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Abstract
Knowledge graph completion (KGC) task is
to infer the missing knowledge in the knowl-
edge graph based on known factual triples.
However, present KGC approaches still face
the following two challenges. Those methods
perform simple linear update on relation rep-
resentation, and only local neighborhood in-
formation is aggregated, which makes it dif-
ficult to capture logic semantic between re-
lations and global topological context infor-
mation. To tackle the above challenges, we
propose a unified joint approach with Topo-
logical Context learning and Rule Augmen-
tation (TCRA) for KGC. The TCRA frame-
work consists of an entity topological context
learning mechanism based on dual-branch hi-
erarchical graph attention network, and a re-
lation rule context learning mechanism based
on Rule-Transformer and rule-to-relation ag-
gregator. The former mechanism encodes the
topological structure features of entities, aggre-
gates the local neighborhood topological con-
text information of entities on the three levels
(entity, relation and triple), and build clusters
of global head or tail entities related to the
same relation. It can capture the local and
global topological context information of en-
tities related to the same relation. The latter
mechanism introduces chain-like Horn rules as
the context information of relations, and en-
codes the logical semantic of relations to en-
rich the relation representation. Experimen-
tal performances on three benchmark datasets
FB15k-237, WN18RR and Kinship indicate
the effectiveness and superiority of our pro-
posed approach. The codes are publicly avail-
able.1

1 Introduction

Currently, large-scale knowledge graphs (KGs)
such as Freebase (Bollacker et al., 2008), DBpe-
dia (Lehmann et al., 2015) and NELL (Mitchell

* Corresponding author.
1https://github.com/starlet122/TCRA.

et al., 2018) have been widely used in knowledge-
intensive applications including semantic retrieval,
question answering, and recommendation systems.
Specially, knowledge graphs provide strong tech-
nical support for applications such as public opin-
ion monitoring, intelligent decision-making, and
credit assessment. However, knowledge graphs
constructed in a manual or automated way are
usually incomplete and sparse. Knowledge graph
completion (KGC) task addressed in this paper is
a vital technique to infer new knowledge and com-
plete missing entities and relations within knowl-
edge graphs.

At present, KGC approaches are mainly divided
into methods based on neural reasoning, symbolic
reasoning, and neural-symbolic reasoning (Zhang
et al., 2021). The first family techniques (Sun
et al., 2019; Yang et al., 2015; Dettmers et al.,
2018; Schlichtkrull et al., 2018; Zhang et al., 2022;
Li et al., 2022) first embed entities and relations
into a low-dimensional dense vector space. And
then they measure the plausibility of unobserved
triples by calculating their scores in the contin-
uous space. The methods in the second family
(Galárraga et al., 2015; Yang et al., 2017; Qu et al.,
2020; Cheng et al., 2022, 2023) deduce general
logical rules from knowledge graphs, and apply
the logical rules to infer missing facts, which can
achieve explainable reasoning. The third family
approaches (Cheng et al., 2021; Lin et al., 2021;
Tang et al., 2023) fuse the former two kinds of
methods, and have become a mainstream technol-
ogy in the fields of natural language processing
and knowledge graph construction.

However, existing KGC methods still face the
following problems: (a) the existing KGC ap-
proaches based on graph neural network (GNN)
only perform simple linear updates on the relation
representation, which can not capture the correla-
tion information between the relations in KGs. (b)
Those methods only aggregate local neighborhood
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information. Even if message passing is applied
multiple times, it is difficult for nodes that are far
apart in KGs to effectively transfer information.
Hence, they cannot capture global topological con-
text information.

To solve the above problems, we propose
a unified joint representation learning approach
with Topological Context learning and Rule
Augmentation (TCRA) for KGC task. The TCRA
model adopts an encoder-decoder architecture.
The encoder consists of two modules: the entity
topology context learning module based on a dual-
branch hierarchical graph attention network and
the relation rule context learning module based on
Rule-Transformer and rule-to-relation aggregator,
which are used to generate embeddings of entities
and relations, respectively.

