1 is the first test case, which almost corre-
sponds to or properly includes the example test case
provided in the problem statement. This suggests
that the model often struggles at the very beginning
of problem-solving, possibly due to difficulties in
understanding the problem’s requirements or gen-
erating a correct solution based on the given test
case. As depicted in Figure 5, there is a significant
increase in the proportion of "Wrong answer on
test 1" errors for problems released between 2021
and 2023. This suggests that GPT-4 is more likely
to face challenges in understanding and reasoning
during at the onset of tackling unseen problems.

Other types of errors account for a smaller pro-
portion, with an average of 10%. They have shown
little variation over time. This indicates that GPT-
4 demonstrates strong fundamental code-writing
capabilities of generating high-quality code.

3.4 Similar Phenomenon of Other Code
LLMs

We investigate whether the perceived performance
degradation on unseen programming problems is
observed for other popular code LLMs, such as

Figure 6: ACC#GN of CodeLlama and DeepSeek-
Coder on D1 problems.

Problem Release Date CodeLlama DeepSeek-Coder
Before 2023.3 10.30% 32.74%
After 2023.3 4.52% (-5.78%) 9.03% (-23.71%)

Table 3: Comparison of ACC#G between CodeLlama
and DeepSeek-Coder on D1 problems before and after
March 2023.

CodeLlama-34B-Instruct (Rozière et al., 2023) and
DeepSeek-Coder-33B-Instruct (AI, 2023).

We conduct tests on CodeLlama and DeepSeek-
Coder using D1 problems, following the settings
in §2.3, and the results are shown in Figure 6. The
experimental results indicate that CodeLlama con-
sistently underperforms compared to DeepSeek-
Coder on D1 problems. Furthermore, the perfor-
mance of DeepSeek-Coder on D1 problems has
been declining with the progression of the problem
release date. The ACC#GN of DeepSeek-Coder
has declined to a level that is on par with CodeL-
lama when dealing with newly released problems,
as highlighted in the red area of Figure 6.

To precisely and intuitively detect this phe-
nomenon, we calculate the ACC#G of CodeLlama
and DeepSeek-Coder on D1 problems, both before
and after March 2023, and present the results in Ta-
ble 3. The results reveal a significant difference in
the average accuracy of CodeLlama and DeepSeek-
Coder before and after March 2023. Regarding
the magnitude of the decrease, DeepSeek-Coder,
which previously exhibited superior performance,
demonstrates a more pronounced decline, with ac-
ceptance rates falling below 10% after March 2023.
Considering the release dates of CodeLlama and
DeepSeek-Coder, we speculate that most of the
programming problems after March 2023 are novel
to them, which suggests that they also not be able
to perform well on unseen programming problems
like GPT4 does. This finding indicates that a fun-

13531

Figure 7: Comparison of ACC#GN for GPT-4 and
DeepSeek-Coder on D1 problems after 2020.

Model 2020.1-2021.9 2021.9-2023.10
GPT-4 73.19% (+50.52%) 11.53% (-0.97%)

DeepSeek-Coder 22.67% 12.50%

Table 4: Comparison of ACC#G between GPT-4 and
DeepSeek-Coder over time intervals, on D1 problems.

damental limitation of current code LLMs in gen-
eralizing effectively to complex reasoning tasks.

3.5 Evaluation Hallucination of LLMs
To further analyze the phenomenon, we compare
GPT-4 with DeepSeek-Coder on D1 problems as
shown in Figure 7 and Table 4.

It is noteworthy that while GPT-4 surpasses
DeepSeek-Coder in terms of performance on prob-
lems that were released prior to September 2021,
an unexpected observation is that DeepSeek-Coder
exhibits a performance that is on par with GPT-4
when it comes to tackling problems that were re-
leased after September 2021. Considering the pre-
vious work (Yang et al., 2023; Zhou et al., 2023),
although GPT-4 may perform particularly well on
some previously seen problems due to its power-
ful capacity, it cannot be well generalized on un-
seen programming problems, and its performance
is not significantly different from DeepSeek-Coder,
which is specifically trained for code. This phe-
nomenon merits attention, which is termed as “eval-
uation hallucination”.

Hence, a more equitable evaluation strategy
would be to select evaluation sets that all the mod-
els have not previously encountered. However, find-
ing such data adhering to stringent conditions is
challenging, as LLMs are typically pre-trained on
extensive corpora containing diverse content, lead-
ing to the potential issue of data contamination.
Therefore, if we could devote more attention to the
data source and timeline of the evaluation sets, such

Figure 8: Comparison of ACC#GN for CodeLlama on
D1 problems before and after fine-tuning.

Figure 9: Comparison of ACC#GN on D1 problems
before and after fine-tuning DeepSeek-Coder.

as the problems in Codeforces, it could potentially
mitigate the effects of evaluation hallucination.

