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Abstract

Recently, multi-task instruction tuning has been
utilized to improve sentence representation
learning (SRL). It enables SRL models to gener-
ate task-specific representations with the guid-
ance of task instruction, thus exhibiting strong
generalization ability on unseen tasks. How-
ever, these methods mostly neglect the poten-
tial interference problems across different tasks
and instances, which may affect the training of
the model. To address this issue, we propose a
data curriculum method, namely Data-CUBE,
that arranges the order of all the multi-task data
for training, to minimize the interference risks
from two aspects. At the task level, we aim
to find the optimal task order to minimize the
total cross-task interference risk and formulate
this problem as the traveling salesman prob-
lem, which is further solved by a specially
designed simulated annealing algorithm. At
the instance level, we propose a measurement
method to quantify the difficulty of all instances
per task, and then arrange instances in an easy-
to-difficult order for training. Experimental
results show that our approach can boost the
performance of state-of-the-art methods. Our
code and data will be publicly released.

1 Introduction

Sentence representation learning (SRL) (Reimers
and Gurevych, 2019; Gao et al., 2021) is a fun-
damental task in the NLP field, which focuses on
encoding the semantic information of sentences
into low-dimensional vectors. Typically, existing
work (Karpukhin et al., 2020; Zhou et al., 2022) col-
lects a set of sentence pairs (or augmented in an un-
supervised way), and then learns the model param-
eters by maximizing and minimizing the similarity
scores of relevant and irrelevant sentences, respec-
tively. Previous SRL methods based on advanced
language models and learning objectives (Reimers
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Figure 1: (left) Example of task- and instance-level in-
terference. The distance reflects task similarity, and the
shades of oranges represent the difficulty level. (right)
The underfitting degrees of all training tasks. Accord-
ing to the ratio of instances whose positives and neg-
atives are not clearly distinguished (margin<0.05), we
categorize all tasks into three degrees: severe (>80%),
moderate (>50% but <80%), and mild (<50%).

and Gurevych, 2019; Ni et al., 2022a), are capa-
ble of producing high-quality representations that
perform well on various downstream tasks.

Despite the success, recent studies (Neelakantan
et al., 2022) have revealed that it is challenging to
directly transfer the learned sentence representa-
tions into new tasks, even causing significant per-
formance degradation. To alleviate this problem,
instruction tuning (Wei et al., 2022; Wang et al.,
2022b) has been applied to sentence representation
learning, which collects a diverse set of sentence-
pair datasets with task-specific natural language
instructions (Su et al., 2023; Xiao et al., 2023).
Before training, each of the collected datasets is
generally divided into multiple mini-batches at ran-
dom (Su et al., 2023), and the SRL model will be
trained over the mini-batches of all datasets in a ran-
dom order. After multi-task training on the dataset
collection, the model would become capable of
generating task-specific sentence representations
with the guidance of the task instruction, exhibiting
improved generalization ability on unseen tasks.

However, as the collected datasets vary in data
distributions, a random order for instruction data
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scheduling would lead to potential cross-task inter-
ference risk for model optimization. As depicted in
Figure 1 (left), when the neighboring mini-batches
are from very different tasks, the successive learn-
ing of them would lead to conflict in the optimiza-
tion objective, affecting the final performance of
both tasks. In addition, the instances for a given
task might be with varied difficulty levels. Ran-
domly assigning them into mini-batches may result
in potential cross-instance interference, which is
also likely to cause the performance degradation.
As shown in Figure 1 (right), the competitive model
INSTRUCTOR (Su et al., 2023) struggles with dis-
tinguishing more than 80% positive and negative
examples in almost half of the training datasets,
indicating the severe underfitting problem.