Architecturally, the entity context learning mod-
ule leverages hierarchical graph attention network
(H-GAT) to aggregate local neighborhood struc-
ture information to generate local embeddings of
entities. Parallelly, it builds global head entity or
tail entity clusters related to the same relation to
capture global semantic associations between en-
tities. In addition, the relation context learning
module leverages chain-like Horn rules as con-
text information of relations, and designs the Rule-
Transformer to encode the logical semantic infor-
mation of the relations in rule body relation se-
quences to generate the representation of rule bod-
ies. Further, the rule-to-relation aggregator fuses
the rule body representations related to the rule
head relations, thereby updating the representa-
tions of the rule head relations.

The contributions of this paper are summarized
as follows:

• A unified joint representation learning ap-
proach with topological context learning and
rule augmentation is proposed for KGC task.
On the one hand, our TCRA can effectively
model the local topological structure informa-
tion of entities, and capture the global struc-
tural characteristics of entities in the form of
entity clusters for enriching the context rep-
resentation of entities. On the other hand,
logical rules are introduced to mine logical
semantic association of relations, and those
rules are explicitly modeled to constrain rela-
tion embeddings for enhancing the represen-
tation of relations.

• We design an entity topological context learn-

ing mechanism based on dual-branch hierar-
chical graph attention network. That mecha-
nism can capture the local structural features
of entities by modelling the neighborhood in-
formation at three levels of entities, relations,
and triples. Moreover, the cluster of global
head or tail entities related to the same rela-
tion is introduced to capture the global struc-
tural characteristics of entities by using clus-
ter encoder and cluster-to-entity aggregator.

• A relation rule context learning mecha-
nism based on Rule-Transformer and rule-to-
relation aggregator is developed. That mech-
anism can effectively capture the logical as-
sociation between relations in the rule body,
and simultaneously aggregate the rule body
representation associated with a certain rule
head relation for enriching the representation
of the relations.

• Extensive comparative experiments on three
benchmark datasets FB15k-237, WN18RR
and Kinship show that our model TCRA out-
performs the state-of-the-art methods.

2 Related Work

KGC approaches can be roughly classified into
methods based on neural reasoning, symbolic rea-
soning, and neural-symbolic reasoning.

Neural reasoning is also known as knowledge
graph embedding (KGE) or knowledge graph rep-
resentation learning. Further, the present neural
reasoning techniques can roughly fall into three
categories: translational distance based models,
semantic matching based models, deep learning
based models. The basic idea of the translational
distance models is to regard relations as conver-
sion factors between head and tail entities (Bordes
et al., 2013; Sun et al., 2019). The semantic match-
ing models calculate the confidence of triples by
measuring the similarity of the underlying seman-
tics between entities and relations (Nickel et al.,
2011; Yang et al., 2015). The deep learning mod-
els have stronger representation and generalization
ability than the former two kinds of methods. Re-
cently, GNN is utilized to fulfill the KGC task
(Schlichtkrull et al., 2018; Vashishth et al., 2019;
Li et al., 2022), which can learn the topological
structure of KGs in an end-to-end manner. SE-
GNN (Li et al., 2022) introduced different levels
of semantic evidence to explain the extrapolation
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ability of KGE model and explicitly treated each
semantic evidence as a different neighbor pattern.

The methods based on symbolic reasoning de-
duce general logical rules from the knowledge
graph, and then apply the logical rules to infer
the missing facts, which have good interpretabil-
ity. Many rule mining approaches have been devel-
oped to extract rules from large-scale KGs, such
as AMIE+ (Galárraga et al., 2015), RNNLogic
(Qu et al., 2020), RLogic (Cheng et al., 2022) and
NCRL (Cheng et al., 2023).

Recent techniques used in knowledge graph rea-
soning combine neural reasoning and symbolic
reasoning. One of the fused methods is the
symbol-driven neural reasoning method, which
utilizes logic to enhance embedding. Specifically,
the fusion mechanism can be classified into the fol-
lowing three types of ones. The first family of
mechanisms including KALE (Guo et al., 2016)
and RUGE (Guo et al., 2018) are to use logical
rules as additional regularization for KGE train-
ing. The second kind of methods such as IterE
(Zhang et al., 2019) and UniKER (Cheng et al.,
2021) are to employ logical rules to obtain new
hidden triples and generate additional triples for
KGE training. The third kind of approaches such
as RPJE (Niu et al., 2020), RulE (Tang et al., 2023)
are to leverage logical rules as additional informa-
tion to enhance KGs representation learning. This
paper focuses on the symbol-driven neural reason-
ing method to solve KGC task.