4 One Step Forward

In this section, we explore some approaches to
mitigate the poor performance on unseen problems.

4.1 Fine-tuning

Fine-tuning is a commonly used method to improve
performance on specific downstream tasks. In this
study, we employ the Description2Code dataset
(OpenAI and Sutskever, 2016) for fine-tuning. This
dataset is compiled from three competitive pro-
gramming websites: Codeforces, CodeChef, and
HackerEarth, and contains problems published be-
fore 2017. CodeChef and HackerEarth, similar to
Codeforces, host online coding competitions, and
their problem sets are consistent in style and diffi-
culty.

The dataset includes 2128 problems from Code-
forces, 2435 problems from HackerEarth, and
3201 problems from CodeChef, totaling 7764 prob-
lems. However, due to some problems lacking

13532

corresponding C++ solutions, we retained a total
of 7000 problems for our study. Each problem
has approximately 10 C++ solutions, resulting in
70,000 pairs of input-output sequences. These se-
quences are used for fine-tuning both CodeLlama
and DeepSeek-Coder in a supervised manner.

As shown in Figure 8 and Figure 9, we compare
the performances of the models before and after
fine-tuning on D1 problems. We observe that,
even after fine-tuning with the same type of data,
CodeLlama and DeepSeek-Coder do not exhibit
improved performance on recent problems, particu-
larly those post-2022. The significant improvement
in ACC#GN before 2017 may result from the
models recalling relevant or identical programming
problems, rather than mastering the underlying rea-
soning logic, leading to their inability to adapt well
to new programming challenges. Therefore, simple
fine-tuning does not effectively enhance the mod-
els’ performance on new programming problems.

4.2 Chain-of-Thought Prompting

In this section, we explore the application of Chain-
of-Thought (CoT) prompting (Wei et al., 2022) to
competition-level programming problems. CoT
involves prompting GPT-4 to generate an explana-
tion of the algorithm before coding, denoted as ρcot
in Table 8. We conduct experiments on both the
D1 and D3 problems released after October 2021.
For D1 problems, employing CoT increases the
ACC#G from 11.54% to 16.21%, demonstrating a
noticeable improvement. However, for D3 prob-
lems, using CoT fails to yield any improvement,
leaving the ACC#G at 0.00%. This suggests that
while CoT facilitates some improvement for sim-
ple D1 problems, it is ineffective for the complex
reasoning challenges presented by D3 problems.

4.3 In-Context Learning

In this section, we enhance our experimental ex-
ploration into in-context learning by integrating
both fixed demonstrations and retrieval-augmented
demonstrations.

We use D1 problems released before September
2021 as source dataset and those released after as
test data. First, we apply the same method as delin-
eated in §4.2 to tackle the source data and validate
them on Codeforces. We then retain accepted so-
lutions, resulting in a collection of 1048 problem
and CoT response pairs. A demonstration example
is presented in Table 12.

N-shot Prompt CoT Retrieval ACC#G
0-shot No No 11.54%
0-shot Yes No 16.21%
3-shot Yes No 13.73%
3-shot Yes Yes 16.48%

Table 5: Accuracy of GPT-4 on D1 problems released
after September 2021 using different experimental se-
tups

In the fixed demonstration experiment, we ran-
domly select three problems to create 3-shot
prompts. In the retrieval-augmented demonstra-
tion experiment, we first generate embeddings for
the statements of the source and test data prob-
lems utilizing the OpenAI text-embedding-ada-002
model. We then identify the top three problems
in the source data based on cosine similarity for
each test problem, incorporating them as example
demonstrations within the prompts.

The experimental results, summarized in Table 5,
show that the retrieval-augmented 3-shot method’s
accuracy is nearly identical to the 0-shot CoT, while
the fixed 3-shot approach is even less effective.
This may be due to the highly specialized nature of
competitive programming problems, which makes
finding valuable references challenging. Further-
more, the model may struggle to acquire problem-
solving skills through context learning alone, and
inappropriate demonstrations might lead to adverse
effects.

4.4 Problem Statement Simplification

Intuitively, even experienced programming compe-
tition competitors require time to understand prob-
lem statements. Therefore, we conduct a simple
experiment to assess whether comprehension of
problem statements hinders LLMs’ ability to excel
at programming problems. We first instruct GPT-4
to simplify the problem statement with ρsip and
then generate the code with ρsipgen as shown in
Table 8. The results are also evaluated on both the
D1 and D3 problems released after October 2021.
However, for D1 problems, using the simplified
problem statement even brings a slight decline in
ACC#G from 11.54% to 11.14%. And the ACC#G
for D3 problems still remains at 0.00%. Conse-
quently, the challenge of genuinely improving the
model’s reasoning ability and enhancing its perfor-
mance on unseen problems represents a significant
direction for future research.