To address these issues, in this paper, we propose
DATA-CUBE, a Data CUrriculum method for
instruction-Based sentencE representation learn-
ing. The core idea of our approach is to design a
proper data curriculum that arranges the orders of
all tasks and instances for minimizing the poten-
tial interference risks. Concretely, for the cross-
task interference, we focus on finding the optimal
task order where all the neighboring two tasks are
as similar as possible, to minimize the total inter-
ference risks derived from task divergence. We
formulate this task as the the travelling salesman
problem (TSP) (Hoffman et al., 2013): all the tasks
are regarded as the nodes in a fully connected graph
with task similarity as the edge weights, and the op-
timal order search problem is essentially to find the
longest route that visits all nodes. To solve the TSP,
we employ the widely-studied simulated annealing
algorithm to efficiently find its suboptimal solution.
For the cross-instance interference, we measure
the discriminability of positive and negative, as
the estimated difficulty for sorting all the instances.
Then, we divide them into easy-to-difficult mini-
batches for training, to minimize the interference
risks caused by varied instance difficulty.

To integrate the two strategies, we first find the
optimal task order with the simulated annealing
algorithm, then sort the instances within each task
according to their difficulty to obtain the instance
order for mini-batch arrangement, and finally di-
vide the sorted instances from all the tasks into a
sequence of mini-batches for training SRL models.

Our contributions are summarized as follows:

(1) To our knowledge, the proposed Data-CUBE
is the first attempt of data curriculum in instruction-

based SRL. It is a model- and data-agnostic ap-
proach for improving the training of SRL models.

(2) We reveal the interference problem in train-
ing instruction-based SRL, and propose to address
cross-task interference by formulating it as a TSP
and address cross-instance interference by employ-
ing an easy-to-difficult data curriculum.

(3) Extensive experiments on downstream tasks
show the effectiveness of our approach, outperform-
ing a number of competitive SRL models.

2 Related Work

Sentence Representation Learning. A robust
sentence representation plays a pivotal role in
diverse downstream tasks. Previously, most
sentence representation models concentrate on
a singular task or domain, weak in transfer-
ring to other downstream tasks without further
fine-tuning. For instance, SimCSE (Gao et al.,
2021), SBERT (Reimers and Gurevych, 2019),
and DCLR (Zhou et al., 2022) are trained to ad-
dress sentence similarity and classification tasks,
while models like DPR (Karpukhin et al., 2020),
Contriever (Izacard et al., 2022a), Master (Zhou
et al., 2023), and GTR (Ni et al., 2022b) are ap-
plied to information retrieval. In response to this
challenge, recent efforts have emerged to develop
instruction-based sentence representation models
through multi-task contrastive learning. Exem-
plars include INSTRUCTOR (Su et al., 2023),
BGE (Xiao et al., 2023), and GTE (Li et al., 2023),
which aim to enhance the adaptability and gener-
alization capabilities of sentence representations
across diverse tasks and domains. Existing studies
primarily focus on aspects such as the training ob-
jective, model architecture, or training scale, while
paying limited attention to the challenges posed by
interference during the multi-task training process.

Instruction Tuning. Instruction tuning (Ouyang
et al., 2022; Zhao et al., 2023) involves supervised
fine-tuning pre-trained language models by inte-
grating well-formatted natural language instruc-
tions into the input. This process is closely con-
nected to multi-task learning and is believed to
enhance the generalization capability of language
models across a range of tasks (Wei et al., 2022).
Previous studies have demonstrated that increasing
the number and diversity of tasks associated with
instructions can improve performance. Consider-
ing the effectiveness of instruction tuning, it has
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been applied to various NLP tasks, such as sen-
tence representation learning (Su et al., 2023; Xiao
et al., 2023). However, with the increasing diver-
sity of tasks, there is a potential for interference
across different tasks, which may lead to perfor-
mance degradation (Mueller et al., 2022). Hence,
we propose to leverage data curriculum to alleviate
the interference in the multi-task instruction tuning.

Traveling Salesman Problem (TSP). Travel-
ing salesman problem is a classic combinatorial
optimization problem in computer science and op-
erations research. It is to find the shortest route
for a salesman to visit a given set of cities ex-
actly once and return to the start (Hoffman et al.,
2013; Cheikhrouhou and Khoufi, 2021). Recog-
nized as an NP-hard problem, TSP is costly to solve
for large numbers of cities. Consequently, numer-
ous heuristic methods have been developed to find
near-optimal solutions efficiently (Helsgaun, 2006;
Matai et al., 2010). A notable method is Simulated
Annealing (SA) (Bertsimas and Tsitsiklis, 1993),
an algorithm inspired by metallurgy’s annealing
process. SA is effectively used in various combi-
natorial problems like TSP, Job Shop Scheduling
Problem (Chakraborty and Bhowmik, 2015), and
Graph Coloring Problem (Pal et al., 2012).