3 Methodology

3.1 Problem Formulation

A knowledge graph G can be represented as
a set of factual triples in the form of G =
{(h, r, t)|h, r ∈ E, r ∈ R}, where E denotes a set
of entities, R is a set of relations, h means a head
entity, r is a relation, and t is a tail entity. KGC
task means to predict the remaining missing ele-
ment given two elements of a triple, including pre-
dicting the tail entity t in ⟨h, r, ?⟩ given h and r, or
predicting the head entity h in ⟨?, r, t⟩ given r and
t, where ? is the element to be inferred.

3.2 Overview of TCRA Framework

Our TCRA model for knowledge graph comple-
tion adopts the encoder-decoder architecture. The
encoder consists of two modules: the entity topol-
ogy context learning module based on a dual-
branch hierarchical graph attention network and

the relation rule context learning module based on
Rule-Transformer and rule-to-relation aggregator.
The former module encodes the topological struc-
ture characteristics of entities. On the one hand, it
aggregates three levels of local neighborhood topo-
logical context of entities including entity, relation
and triple levels. On the other hand, global head or
tail entity clusters related to the same relation are
built to capture global semantic associations be-
tween entities. Thereby, we generate embedding
representation of entities, which can capture the
local structural features and the global topological
context of entities. The latter module encodes the
causal association information between relations,
and introduces chain-like Horn rules as the con-
text information of relations to learn the relation
embedding, which aims to encode the logical se-
mantic information of relation. ConvE is chosen
as the decoder. The overall architecture of our
TCRA model is shown in Figure 1.

3.3 Entity Topology Context Learning

A dual-branch hierarchical graph attention net-
work is designed to learn entity topological con-
text of entities. H-GAT is exploited to aggregate
local neighborhood topological structure informa-
tion to generate local embeddings of entities. Ad-
ditionally, the global head entity clusters or tail en-
tity clusters associated with the same relation is
introduced to capture the global association infor-
mation between entities.

3.3.1 Local Branch: Hierarchical Graph
Attention Network

Inspired by the works in Li et al. (2022), the neigh-
borhood topological context information on the
three levels of entity, relation, and triple are jointly
modeled as information sources of complemen-
tary reinforcing local neighbor structure to obtain
richer local structure features of entities. H-GAT is
leveraged to generate those three-levels local rep-
resentations of the central entity. Further, the three
embeddings are integrated to generate the updated
embedding of that entity. In addition, a multi-layer
iterative aggregation mechanism is introduced to
capture multi-hop neighbor information and deep
interactions between different levels of informa-
tion. We will explain the single aggregation layer.

For the entity-level neighborhood information,
we use senti for the entity-level local representation
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Figure 1: The framework of our TCRA model for knowledge graph completion.

of the central entity ei, which is computed as:

senti = σ


 ∑

(ej ,rj)∈Ni

αent
ij Wentej


 , (1)

where Ni denotes the set of neighbor entities and
connecting relation of ei in train set, Went ∈
RdG×dG is the linear transformation matrix, dG is
the embedding dimension of entities and relations
in G. ej is the embedding representation of ej .
σ is a non-linear activation function. αent

ij is an
aggregation attention score of neighbor entity ej ,
which is calculated as follows:

αent
ij =

exp
(
eTj ei

)

∑
(ek,rk)∈Ni

exp
(
eTk ei

) . (2)

The relation-level neighborhood information
sreli is computed as:

sreli = σ


 ∑

(ej ,rj)∈Ni

αrel
ij Wrelrj


 , (3)

αrel
ij =

exp
(
rTj ei

)

∑
(ek,rk)∈Ni

exp
(
rTk ei

) , (4)

where rj is the embedding representation of rj .