13533

5 Related Work

Code LLMs. Code intelligence is an important
topic in AI research. Recently, code LLMs (Zhang
et al., 2023b) have received widespread attention.
Commercial LLMs (OpenAI, 2023) have achieved
tremendous success. Meanwhile, research on
open-source code LLMs is also thriving, such as
CodeLlama (Rozière et al., 2023), StarCoder (Li
et al., 2023), CodeGeeX (Zheng et al., 2023),
CodeFuse (Di et al., 2023), WizardCoder (Luo
et al., 2023) and Lemur (Xu et al., 2023).

Reasoning on Code. Programming competition
is a specialized domain within the broader land-
scape of programming problems. Unlike simpler
tasks on code, such as HumanEval (Chen et al.,
2021a), MBPP (Austin et al., 2021), MultiPL-
E (Cassano et al., 2023), competition-level pro-
gramming problems necessitate an advanced un-
derstanding of data structures, algorithms, and
problem-solving techniques. Enabling models
to solve human-designed algorithmic competition
problems represents a meaningful research direc-
tion, as it reflects the models’ integrated capabil-
ities in reasoning, coding, and problem-solving.
AlphaCode (Li et al., 2022) simulate evaluations
on 10 programming competitions on the Code-
forces platform, which is the first work in this topic.
ALGO (Zhang et al., 2023a) can integrate with any
existing code LLMs in a model-agnostic manner,
enhancing its code generation performance.

Reasoning on Other Subjects. Researchers have
proposed many benchmarks requiring various rea-
soning skills, including commonsense reason-
ing (Talmor et al., 2018; Geva et al., 2021), nu-
merical reasoning (Dua et al., 2019), multi-hop
reasoning (Yang et al., 2018), arithmetic reason-
ing (Patel et al., 2021; Cobbe et al., 2021), struc-
tured reasoning (Yu et al., 2018; Lei et al., 2023),
inductive reasoning (Sinha et al., 2019) and logical
reasoning (Yu et al., 2020). LLMs are also widely
used in scientific research in other fields (Wang
et al., 2023), such as physics (Yeadon and Halliday,
2023), chemistry (Castro Nascimento and Pimentel,
2023; Bran et al., 2023), etc.

6 Conclusion

In this study, we utilize competition-level program-
ming problems from Codeforces to analyze the rea-
soning capabilities of LLMs. We find a significant

decrease in perceived performance of GPT-4 on un-
seen problems, consistent across a range of difficul-
ties, problem types, and experimental settings. This
decrease highlights concerns of data contamination
in benchmarks and the need for unseen tasks to
properly assess LLMs’ reasoning ability with com-
plex challenges. Our research also extends these
insights to other open-source LLMs, revealing the
common difficulties these models face with com-
plex, previously unencountered reasoning tasks.
This is indicative of the LLMs’ intrinsic limita-
tions in reasoning. As a primary probe, we explore
several straightforward strategies, but none of them
consistently mitigated the issues. Through our
work, we hope to emphasize the critical need for ro-
bust datasets to accurately evaluate LLMs’ reason-
ing abilities and to inspire advancements in LLMs
that demonstrate improved reasoning abilities.

Limitations

This study identifies expertly-designed, high-
quality competition-level programming problems
as effective evaluation data for evaluating LLMs.
However, comparing to the existing benchmarks,
the quantity of such problems is limited. Con-
structing uncontaminated, high-quality evaluation
datasets and extending them to other tasks such as
mathematics still poses a challenge to researchers.
The identification and creation of such datasets
are crucial for enhancing our understanding of the
LLMs in complex reasoning tasks. We will en-
deavor to achieve this goal in our future work.

References
DeepSeek AI. 2023. Deepseek coder: Let the code

write itself. https://github.com/deepseek-ai/
DeepSeek-Coder.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Andres M Bran, Sam Cox, Andrew D White, and
Philippe Schwaller. 2023. Chemcrow: Augmenting
large-language models with chemistry tools. arXiv
preprint arXiv:2304.05376.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

13534

https://github.com/deepseek-ai/DeepSeek-Coder
https://github.com/deepseek-ai/DeepSeek-Coder

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2023. Quantifying memorization across neural lan-
guage models. In The Eleventh International Confer-
ence on Learning Representations.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, et al. 2023. Multipl-e: a scal-
able and polyglot approach to benchmarking neural
code generation. IEEE Transactions on Software
Engineering.