3 Preliminary

3.1 Task Definition

Sentence representation learning (SRL) is to train
a capable text encoder that can map a sentence
into a latent vector for downstream tasks. To en-
hance the generalization ability on unseen tasks
of the SRL model, instruction based SRL mod-
els (Su et al., 2023) take as input the sentence s
with a natural language instruction I , to obtain the
task-aware sentence representation v. To train
the SRL model, we are given m instruction for-
matted sentence-pair datasets D = {di}mi=1, where
di denotes the i-th dataset and corresponds to the
task oi. Each dataset typically consists of n queries
{qj}nj=1 and their relevant sentences {s(+)

j }nj=1 and

irrelevant sentences {s(−)
j }nj=1, with specific in-

structions ⟨I(q), I(+), I(−)⟩ for the three text types.
During training, the model follows a certain task

order O = {oi} and instance order, typically ran-
dom orders, to learn the model parameters. How-
ever, random data training would potentially lead to
potential learning interference issues as discussed
in Section 1. In this work, we aim to devise a

data curriculum approach to improve the multi-task
training for SRL, to reduce the interference risk.

3.2 Travelling Salesman Problem
Considering the interference problem across the m
datasets, we first estimate the mutual interference
risks between every two tasks r(i, j), and then find
the optimal order for all the tasks O = {oi}mi=1, to
minimize the accumulated interference risk as:

argmin

m−1∑

i=1

r(oi, oi+1) + r(om, o1) (1)

where oi is the corresponding task of the dataset
di from D. Such an optimal order search problem
can be converted as the traveling salesman prob-
lem (TSP) that finds the shortest route to visit all
cities (i.e., tasks) exactly once.

As TSP is proved to be an NP-hard problem,
heuristic algorithms (Helsgaun, 2006; Matai et al.,
2010) have been widely studied to find suboptimal
solutions in a reasonable time. Simulated anneal-
ing (SA) (Bertsimas and Tsitsiklis, 1993) is a com-
monly used algorithm for TSP, and its basic idea
is to start with an initial solution and then search
by randomly perturbing the solution. In each it-
eration, the algorithm evaluates the quality of the
new solution by computing the change in the ob-
jective function. If the new solution is better, it
will replace the current one. Otherwise, the update
would occur according to a probability calculated
based on the temperature and the change in the
objective function. As the iterations progress, the
temperature decreases, gradually reducing the like-
lihood of accepting worse solutions and guiding
the algorithm towards converging.

4 Approach

In this section, we present the proposed DATA-
CUBE, a Data CUrriculum method for instruction-
Based sentencE representation learning. Following
previous work, we develop the approach based on
a multi-task contrastive learning framework, and
while introduce novel data curriculum methods for
SRL, considering both task-level and instance-level
arrangement, which can significantly reduce the
learning interference issue.

4.1 Multi-task Contrastive Learning
We employ multi-task contrastive learning to train
a pre-trained language model (e.g., T5 (Raffel et al.,
2020)) for producing sentence representations. In
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Figure 2: An overall illustration of Data-CUBE: the task-level curriculum rearranges the task orders from similar
to dissimilar using the simulated annealing algorithm, and the instance-level curriculum reorganizes the instances
within each task based on an easy-to-difficult order.

general, it maximizes the similarity of positive
pairs ⟨q, s(+)⟩ and minimizes the one of negative
pairs ⟨q, s(−)⟩, based on specific task instructions
⟨I(q), I(+), I(−)⟩. Concretely, we first preprocess
the collected datasets into multiple mini-batches
with specific instructions and then optimize the
model parameters via a multi-task learning loss.