The triple-level neighborhood information strii

is calculated as:

strii = σ


 ∑

(ej ,rj)∈Ni

αtri
ij Wtriφ(ej , rj)


 , (5)

αtri
ij =

exp
(
φ(ej , rj)

Tei

)

∑
(ek,rk)∈Ni

exp
(
φ(ej , rj)

Tei

) , (6)

where φ(ej , rj) = ej ∗ rj .
A multi-layer iterative aggregation approach is

adopted to integrate the neighborhood informa-
tion on levels of entity, relation, and triple. At
each layer l, the three-levels embeddings

(
senti

)l,(
sreli

)l and
(
strii

)l with original input embedding
eli are integrated to be feed into the next layer. In
first layer, the embedding e1i is initialized. Then,
after K layers aggregation, eKi is regarded as the
final entity local topological context embedding
elocali .

el+1
i = eli +

(
senti

)l
+
(
sreli

)l
+
(
strii

)l
, (7)

elocali = eKi . (8)
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3.3.2 Global Branch: Cluster Encoder and
Cluster-to-Entity Aggregator

We observed that entities with the same relation ex-
ist global topological associations with each other
in KGs. Thereby, the factual triples containing
the same relation are constructed into a cluster of
triples for capturing global topological context in-
formation between entities. Further, each relation
has a corresponding head entity cluster Zh

ri and a
tail entity cluster Zt

ri . Hence, the cluster triple can
be represented as Cri = {(Zh

ri , ri, Z
t
ri) | ri ∈ R}.

First, we collect the representations of entities
contained in each entity cluster and generate the
entity cluster representation, as shown in Eq.(9).

U = D−1H
T
EWc, (9)

where U ∈ R2|R|×dS is the entity cluster em-
bedding matrix, dS is the embedding dimension
of entity clusters. H ∈ R|E|×2|R| is the inci-
dence matrix, which shows whether an entity be-
longs to a cluster. D ∈ R2|R|×2|R| is a diagonal
matrix of cluster degree, i.e. the number of en-
tities contained in clusters, and Djj =

∑
iHij .

E ∈ R|E|×dG is the entity embedding matrix.
Wc ∈ RdG×dS is a trainable weight matrix.

Then, we design a cluster-to-entity aggregator
to aggregate the representation of the entity cluster
to which the entity ei belongs, and generate the
global context representation eglobali of the entity
ei,

eglobali = σ

(
1∑
j hi,j

hT
i UWg

)
, (10)

where hi ∈ R2|R| is an incidence vector, which
indicates whether the entity ei belongs to cluster j
by taking values 0 or 1. Wg ∈ RdS×dG is a train-
able weight matrix. Finally, the entity embedding
is calculated as eouti = elocali + eglobali .

3.4 Relation Rule Context Learning
The relation rule context learning module is in-
tended to encode the logical semantic features of
relations. Horn rule is a special first-order logic
rule in the language of symbolic logic, typically
is expressed in the form of “body ⇒ head”. The
body of a Horn rule is defined as a connection nor-
mal form (CNF), which connects a set of predi-
cates through logical connectives. Here, the head
is a single predicate. With regard to relation con-
text learning, chain-like Horn rules are mined in
the following form:

rh (x, y) ⇐ rb1 (x, z1)∧· · ·∧rbn (zn−1, y) . (11)

Here, rb1 (x, z1) ∧ · · · ∧ rbn (zn−1, y) is the rule
body, rh (x, y) is the rule head. Integrating rule
head and rule body, we denote a Horn rule as
(Rb, rh), where the rule body Rb = [rb1 , . . . , rbn ].
The rule body of a chain-like Horn rule can be
regarded as a relation sequence. In addition, the
length of a Horn rule refers to the number of pred-
icates (or atoms) in its body.

Chain-like Horn rules are introduced to capture
logical semantic of relations. Thereby, a Rule-
Transformer is designed to mine the interactive in-
formation between relations in the rule body by en-
coding the rule body. It includes N Transformer
encoder layers. We then aggregate the rule body
embeddings to update the representation of the cor-
responding rule head relation. For example, the re-
lation r3 in Figure 1 has three rule body relation
sequences.

Nr3 = {R1, R2, R3}
= {(r1, r2, r4), (r4, r5), (r7, r8, r9)}.

(12)

Logical rules focus on capturing the seman-
tic constraints among different types of relations,
which have the rich semantic intension correla-
tions. Inspired by this observation, the relation
interaction layers are designed to learn the seman-
tic associations of the relations in the rule body
and update the representation of each relation in
the rule body. At first, for the rule (R1, r3), i.e.,
r1 ∧ r2 ∧ r4 ⇒ r3, the relation interaction lay-
ers use the first former N -1 Transformer encoder
layers and adopt multi-head self-attention mecha-
nism. The input ER1 of the relation interaction
layers is the representation matrix of the rule body
sequence R1, and the output E′