Cayque Monteiro Castro Nascimento and André Silva
Pimentel. 2023. Do large language models un-
derstand chemistry? a conversation with chatgpt.
Journal of Chemical Information and Modeling,
63(6):1649–1655.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021a. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021b. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting
Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei
Chen, Liang Chen, Gang Fan, Jie Gong, Zi Gong,
Wen Hu, Tingting Guo, Zhichao Lei, Ting Li, Zheng
Li, Ming Liang, Cong Liao, Bingchang Liu, Jiachen
Liu, Zhiwei Liu, Shaojun Lu, Min Shen, Guang-
pei Wang, Huan Wang, Zhi Wang, Zhaogui Xu, Ji-
awei Yang, Qing Ye, Gehao Zhang, Yu Zhang, Zelin
Zhao, Xunjin Zheng, Hailian Zhou, Lifu Zhu, and
Xianying Zhu. 2023. Codefuse-13b: A pretrained
multi-lingual code large language model. CoRR,
abs/2310.06266.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark re-
quiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346–
361.

Fangyu Lei, Qian Liu, Yiming Huang, Shizhu He, Jun
Zhao, and Kang Liu. 2023. S3eval: A synthetic, scal-
able, systematic evaluation suite for large language
models. arXiv preprint arXiv:2310.15147.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason Stillerman,
Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku-
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2023. Starcoder: may the source be with
you! CoRR, abs/2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva,
Harish Tayyar Madabushi, and Iryna Gurevych.
2023. Are emergent abilities in large language
models just in-context learning? arXiv preprint
arXiv:2309.01809.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. CoRR, abs/2306.08568.

Grégoire Mialon, Clémentine Fourrier, Craig Swift,
Thomas Wolf, Yann LeCun, and Thomas Scialom.
2023. Gaia: a benchmark for general ai assistants.
arXiv preprint arXiv:2311.12983.

OpenAI. 2023. Gpt-4 technical report.

E. Caballero OpenAI and I. Sutskever. 2016. Descrip-
tion2Code Dataset.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom

13535

https://doi.org/10.48550/ARXIV.2310.06266
https://doi.org/10.48550/ARXIV.2310.06266
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
http://arxiv.org/abs/2303.08774
https://doi.org/10.5281/zenodo.5665051
https://doi.org/10.5281/zenodo.5665051

Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Fardin Ahsan Sakib, Saadat Hasan Khan, and AHM
Karim. 2023. Extending the frontier of chatgpt:
Code generation and debugging. arXiv preprint
arXiv:2307.08260.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan
Ji, Jingyang Zhao, et al. 2023. Pangu-coder2: Boost-
ing large language models for code with ranking feed-
back. arXiv preprint arXiv:2307.14936.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L Hamilton. 2019. Clutrr: A di-
agnostic benchmark for inductive reasoning from text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4506–4515.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao
Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac,
et al. 2023. Scientific discovery in the age of artificial
intelligence. Nature, 620(7972):47–60.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian
Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu,
Tianbao Xie, et al. 2023. Lemur: Harmonizing nat-
ural language and code for language agents. arXiv
preprint arXiv:2310.06830.

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni.
2023. Pretraining data mixtures enable narrow model
selection capabilities in transformer models. arXiv
preprint arXiv:2311.00871.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E
Gonzalez, and Ion Stoica. 2023. Rethinking
benchmark and contamination for language mod-
els with rephrased samples. arXiv preprint
arXiv:2311.04850.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.

In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380.

Will Yeadon and Douglas P Halliday. 2023. Exploring
durham university physics exams with large language
models. arXiv preprint arXiv:2306.15609.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi
Feng. 2020. Reclor: A reading comprehension
dataset requiring logical reasoning. arXiv preprint
arXiv:2002.04326.

Kexun Zhang, Danqing Wang, Jingtao Xia,
William Yang Wang, and Lei Li. 2023a. Algo:
Synthesizing algorithmic programs with generated
oracle verifiers. arXiv preprint arXiv:2305.14591.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao,
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2023b.
A survey on language models for code.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen,
Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong
Wen, and Jiawei Han. 2023. Don’t make your llm
an evaluation benchmark cheater. arXiv preprint
arXiv:2311.01964.

13536

https://doi.org/10.48550/ARXIV.2308.12950
http://arxiv.org/abs/2311.07989

A More Results with Different Versions of
GPT-4 APIs

In this study, we conduct an evaluation of two dis-
tinct API versions: GPT-4 and GPT-4-turbo, to
assess their performance on D1 problems. The
training data for GPT-4 extends up to September
2021, while that for GPT-4-turbo reaches up to
April 2023. These evaluations are visually repre-
sented in Figure 10. Upon analysis of the results,
it is observed that on problems prior to September
2021, the GPT-4-turbo exhibits marginally inferior
performance compared to GPT-4. Between Septem-
ber 2021 and April 2023, GPT-4-turbo outperforms
GPT-4 on D1 problems, reflecting the benefits of its
more recent training data. Nonetheless, a decline in
GPT-4’s performance is observed for newer prob-
lems within this period, likely due to the scarcity
of such recent data in its training set.