For each dataset, we concatenate its contained
queries, positive and negative sentences with corre-
sponding instructions, to compose new instances:

q̃ = [I(q); q], s̃(+) = [I(+); s(+)], s̃(−) = [I(−); s(−)], (2)

where the instruction contains the description that
specifies the task, e.g., “Represent the example for
the following task: Given a scientific question, gen-
erate a correct answer to it”. Next, we perform
the mini-batch splitting, and guarantee that all the
in-batch instances come from the same task. Such
a way avoids the possible cross-task interference
when using in-batch negatives for contrastive learn-
ing. Thus, we leverage the following loss function:

L =
m∑

i=1

∑

B∈di

|B|∑

j=1

e
sim(vq̃j ,v

(+)
s̃j

)/τ

∑|B|
k=1 e

sim(vq̃j ,vs̃k )/τ
(3)

where B = {⟨q̃j , s̃(+)
j , s̃

(−)
j ⟩}

|B|
j=1 denotes the mini-

batch of |B| instances from dataset di, vq̃j and v(+)
s̃j

refer to the representations of the j-th query q̃j and
positive sentence s̃

(+)
j respectively, m denotes the

number of datasets and τ denotes the temperature,
and sim(·, ·) is the cosine similarity function.

Here, we adopt a similar setting in loss function
(Eq. (3)) as previous study (Su et al., 2023), while
our focus is to design a suitable data curriculum
approach for scheduling the mini-batches from all
the task datasets. In what follows, we will introduce
the proposed task-level (Section 4.2) and instance-
level (Section 4.3) curriculum methods in detail.

4.2 Task-level Curriculum Arrangement:
From Similar to Different

As the divergence of data distributions between
neighboring tasks may affect the learning of
both (Ding et al., 2023), we expect that the training
order can be a “smooth” transition across tasks, to
minimize the accumulated cross-task interference
risk. Thus, we estimate the cross-task interference
risk based on task similarity, and then search the op-
timal order by the simulated annealing algorithm.

4.2.1 Cross-task Interference Risk Estimation
To estimate the cross-task interference risk, we
adopt the similarity of text representations for mea-
suring the divergence in data distribution. Con-
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cretely, we randomly sample nt queries per dataset
to compose a representative subset, then compute
the mean representation as the task representation:

v(t) =
1

nt

nt∑

j=1

vq̃j . (4)

Here, we use a pre-learned model (i.e., Instruc-
tor (Su et al., 2023)) to produce the query repre-
sentation. Based on it, the task similarity can be
measured using the cosine similarity of task repre-
sentations. As similar tasks typically have lower
interference risk (Mueller et al., 2022), we can
roughly estimate the cross-task interference risk as:

r(i, j) ∝ −sim(v(t)i , v(t)j ), (5)

where sim(v(t)i , v(t)j ) is the cosine similarity be-
tween the representations of the i-th and j-th tasks.
With these estimated interference scores, we next
study how to schedule different tasks to reduce the
entire risk across the data curriculum.

4.2.2 Optimal Order Search
As discussed in Section 3.2, we can formulate opti-
mal order search as TSP over in a fully connected
undirected graph, in which tasks are considered as
nodes and the estimated interference risk (Eq. 5)
between two linked tasks are considered as edge
weight. In this way, our goal becomes how to find
the shortest route that visits each node exactly once,
with the objective function as Eq. 1.

According to the negative correlation between in-
terference risk and task similarity as Eq. 5, the risk
minimization objective is equivalent to maximizing
the sum of neighboring task similarity:

argmax
m∑

i=1

sim(v(t)i , v(t)i+1)+ sim(v(t)m , v(t)1 ). (6)

Therefore, our goal is to find the most smooth tran-
sition path for all the tasks, to avoid the drastic
distribution shift of the neighboring tasks.