R1
is the encoding

matrix of R1,

E′
R1

= transformer encoders (ER1) , (13)

where ER1 ,E
′
R1

∈ Rl×dG .
Secondly, the rule encoding layer employes

the N -th Transformer encoder layer and adopts a
multi-head cross-attention mechanism to generate
the representation of the rule body for r3,

eoutRi
= transformer encoder

(
E′

Ri
, r3
)
. (14)

Finally, we develop a rule-to-relation aggrega-
tor to aggregate the rule body representation re-
lated to the rule head relation ri, introduce the rule
head association matrix, and update the represen-
tation of the rule head relation ri,

ri = σ

(
1∑
j hi,j

hT
i BWr

)
, (15)
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where H ∈ R|B|×2|R| is the incidence matrix,
which indicates whether the rule body b corre-
sponds to the rule head relation r. hb,r =
1 if b =⇒ r otherwise hb,r = 0. |B| represents
the number of rules. hi ∈ R|B| is an incidence vec-
tor, which indicates whether the rule body bj corre-
sponds to the rule head relation ri. B ∈ R|B|×dR

is the rule body embedding matrix, which is out-
put by the rule encoding layer. dR is the embed-
ding dimension of rule bodies. Wr ∈ RdR×dG is a
trainable weight matrix.

3.5 Decoder
We leverage the embeddings of entities and rela-
tions to perform KGC task. ConvE is chosen as
the decoder, which uses a 2D convolutional neural
network to match the query (h, r) and the answer t.
The ConvE’s scoring function is shown in Eq.(16):

f(h, r, t) = σ(f(σ([h̃; r̃]) ∗ ψ))Wd)t, (16)

where h̃ and r̃ represent the 2D tensor correspond-
ing h and r respectively, ∗ denotes the convolution
operator. ψ represents a set of convolution kernels.
f(·) is the vectorized function. Wd is a learnable
weight matrix. σ is the ReLU activation function.

The standard binary cross-entropy loss function
is chosen and label smoothing is adopted:

L = − 1

N

∑

t

(ti log(pi) + (1− ti) log(1− pi)),

(17)
where N denotes the number of entities, ti is the
true label of triple i, and pi is the corresponding
prediction score.

4 Experiments

4.1 Experiment Settings
Datasets and Rules. In order to evaluate the
performance of our proposed method on the
KGC task, we have conducted comparative ex-
periments on three public benchmark datasets, in-
cluding FB15k-237 (Toutanova and Chen, 2015),
WN18RR (Dettmers et al., 2018), and Kinship
(Kok and Domingos, 2007). The statistics of
datasets is given in Table 1. For rule mining, RNN-
Logic (Qu et al., 2020) is chosen as our rule min-
ing tool. In addition, we have also conducted ex-
periments to demonstrate the impact of the selec-
tion of decoders (ConvE and DistMult) and rule
miners (RNNLogic and RLogic). Additional ex-
perimental details are listed in Appendix A.1.1.

Dataset #Ent #Rel #Tri
Train Valid Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
Kinship 104 25 8,544 1,068 1,074

Table 1: Statistics of datasets used in the experiments
(“#Ent”, “#Rel”, and “#Tri” denote entity, relation, and
triple, respectively).

Baselines. We compare our TCRA model
with a comprehensive suite of baselines, includ-
ing three classes of models: (a) KGE-based mod-
els: RotatE (Sun et al., 2019), DistMult (Yang
et al., 2015), ConvE (Dettmers et al., 2018), R-
GCN (Schlichtkrull et al., 2018), SACN (Shang
et al., 2019), CompGCN (Vashishth et al., 2019),
LTE-KGE (Zhang et al., 2022), SE-GNN (Li et al.,
2022), KGT5 (Saxena et al., 2022), (b) Rule
learning-based models: AMIE+ (Galárraga et al.,
2015), NeuralLP (Yang et al., 2017), RNNLogic
(Qu et al., 2020), RLogic (Cheng et al., 2022),
NCRL (Cheng et al., 2023), (c) joint models: Rule-
IC (Lin et al., 2021), RulE (Tang et al., 2023).

Evaluation metrics. KGC performance can be
evaluated through five common evaluation metrics:
MR (the Mean Rank), MRR (Mean Reciprocal
Rank), Hits@N for N is 1,3 and 10 (the proportion
of correct entity rankings in top-N).