Nevertheless, when faced with problems emerg-
ing after April 2023—thus unencountered dur-
ing their respective training periods—both APIs
demonstrate a decline in performance, albeit GPT-
4-turbo marginally outperforms GPT-4. Despite
this relative improvement, the performance of GPT-
4-turbo on problems post-April 2023 noticeably
regresses when compared to its performance on
problems covered by its training data. This finding
is consistent with the conclusions drawn in the §3.1
"Faltering on Unseen Problems", which elucidates
the challenges faced by these models when con-
fronted with novel questions that extend beyond
their training corpus.

2012
2014

2016
2018

2020
2022

2024

Date

0.0

0.2

0.4

0.6

0.8

AC
C#

G

2021-09-30

2023-04-30

Performance of Different Versions of GPT-4 on D1 Problems

GPT-4-Turbo
GPT-4

Figure 10: Comparison of ACC#G for GPT-4 and GPT-
4-turbo on D1 problems.

B Dataset Details

In the context of competitive programming
challenges, a "non-standard input/output for-
mat" typically refers to a situation where the
program’s input and output are not provided
through standard methods such as reading from
standard input (stdin) or writing to standard
output (stdout), which are the conventional
ways for programs to receive and provide data
during competitions. Instead, they might involve
interacting with files, graphical user interfaces,
or network connections, which are not com-
monly used in standard programming contests (like
https://codeforces.com/problemset/problem/120/A).
To filter out problems with non-standard input/out-
put formats, we utilize metadata from the problem
descriptions on Codeforces, which indicate
whether a problem requires non-standard methods
for input and output. By checking this information,
we can automatically exclude such problems from
our dataset to ensure the consistency of the test
data.

Statistics of the types of problems in D1, D2,
and D3 are shown in Table 7.

C Prompt Details

Prompts used in this study are shown in Table 8.

D Case Study

Some examples generated by GPT4 are shown in
Tables 9–13.

13537

Year WA1 WA2 WA3 WA4+ RE CE TLE MLE
2010 0.49 0.15 0.04 0.19 0.04 0.03 0.01 0.04
2011 0.53 0.13 0.10 0.06 0.07 0.06 0.04 0.01
2012 0.55 0.14 0.05 0.12 0.04 0.04 0.03 0.02
2013 0.63 0.13 0.06 0.07 0.03 0.03 0.04 0.01
2014 0.53 0.18 0.05 0.09 0.04 0.05 0.04 0.01
2015 0.62 0.10 0.02 0.14 0.03 0.02 0.04 0.02
2016 0.68 0.09 0.02 0.10 0.02 0.05 0.04 0.00
2017 0.66 0.13 0.05 0.08 0.03 0.03 0.03 0.02
2018 0.58 0.12 0.06 0.13 0.01 0.03 0.05 0.01
2019 0.67 0.11 0.04 0.06 0.02 0.05 0.02 0.02
2020 0.77 0.06 0.01 0.01 0.05 0.06 0.03 0.01
2021 0.82 0.07 0.02 0.01 0.02 0.04 0.02 0.00
2022 0.91 0.05 0.00 0.00 0.02 0.00 0.02 0.00
2023 0.90 0.03 0.00 0.00 0.03 0.01 0.02 0.01

Average 0.70 0.10 0.03 0.06 0.03 0.03 0.03 0.01

Table 6: Error category of GPT-4 from 2010 to 2023. The abbreviations stand for: WA1, WA2, WA3, and WA4+
(Wrong Answers on Test 1, 2, 3, and 4 or above), RE (Runtime Error), CE (Compilation Error), TLE (Time Limit
Exceeded), and MLE (Memory Limit Exceeded).

Tag #Problems Tag #Problems
implementation 1746 greedy 1441

math 1382 brute force 825
constructive algorithms 783 dp 577

sortings 514 data structures 391
strings 381 binary search 342

number theory 309 graphs 263
dfs and similar 244 two pointers 197
combinatorics 179 bitmasks 154

geometry 142 trees 137
games 87 dsu 84

shortest paths 66 *special 58
probabilities 52 hashing 48

divide and conquer 35 flows 24
graph matchings 22 ternary search 22

matrices 22 expression parsing 19
string suffix structures 10 2-sat 7

chinese remainder theorem 5 schedules 4
meet-in-the-middle 4 fft 4

Table 7: Statistics of the types of problems in D1, D2, D3.