To solve TSP, we adopt the simulated annealing
algorithm to find a suboptimal solution within a
reasonable amount of time. Specially, simulated
annealing iteratively perturbs the current solution
to explore the solution space, and accepts the new
solution based on the objective in Eq. 6 and a grad-
ually decaying temperature τs. Concretely, we first
initialize a task orderO′

by random shuffling. Next,
we repeat the perturb-then-check process until con-
vergence. In each iteration, we randomly choose

a pair of tasks in the current order O′
, swap their

positions to obtain the new order Õ′
, and check

whether the total neighboring task similarity will
increase. If increased, the new order will replace
the current one. Otherwise, the new order will be
accepted in a probability as:

p(O′
, Õ′

, τs) = exp(−∆(O′
, Õ′

)

τs
) (7)

where ∆(O′
, Õ′

) denotes the difference of the total
neighboring task similarity between the current
and new orders using Eq. 6. Such a way prevents
the solution from being stuck at a local minimum,
and incorporating “∆” also reduces the likelihood
of accepting worse solutions. it also reduces the
instability close to the converged suboptimal point.

4.3 Instance-level Curriculum Arrangement:
From Easy to Difficult

In addition to the task-level curriculum, we also
devise the instance-level curriculum, to reduce the
cross-instance interference risk. The basic idea is
to first estimate the varying difficulty of instances
and then reorder the instances in each task from
easy to difficult. Next, we detail the two steps.

4.3.1 Instance Difficulty Estimation
As the tasks for SRL mainly focus on distinguish-
ing the relevant sentence s̃(+) and irrelevant sen-
tence s̃(−) according to the query q̃, we leverage
the discriminability of s̃(+) and s̃(−) to measure
the instance difficulty.

Specially, the positive and negative sentences
of easy instances would be clearly distinguished
by an SRL model trained on the data, while the
ones of difficult instances would pose more chal-
lenges for successful discrimination. We employ
a pre-learned model (i.e., Instructor) to encode the
representations of the positive and negative pairs,
then estimate the instance difficulty by computing
the similarity difference as:

ϕ(q̃, s̃(+), s̃(−)) = sim(vq̃, vs̃(+))− sim(vq̃, vs̃(−)).
(8)

The smaller the difference is, the more likely the
model struggles with distinguishing the positive
and negative, which indicates a difficult instance.

4.3.2 Instance Curriculum Arrangement
According to the difficulty measurement in Eq. 8,
we can assign the estimated scores to the instances
for a given task. Then, we sort all the instances
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Model BIO S-R S12 S13 S14 S15 S16 S17 S22 S-B Avg.

Sentence Representation APIs

OpenAI-TE 86.35 80.60 69.80 83.27 76.09 86.12 85.96 90.25 68.12 83.17 80.97
Voyage 84.85 79.71 77.09 88.91 82.08 89.21 84.74 90.73 62.10 89.86 82.93
Cohere 85.01 82.18 77.62 85.16 80.02 88.92 86.92 90.09 66.81 88.79 83.15
Ember 85.81 81.75 78.51 86.62 83.06 88.39 86.82 87.90 66.76 87.77 83.34

No-Instruction Sentence Representation Models

GloVe 44.93 55.43 54.64 69.16 60.81 72.31 65.34 77.95 56.35 61.54 61.85
USE 78.19 74.43 72.58 72.22 69.98 82.22 76.91 85.22 61.90 80.28 75.39
Contriever 83.32 70.20 64.34 80.03 74.51 83.30 79.67 86.32 64.64 78.81 76.51
GTR 81.91 74.29 70.12 82.72 78.24 86.26 81.61 85.18 65.76 77.73 78.38
SimCSE 68.38 80.77 75.30 84.67 80.19 85.40 80.82 89.44 61.96 84.25 79.12
SGPT 79.50 79.59 74.29 85.35 79.21 85.52 82.54 90.44 63.20 85.67 80.53
E5 84.73 80.49 75.93 85.22 80.54 88.81 85.28 89.37 62.99 87.21 82.06
SentenceT5 80.43 80.47 78.85 88.94 84.86 89.32 84.67 89.46 65.33 84.01 82.63

Instruction-based Sentence Representation Models

Jina 84.43 79.2 74.52 83.16 78.09 86.91 83.65 90.16 64.88 84.60 80.96
Udever 85.52 81.41 77.47 86.38 81.17 88.23 86.29 90.62 65.01 88.02 83.01
Stella 85.94 81.06 78.72 84.88 83.11 88.74 86.35 87.71 66.28 87.45 83.02
BGE 84.65 81.68 79.05 86.37 82.78 88.03 86.49 87.5 67.05 87.52 83.11
GTE 88.65 79.81 76.81 88.11 82.66 88.93 84.25 88.47 69.71 86.07 83.35