4.2 Experimental Results

4.2.1 Performance Comparison

As shown in Table 2 and Table 3, TCRA
achieves competitive performance on FB15k-237,
WN18RR and Kinship. Especially on Kinship, we
obtain the highest MRR, Hits@1, and Hits@3 that
are 1.8%, 2.5%, and 1.7% higher than the best
baseline, respectively.

Comparison with KGE-based and rule
learning-based models. Our TCRA is essen-
tially a rule-enhanced GNN-based KGE model.
(a) TCRA was first compared with traditional
KGE models, including the translational distance
model RotatE, the semantic matching model Dist-
Mult, and the CNN-based model ConvE. Table 2
and Table 3 show that TCRA achieves the higher
performance than those of RotatE, DistMult and
ConvE, indicating the effectiveness of our GNN
architecture. (b) We further compare TCRA with
the GNN-based KGE models including R-GCN,
SACN, CompGCN, LTE-KGE and SE-GNN. The
performance of TCRA is superior to those of all
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Models FB15k-237 WN18RR
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE(Bordes et al., 2013)♢ 173 0.330 23.1 36.9 52.8 3380 0.223 1.40 40.1 52.9
RotatE (Sun et al., 2019)♢ 177 0.338 24.1 37.5 53.3 3340 0.476 42.8 49.2 57.1
DistMult (Yang et al., 2015)♢ 173 0.308 21.9 33.6 48.5 4723 0.439 39.5 45.2 53.3
ConvE (Dettmers et al., 2018)♢ 244 0.325 23.7 35.6 50.1 4187 0.430 40.0 44.0 52.0
R-GCN (Schlichtkrull et al., 2018)♢ - 0.248 15.1 - 41.7 - - - - -
SACN (Shang et al., 2019)♢ - 0.350 26.0 39.0 54.0 - 0.470 43.0 48.0 54.0
CompGCN (Vashishth et al., 2019)♢ 197 0.355 26.4 39.0 53.5 3533 0.479 44.3 49.4 54.6
LTE-KGE (Zhang et al., 2022) 182 0.355 26.4 38.9 53.5 3290 0.472 43.7 48.5 54.4
SE-GNN (Li et al., 2022) 157 0.365 27.1 39.9 54.9 3211 0.484 44.6 50.9 57.2
KGT5 (Saxena et al., 2022) - 0.276 21.0 - 41.4 - 0.508 48.7 - 54.4

NeuralLP (Yang et al., 2017) - 0.237 17.3 25.9 36.1 - 0.381 36.8 38.6 40.8
RNNLogic (Qu et al., 2020) 232 0.344 25.2 38.0 53.0 4615 0.483 44.6 49.7 55.8
RLogic (Cheng et al., 2022) - 0.310 20.3 - 50.1 - 0.470 44.3 - 53.7
NCRL (Cheng et al., 2023) - 0.310 22.0 - 48.2 - 0.670 56.8 - 85.2

Rule-IC (Lin et al., 2021) 166 0.355 27.2 40.2 55.2 3304 0.436 39.9 45.1 54.5
RulE (Tang et al., 2023) - 0.354 26.1 39.1 54.3 - 0.506 46.6 52.2 58.9

TCRA(DistMult+RLogic) 183 0.344 25.3 37.6 52.5 4018 0.453 41.6 46.6 52.6
TCRA(DistMult+RNNLogic) 183 0.344 25.3 37.8 52.6 3171 0.453 41.6 46.3 52.7
TCRA(ConvE+RLogic) 160 0.365 27.1 40.2 55.1 3210 0.492 45.2 50.4 57.0
Our TCRA (ConvE+RNNLogic) 156 0.367 27.5 40.3 55.4 3303 0.496 45.7 51.1 57.4

Table 2: Results of KGC on FB15k-237 and WN18RR. ♢ means that the results are reported from (Li et al., 2022).
Results of NeuralLP are taken from (Qu et al., 2020). Other results are from the original papers.