13538

ρ1 You are given a problem, you need to write a C++ solution and explain the algorithm.
{promblem_name}
{promblem_description}
Input specification: {input_format}
Output specification: {output_format}
Note: {note}
Memory limit: {memory_limit}
Time limit: {time_limit}
Example:
Input:
{inputi}
Output:
{outputi}
Please provide a C++ code in ```cpp\n...\n```

ρ2 Read the problem, write a C++ solution and explain the algorithm. {promblem_name}:
{promblem_description} Input specification is{input_format}. Output specification is
{output_format}. Note that {note}. Memory limit is{memory_limit}. Time limit is
{time_limit}. Example i input is{inputi}. Example i output is{outputi}. Please provide a C++
code in ```cpp\n...\n```

ρ3 Finish the solution of this programming problem.
{promblem_name}
{promblem_description}
Input specification: {input_format}
Output specification: {output_format}
Note: {note}
Memory limit: {memory_limit}
Time limit: {time_limit}
Example:
Input:
{inputi}
Output:
{outputi}
C++ code solution:
```cpp

ρcot You are given an algorithm problem. First, provide a detailed explanation of the algorithm solution,
including the logic behind it, the time and space complexity, and any important considerations or edge
cases. Then, implement the solution in C++ code, ensuring it is clean, efficient, and well-commented.
{promblem_name}
{promblem_description}
Input specification: {input_format}
Output specification: {output_format}
Note: {note}
Memory limit: {memory_limit}
Time limit: {time_limit}
Example:
Input:
{inputi}
Output:
{outputi}
Please provide a C++ code in ```cpp\n...\n```

ρsip Please extract the essential components from this algorithm problem for a C++ solution, removing any
superfluous narrative or context.
{promblem_name}
{promblem_description}
Input specification: {input_format}
Output specification: {output_format}
Note: {note}

ρsipgen You are given a problem, you need to write a C++ solution and explain the algorithm.
{promblem_simlified}
Memory limit: {memory_limit}
Time limit: {time_limit}
Example:
Input:
{inputi}
Output:
{outputi}
Please provide a C++ code in ```cpp\n...\n```

Table 8: Prompts used in this study.

13539



Problem Name 1890 B: Qingshan Loves Strings Accepted

Problem Statement Problem Qingshan has a string s, while Daniel has a string t. Both strings
only contain 0 and 1. A string a of length k is good if and only if ai ̸= ai+1

for all i = 1, 2, . . . , k − 1. For example, 1, 101, 0101 are good, while 11,
1001, 001100 are not good. Qingshan wants to make s good. To do this,
she can do the following operation any number of times (possibly, zero):
insert t to any position of s (getting a new s). Please tell Qingshan if it is
possible to make s good.
Input Format The input consists of multiple test cases. The first line
contains a single integer T (1 ≤ T ≤ 2000) — the number of test cases.
The description of the test cases follows. The first line of each test case
contains two integers n and m (1 ≤ n,m ≤ 50) — the length of the
strings s and t, respectively. The second line of each test case contains a
string s of length n. The third line of each test case contains a string t of
length m. It is guaranteed that s and t only contain 0 and 1.
Output Format For each test case, print "YES" (without quotes), if it is
possible to make s good, and "NO" (without quotes) otherwise. You can
print letters in any case (upper or lower).

Code
1 # inc lude < b i t s / s t d c ++. h>
2 us ing namespace s t d ;
3
4 bool i sGood ( s t r i n g s ) {
5 f o r ( i n t i = 0 ; i < s . s i z e ( ) − 1 ; i ++) {
6 i f ( s [ i ] == s [ i + 1 ] ) {
7 re turn f a l s e ;
8 }
9 }

10 re turn true ;
11 }
12
13 s t r i n g s o l v e ( s t r i n g s , s t r i n g t ) {
14 i f ( isGood ( s ) ) {
15 re turn "YES" ;
16 }
17 i f ( ! isGood ( t ) ) {
18 re turn "NO" ;
19 }
20 f o r ( i n t i = 0 ; i < s . s i z e ( ) − 1 ; i ++) {
21 i f ( s [ i ] == s [ i +1] && t [ 0 ] != s [ i ] && t [ t . s i z e ( ) −1] != s [ i + 1 ] ) {
22 s . i n s e r t ( i +1 , t ) ;
23 i += t . s i z e ( ) ;
24 }
25 }
26 i f ( isGood ( s ) ) {
27 re turn "YES" ;
28 }
29 re turn "NO" ;
30 }
31
32 i n t main ( ) {
33 i n t T ;
34 c i n >> T ;
35 whi le ( T− −) {
36 i n t n , m;
37 c i n >> n >> m;
38 s t r i n g s , t ;
39 c i n >> s >> t ;
40 c o u t << s o l v e ( s , t ) << e n d l ;
41 }
42 re turn 0 ;
43 }

Table 9: An accepted example generated by GPT-4

13540



Problem Name 1893 A: Anonymous Informant Wrong answer on test 1

Problem Statement Problem You are given an array b1, b2, . . . , bn. An anonymous informant