INS 84.39 81.27 76.28 88.18 81.92 89.01 85.49 90.30 67.74 86.88 83.15
+Data-Cube 89.37 82.52 78.46 88.39 83.06 89.46 85.87 91.08 68.28 87.61 84.41

Table 1: Sentence representation performance on 10 STS tasks (Spearman’s correlation on the English test set) in
MTEB (Muennighoff et al., 2023). We choose diverse models as baselines, including traditional no-instruction
sentence representation models, instruction-based sentence representation models, and sentence representation
APIs. In the case of models with multiple versions (e.g., varying parameter scales), we opt for the version that
demonstrates superior performance. All reported results are derived from the MTEB Leaderboard. We employ bold
numbers to emphasize the best results obtained on each dataset.

in each task descendingly, and further divide them
into multiple mini-batches B. In this way, we can
obtain the easy-to-difficult mini-batches per task.
Compared with randomly sampling, our method
can alleviate the interference caused by varying
instance difficulty within each mini-batch and the
difficulty divergence in neighboring mini-batches.

In addition, we find that too difficult instances
may not always be useful, as they could potentially
introduce noise into data. Therefore, following ex-
isting work (Zhou et al., 2022), we design a binary
mask αi using a threshold δ to reduce its influence
as:

αi =

{
0, ϕ(q̃i, s̃

(+)
i , s̃

(−)
i ) ≥ δ

1, ϕ(q̃i, s̃
(+)
i , s̃

(−)
i ) < δ

. (9)

Then, we apply the mask to the contrastive loss
of each instance in Eq. 3. This ensures that noisy
instances cannot be directly learned but serve as
in-batch negatives for other instances.

5 Experiments

In this section, we train with DATA-CUBE based
on INSTRUCTOR and conduct evaluations on four
task categories within MTEB (Muennighoff et al.,
2023), encompassing a total of 28 downstream
tasks. Furthermore, we continue to investigate the
effectiveness and robustness of DATA-CUBE. For
detailed settings, see Appendix B and C.

5.1 Main Results

We present the main experiment results in Table 1.
Based on the results, it is evident that instruction-
based sentence representation models generally per-
form better than no-instruction models, although
some no-instruction models are much larger than
instruction-based models in terms of scale (e.g.,
Sentence-T5 XXL has 11B parameters while the
largest version of BGE is about 300M). A poten-
tial reason is that instruction tuning enhances the
models’ understanding of tasks by integrating natu-
ral language instructions. This integration assists
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Task Type Datasets INS +Data-CUBE

Reranking

AUDQ 64.30 64.74
SODQ 52.17 51.96
SDRR 82.00 82.82
MSR 31.68 31.73

Avg. 57.53 57.81

Clustering

ACP2P 43.16 43.76
ACS2S 32.56 33.25
BCP2P 37.62 37.63
BCS2S 31.33 31.06
MCP2P 34.22 33.98
MCS2S 32.00 30.89
RC 64.65 63.56
RCP2P 64.63 65.31
SEC 68.78 70.23
SECP2P 36.15 35.59
TNC 54.13 55.82

Avg. 45.29 45.55

Pair
Classification

SDQ 93.07 93.32
TSE 77.42 78.69
TUC 87.18 86.73

Avg. 85.89 86.25

Table 2: Sentence representation performance on rerank-
ing, clustering, and pair classification tasks.

Settings BIO S12 S14 S22 Avg.

Data-CUBE 89.37 78.46 83.06 68.28 84.41
w/o Inst 87.53 77.64 82.85 66.95 83.94
w/o Task 86.56 78.15 82.53 67.48 83.94
Vanilla 88.16 77.10 82.31 64.47 83.42

Table 3: Ablations of the two-level curriculum.

the models in encoding sentences into task-aware
representations, thereby providing a significant ad-
vantage in downstream tasks.