Models Kinship
MRR Hits@1 Hits@3 Hits@10

TransE(Bordes et al., 2013)♢ 0.251 1.62 37.8 72.8
RotatE (Sun et al., 2019)♢ 0.651 50.4 75.5 93.2
DistMult (Yang et al., 2015)♢ 0.354 18.9 40.0 75.5
ConvE (Dettmers et al., 2018) 0.833 73.8 91.7 98.1
SE-GNN (Li et al., 2022)† 0.848 76.4 91.9 98.4
NeuralLP (Yang et al., 2017)♢ 0.302 16.7 33.9 59.6
RNNLogic (Qu et al., 2020) 0.722 59.8 81.4 94.9
RLogic (Cheng et al., 2022) 0.580 43.4 - 87.2
NCRL (Cheng et al., 2023) 0.650 49.4 - 93.6
RulE (Tang et al., 2023) 0.740 62.0 82.9 95.7
TCRA(DistMult+RLogic) 0.570 42.4 63.9 89.2
TCRA(DistMult+RNNLogic) 0.578 43.5 64.5 89.3
TCRA(ConvE+RLogic) 0.847 76.1 92.0 98.2
Our TCRA (ConvE+RNNLogic) 0.866 78.9 93.6 98.3

Table 3: Results of KGC on Kinship. ♢ means that the
results are reported from (Tang et al., 2023). † denotes
that we reproduce the results of SE-GNN. Results of
ConvE and RLogic are taken from (Zeb et al., 2021)
and (Cheng et al., 2023) respectively. Other results are
from the original papers.

other models about MRR, Hits@1, Hits@3, and
Hits@10 on FB15k-237 and WN18RR, while it
outperforms all other models about MRR, Hits@1
and Hits@3 on Kinship. Those experimental re-
sults in Table 2 and Table 3 demonstrate the effec-
tiveness of our proposed entity topology context
learning and the relation context learning mecha-
nism. The former mechanism solves the problem
of effective message transmission between adja-
cent distant entities to supplement rich topologi-
cal information. Within the latter mechanism, log-

ical rules are introduced as relation context to cap-
ture the logical semantic characteristics of rela-
tions. (c) The performance of TCRA is better than
the rule learning-based model including AMIE+,
NeuralLP, RNNLogic, RLogic and NCRL in most
cases. This can be attributed to the fact that TCRA
jointly learns logical rules and topological struc-
tures, which can encode the knowledge graph in a
more complementary way and obtain better KGC
performance.

Comparison with joint models. Compared
with joint models including Rule-IC and RulE,
TCRA achieves the convincing performance.
Specifically, TCRA obtain the best performance
on FB15k-237 and Kinship, and better perfor-
mance than Rule-IC on WN18RR. The reason is
that the logical rules and topology structures in
WN18RR and Kinship contain more complemen-
tary information.

4.2.2 Ablation Study

We have conducted ablation experiments to
demonstrate how Cluster Encoder and cluster-to-
entity Aggregator (abbreviated as CEA) and Rela-
tion Rule Context learning (abbreviated as RRC)
contribute to the overall performance of TCRA.
“w/o CEA” means that CEA is removed from
TCRA, while “w/o RRC” denotes that RRC is
removed from TCRA. “w/o CEA&RRC” repre-
sents that TCRA simultaneously removes CEA
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Models FB15k-237 WN18RR Kinship
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TCRA 0.367 27.5 40.3 55.4 0.496 45.7 51.1 57.4 0.866 78.9 93.6 98.3
w/o CEA 0.364 26.9 40.2 55.3 0.490 44.5 51.0 57.7 0.860 78.2 92.8 98.6
w/o RRC 0.365 27.1 40.0 55.3 0.494 45.5 50.8 57.2 0.853 77.1 92.3 98.4
w/o CEA&RRC 0.365 27.1 39.9 54.9 0.484 44.6 50.9 57.2 0.848 76.4 91.9 98.4
w/o CEA&Rule-Transformer 0.365 27.1 40.0 55.3 0.494 45.5 50.6 57.0 0.855 77.1 92.9 98.2

Table 4: Ablation experiment results.

and RRC. "CEA&Rule-Transformer" means that
TCRA simultaneously eliminates CEA and Rule-
Transformer. Table 4 summarizes the results of
our ablation experiments on three datasets.

For WN18RR and Kinship, these four abla-
tion models have decreased significantly on MRR,
Hits@1, and Hits@3 metrics. The ablation ex-
periments not only indicate the effectiveness of
the proposed global aggregation and relation rule
context learning mechanism, but also show the
two modules CEA and RRC complementarily con-
tribute to our TCRA model. In particularly, the
performance of "w/o CEA&RRC" is worse than
that of "w/o CEA&Rule-Transformer", which sup-
ports the effectiveness and correctness of logical
rules.