has told you that the array b was obtained as follows: initially, there
existed an array a1, a2, . . . , an, after which the following two-component
operation was performed k times: A fixed point† x of the array a was
chosen. Then, the array a was cyclically shifted to the left‡ exactly x times.
As a result of k such operations, the array b1, b2, . . . , bn was obtained. You
want to check if the words of the anonymous informant can be true or if
they are guaranteed to be false. †A number x is called a fixed point of the
array a1, a2, . . . , an if 1 ≤ x ≤ n and ax = x. ‡A cyclic left shift of the
array a1, a2, . . . , an is the array a2, . . . , an, a1.
Input Format Each test contains multiple test cases. The first line contains
an integer t (1 ≤ t ≤ 104) — the number of test cases. The description of
the test cases follows. The first line of each test case contains two integers
n, k (1 ≤ n ≤ 2 · 105, 1 ≤ k ≤ 109) — the length of the array b and
the number of operations performed. The second line of each test case
contains n integers b1, b2, . . . , bn (1 ≤ bi ≤ 109) — the elements of the
array b. It is guaranteed that the sum of the values of n for all test cases
does not exceed 2 · 105.
Output Format For each test case, output "Yes" if the words of the
anonymous informant can be true, and "No" if they are guaranteed to be
false.

Code
1 # inc lude < b i t s / s t d c ++. h>
2 us ing namespace s t d ;
3
4 void s o l v e ( ) {
5 i n t n , k ;
6 c i n >> n >> k ;
7 v e c t o r < i n t > b ( n ) ;
8 f o r ( i n t i =0 ; i <n ; i ++) c i n >> b [ i ] ;
9 v e c t o r < i n t > p r e f i x ( n ) , s u f f i x ( n ) ;

10 p r e f i x [ 0 ] = b [ 0 ] ;
11 s u f f i x [ n −1] = b [ n − 1 ] ;
12 f o r ( i n t i =1 ; i <n ; i ++) p r e f i x [ i ] = max ( p r e f i x [ i −1 ] , b [ i ] ) ;
13 f o r ( i n t i =n −2; i >=0; i − −) s u f f i x [ i ] = max ( s u f f i x [ i +1 ] , b [ i ] ) ;
14 bool ok = t rue ;
15 f o r ( i n t i =0 ; i <n ; i ++) {
16 i f ( b [ i ] > max ( ( i >0 ? p r e f i x [ i −1] : 0 ) , ( i <n−1 ? s u f f i x [ i +1] : 0 ) ) )

{
17 ok = f a l s e ;
18 break ;
19 }
20 i f ( i > 0 && b [ i ] − b [ i −1] > 1) {
21 ok = f a l s e ;
22 break ;
23 }
24 }
25 i f ( b [ 0 ] != b [ n − 1 ] ) ok = f a l s e ;
26 c o u t << ( ok ? " Yes " : "No" ) << " \ n " ;
27 }
28
29 i n t main ( ) {
30 i o s _ b a s e : : s y n c _ w i t h _ s t d i o ( f a l s e ) ;
31 c i n . t i e (NULL) ;
32 i n t t ;
33 c i n >> t ;
34 whi le ( t − −) s o l v e ( ) ;
35 re turn 0 ;
36 }

Table 10: An wrong example generated by GPT-4

13541



Problem Name 1893 A: Anonymous Informant Compilation error

Problem Statement Problem You are given a set S, which contains the first n positive integers:
1, 2, . . . , n. You can perform the following operation on S any number
of times (possibly zero): Choose a positive integer k where 1 ≤ k ≤ n,
such that there exists a multiple of k in S. Then, delete the smallest
multiple of k from S. This operation requires a cost of k. You are given
a set T , which is a subset of S. Find the minimum possible total cost of
operations such that S would be transformed into T . We can show that
such a transformation is always possible.
Input Format The first line of the input contains a single integer t (1 ≤
t ≤ 10 000) — the number of test cases. The description of the test cases
follows. The first line contains a single positive integer n (1 ≤ n ≤ 106).
The second line of each test case contains a binary string of length n,
describing the set T . The i-th character of the string is ’1’ if and only if i
is an element of T , and ’0’ otherwise. It is guaranteed that the sum of n
over all test cases does not exceed 106.
Output Format For each test case, output one non-negative integer —
the minimum possible total cost of operations such that S would be trans-
formed into T .

Code
1 # inc lude < b i t s / s t d c ++. h>
2 us ing namespace s t d ;
3
4 i n t main ( ) {
5 i o s _ b a s e : : s y n c _ w i t h _ s t d i o ( f a l s e ) ;
6 c i n . t i e (NULL) ;
7
8 i n t t ;
9 c i n >> t ;

10 whi le ( t − −) {
11 i n t n ;
12 c i n >> n ;
13 s t r i n g s ;
14 c i n >> s ;
15 long long c o s t = 0 , max_num = 0 ;
16 f o r ( i n t i = n − 1 ; i >= 0 ; i − −) {
17 i f ( s [ i ] == ' 1 ' ) {
18 i f ( i + 1 > max_num ) {
19 c o s t += i + 1 ;
20 max_num = i + 1 ;
21 }
22 } e l s e {
23 max_num = max ( max_num , i + 1) ;
24 }
25 }
26 c o u t << c o s t << " \ n " ;
27 }
28 re turn 0 ;
29 }

Table 11: An example of compilation error generated by GPT-4

13542



Problem Name 451 A: Game With Sticks Accepted