Among all the compared models, our method
achieves the highest average performance across
STS tasks. Although it may not always rank first in
certain tasks like STS-12, STS-13, STS-16, STS-
22, and STSBenchmark, it maintains competitive
results. Notably, models achieving the best results
in these tasks tend to excel in only one task but un-
derperform in others. In contrast, our approach con-
sistently demonstrates effectiveness across all tasks.
When compared to our backbone model (i.e., IN-
STRUCTOR), our method significantly improves
the performance on all STS tasks. In addition,
we also evaluate our method on other task cate-
gories (e.g., Reranking, Clustering, and PairClassi-
fiacation). As Table 2 shows, our method achieves
average performance gains on these diverse task
categories. This implies that our approach plays a
significant role in reducing the interference among

Settings BIO S12 S14 S22 Avg.

Ours 89.37 78.46 83.06 68.28 84.41
800K 88.30 77.78 83.00 67.17 83.99
3M 88.40 77.71 83.06 68.12 84.10
5M 87.83 78.01 83.14 66.46 84.03

Table 4: Variation studies of the iterations of Simulated
Annealing algorithm on the test set of STS tasks.

Settings BIO S12 S14 S22 Avg.

Ours 89.37 78.46 83.06 68.28 84.41
8 84.82 76.44 82.23 66.61 83.23

16 87.37 78.23 83.35 68.76 84.21
32 86.70 77.50 83.00 68.38 84.03

Table 5: Variation studies of different batch sizes on the
test set of STS tasks.

tasks, which enhances not only the performance in
specific tasks but also the overall versatility.

It is noteworthy that both the volume of train-
ing data and the mini-batch size utilized in our
approach are considerably smaller compared to
other robust instruction-based sentence represen-
tation models. Specifically, our model is trained
with only 1 million sentence pairs and a batch size
of 64, in stark contrast to models like BGE which
use 300 million sentence pairs and a batch size of
32768. This indicates that our approach has the
potential to enhance the model’s ability to learn
more effectively from multi-task data in the con-
text of data interference and achieve comparable or
even superior performance despite limited data and
computational resources.
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Figure 3: Performance fluctuation curve on the STS
tasks during the training process.

5.2 Further Analysis

Next, we continue to investigate the effectiveness
and robustness of Data-Cube. This involves con-
ducting ablation studies on the two-level curricu-
lums, assessing the impact of iterations in Simu-
lated Annealing, analyzing the influence of mini-
batch size during training, and thoroughly exam-
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Figure 4: The percentage of underfitting instances
within different tasks. We show the comparison be-
tween INSTRUCTOR and fine-tuned with Data-CUBE.

ining the training convergence. To gain a better
understanding of the variations between different
settings, we carefully select several tasks in STS,
such as BIOSSES (Sogancioglu et al., 2017), STS-
12, 14, and 22 (Agirre et al., 2012, 2014; Chen
et al., 2022), where our method demonstrates more
noticeable improvements.

Ablations of Two-level Curriculum. To explore
the influence of task-level curriculum, we exclu-
sively implement the instance-level curriculum
to reorganize the training data, sorting instances
within each task by difficulty using Eq. 8 while
randomly shuffling task orders. Conversely, we em-
ploy the task orders generated by the task-level cur-
riculum but randomly shuffle the instances within
each task to assess the effectiveness of the instance-
level curriculum. Furthermore, we train our back-
bone model without extra operations as the vanilla
baseline. As Table 3 shows, both two-level curricu-
lums contribute to alleviating the interference of
multi-task data and enhancing the performance of
the sentence representation model.

Different Task-level Curriculum Methods. In
the task-level curriculum, we calculate the simi-
larity between tasks by meaning the representa-
tions of the sampled queries per task using Eq. 4
and Eq. 5 and utilize the SA algorithm to search
the suboptimal results. To validate the effective-
ness of our methods, we conduct experiments using
other variations. Concretely, we change the way of
task-level similarity measurement and optimization
objectives. The detailed settings are as follows:
(1) Mean-Q-ArgMax (MQMax, Ours): We use
the task vector with Eq. 4 and estimate the cross-
task interference risk using Eq. 5. When arranging
the task order, we maximize the total task simi-
larity. (2) Tf-idf-Argmax (TIMax): We use the
Tf-idf (Salton and Buckley, 1988) vector of each

Settings BIO S12 S14 S22 Avg.