4.2.3 Hyperparameter Sensitivity Analysis

This subsection analyzes the sensitivity of hyper-
parameters used in TCRA, including number of
rules and encoder layers in Rule-Transformer. The
corresponding experimental results are illustrated
in Figure 2. Additional hyperparameter experi-
ments about learning rate and embedding size are
provided in the appendix A.1.2.

First, we analyze the effects of different num-
ber of rules on the performance of our model.
We randomly select a fixed number of rules from
the mined logical rules for training. For FB15k-
237, the overall trend of performance is flat. For
WN18RR, the performance of TCRA generally
shows a decline first and then an increase. For Kin-
ship, four curves show a trend of first falling and
then rising.

Further, we investigated the sensitivity of the
number of encoder layers used in the Rule-
Transformer, and its value range of N is in
{2,3,4,5,6,7}. The performance of TCRA shows
a trend of rising first and then falling on all three
datasets. All in all, our model TCRA is not sensi-
tive to number of rules and encoder layers in the
Rule-Transformer.

Figure 2: Hyperparameter experiments about number
of rules and encoder Layers in Rule-Transformer.

5 Conclusion and Future Work

In this paper, a unied joint approach with Topo-
logical Context learning and Rule Augmentation
(TCRA) has been proposed to perform knowledge
graph completion, which can infer missing knowl-
edge in a more complementary way. The de-
signed entity topological context learning mecha-
nism based on dual-branch hierarchical graph at-
tention network can capture local structural fea-
tures of entities at three levels, and incorporate
global entity cluster to capture the global struc-
tural characteristics of entities. Meanwhile, the
relation rule context learning mechanism based
on Rule-Transformer and rule-to-relation aggrega-
tor is developed to facilitate adequate interaction
between relations by leveraging chain-like Horn
rules, which can capture the logical semantic of
relations to enrich the relation representation. Ex-
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tensive experiments demonstrate that the proposed
TCRA model outperforms present methods. In the
future, we will further design an iterative manner
to implement rule-enhanced KGE methods on this
basis, so as to achieve full complementarity be-
tween logical rules and KGE.

Limitations

Knowledge graphs contain rich interrelated knowl-
edge, including structural association and seman-
tic association. The models based on GNNs are
easily affected by the sparsity of local structures.
To alleviate the local sparsity, we build clusters of
global head or tail entities related to the same re-
lation to learn global structure association about
entities. In addition, the utilization of logical rules
increases the risk of being affected by noisy data
in KGs. We make the attempt to randomly select
a fixed number of rules to participate in training to
reduce risks.
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A Appendix

A.1 Experiments
A.1.1 Implementation Details.
We train our model using the Adam optimizer and
tune the model hyperparameters via grid search on
the validation set. Specifically, the hyperparameter
ranges are as follows: the learning rate is chosen
between 0.0001 and 0.01, and the embedding size
is chosen between 100 and 500. Pytorch is used to
implement the TCRA model. We conduct all ex-
periments on the Ubuntu system with 3090 GPU.

A.1.2 Hyperparameter Experiments
This subsection analyzes the sensitivity of hyper-
parameters used in our model TCRA, including
learning rate and embedding size. The extensive
experiments of hyperparameters on FB15k-237,
WN18RR, and Kinship have been coducted. The
corresponding experimental results are illustrated
in Figure 3.

We explore the effects of different learning rates
on the performance of our TCRA model. The
performance of TCRA shows a tiny fluctuation.
It is seen that TCRA obtains the highest perfor-
mance on FB15k-237, WN18RR, and Kinship
when learning rate is 4e-4, 3e-3, and 5e-3, espec-
tively.

In addition, the value of the embedding size is
taken in {100,200,300,400,500}. It is seen that
TCRA obtains the highest performance on FB15k-
237, WN18RR, and Kinship when embedding size
is 400, 300, and 400, espectively. It shows a trend
of rising along the increasing of embedding size
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Figure 3: Hyperparameter experiments about learning
rate and embedding size in Rule-Transformer.

on all three datasets FB15k-237, WN18RR, and
Kinship. All in all, our model TCRA is sensitive to
embedding size and not sensitive to learning rate.
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