Problem Statement Problem After winning gold and silver in IOI 2014, Akshat and Malvika
want to have some fun. Now they are playing a game on a grid made of n
horizontal and m vertical sticks. An intersection point is any point on the
grid which is formed by the intersection of one horizontal stick and one
vertical stick. In the grid shown below, n=3 and m=3. There are n+m=6
sticks in total (horizontal sticks are shown in red and vertical sticks are
shown in green). There are n·m=9 intersection points, numbered from 1 to
9.
The rules of the game are very simple. The players move in turns. Akshat
won gold, so he makes the first move. During his/her move, a player must
choose any remaining intersection point and remove from the grid all
sticks which pass through this point. A player will lose the game if he/she
cannot make a move (i.e. there are no intersection points remaining on the
grid at his/her move). Assume that both players play optimally. Who will
win the game?
Input Format The first line of input contains two space-separated integers,
n and m (1 ≤ n, m ≤ 100).
Output Format Print a single line containing "Akshat" or "Malvika"
(without the quotes), depending on the winner of the game.

Response The problem can be solved using a simple observation. The game is
essentially about removing rows and columns from a grid. Each move
removes one row and one column. Therefore, the game ends when there
are no rows or columns left, i.e., when the minimum of n and m reaches
zero. Since Akshat starts the game, if the minimum of n and m is even,
Malvika will make the last move and win the game. Otherwise, Akshat
will make the last move and win the game.
The time complexity of this solution is O(1) because it involves only
a constant amount of computation. The space complexity is also O(1)
because it uses only a constant amount of space.
The code first reads the values of n and m. It then checks if the minimum of
n and m is even. If it is, it prints "Malvika". Otherwise, it prints "Akshat".
Here is the C++ code for the problem:

1 # inc lude < b i t s / s t d c ++. h>
2 us ing namespace s t d ;
3
4 i n t main ( ) {
5 i n t n , m;
6 c i n >> n >> m;
7 / / I f t h e minimum o f n and m i s even , Malv ika wins . Otherwise , A k s h a t

wins .
8 i f ( min ( n , m) % 2 == 0) {
9 c o u t << " Malvika " ;

10 } e l s e {
11 c o u t << " Akshat " ;
12 }
13 re turn 0 ;
14 }

Table 12: An example generated by GPT-4 with CoT prompt.

13543



Problem Name 1890 B: Qingshan Loves Strings

Problem Statement Problem Qingshan has a string s, while Daniel has a string t. Both strings
only contain 0 and 1. A string a of length k is good if and only if ai ̸= ai+1

for all i = 1, 2, . . . , k − 1. For example, 1, 101, 0101 are good, while 11,
1001, 001100 are not good. Qingshan wants to make s good. To do this,
she can do the following operation any number of times (possibly, zero):
insert t to any position of s (getting a new s). Please tell Qingshan if it is
possible to make s good.
Input Format The input consists of multiple test cases. The first line
contains a single integer T (1 ≤ T ≤ 2000) — the number of test cases.
The description of the test cases follows. The first line of each test case
contains two integers n and m (1 ≤ n,m ≤ 50) — the length of the
strings s and t, respectively. The second line of each test case contains a
string s of length n. The third line of each test case contains a string t of
length m. It is guaranteed that s and t only contain 0 and 1.
Output Format For each test case, print "YES" (without quotes), if it is
possible to make s good, and "NO" (without quotes) otherwise. You can
print letters in any case (upper or lower).

Simplified
Statement

You are given a problem, you need to write a C++ solution and explain the
algorithm.
- You are given two strings s and t, both containing only 0s and 1s.
- A string a of length k is considered good if no two consecutive characters
are the same.
- You can insert string t at any position in string s any number of times.
- You need to determine if it is possible to make string s good.
- The input consists of multiple test cases. The first line contains an integer
T (1 ≤ T ≤ 2000) — the number of test cases. Each test case starts with
two integers n and m (1 ≤ n,m ≤ 50) — the lengths of the strings s and
t, respectively. The next two lines contain the strings s and t.
- For each test case, print "YES" if it is possible to make s good, and "NO"
otherwise. The output is case-insensitive.

Table 13: An simplified example generated by GPT-4

13544