MQMax∗ 89.37 78.46 83.06 68.28 84.41
TIMax 88.21 77.98 82.83 68.16 84.09
MQMin 87.28 76.81 81.89 67.53 83.45
MQRand 86.56 78.15 82.53 67.48 83.94

Table 6: Variation studies of different task-level curricu-
lum methods. “*" indicates our method.

Settings BIO S12 S14 S22 Avg.

E2D∗ 89.37 78.46 83.06 68.28 84.41
D2E 87.68 76.41 81.93 68.06 83.73
Random 87.53 77.64 82.85 66.95 83.94

Table 7: Variation studies of different instance-level
curriculum methods. “*" indicates our method.

task and calculate the cosine similarity to estimate
the cross-task interference risk. When arranging
the task order, we maximize the total task similar-
ity. (3) Mean-Q-Argmin (MQMin): We use the
task vector with Eq. 4 and estimate the cross-task
interference risk using Eq. 5. When arranging the
task order, we minimize the total task similarity.
(4) Mean-Q-Random (MQRand): We use the
task vector with Eq. 4 and estimate the cross-task
interference risk using Eq. 5. When arranging the
task order, we shuffle the task order at random. As
shown in Table 6, our approach can also perform
better than all the other variations, indicating the
effectiveness of using mean query representation
for measuring the task similarity and maximizing
the total task similarity.

Different Instance-level Curriculum Methods.
In the instance-level curriculum, we leverage the
Eq. 8 for instance difficulty estimation and reorder
instances per task from easy to difficult along the
thought of curriculum learning. To validate the ef-
fectiveness of our ordering method, we rearrange
the order of instances to create two variations of
our methods for comparison. The detailed settings
are as follows: (1) Easy-to-Difficult (E2D, Ours):
We arrange instances per task in an easy-to-difficult
order. (2) Difficult-to-Easy (D2E): We arrange
instances per task in a difficult-to-easy order. (3)
Random: We randomly shuffle instances per task
using seed 42. As shown in Table 7, our approach
consistently outperforms all the variations, indi-
cating the effectiveness of our designed Easy-to-
Difficult order.

Iterations of Simulated Annealing. In the task-
level curriculum, we employ Simulated Annealing
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algorithm that gradually obtains an approximate
solution as the iterations progress. In broad terms,
a higher number of iterations typically leads to a
more optimal solution. Consequently, we under-
took experiments on task orders generated through
varying iteration counts to illustrate the adequacy
of the specific iteration count we employed. We
opt to compare the results of using task orders gen-
erated by SA at 800K, 2M (Ours), 3M, and 5M
iterations. As Table 3 shows, these performances
are comparable, indicating that the chosen iteration
step of 2M is adequate for alleviating interference.

Size of Mini-batch. During multi-task con-
trastive learning, we leverage the in-batch nega-
tives to extend the positive-negative ratio, which
has been shown to enhance the uniformity of the
sentence representation model and thereby improve
overall performance (Karpukhin et al., 2020) In
the instance-level curriculum, we propose to alle-
viate the interference between instances with dif-
ferent difficulty. However, when using a larger
mini-batch, the variability in difficulty within the
batch increases, seemingly conflicting with our cur-
riculum design. To address this, we conduct ex-
periments to evaluate how the instance-level cur-
riculum affects model performance across different
mini-batch sizes. As shown in Table 5, while larger
mini-batches generally lead to better performance,
our Data-CUBE results remain comparable even
with smaller batch sizes. Notably, the model per-
forms better with a batch size of 16 compared to 32,
indicating that our approach is particularly effective
in resource-constrained scenarios.

Analysis of Training Convergence. To validate
the efficacy of our approach in mitigating data in-
terference, we assess the model’s performance on
STS tasks throughout the training process (See Fig-
ure 3). In comparison to directly continuing train-
ing, employing Data-CUBE leads to significantly
improved performance in fewer training steps. Fur-
thermore, we compare the ratio of underfitting in-
stances within tasks before and after training with
Data-CUBE (See Figure 4). It is evident that the ra-
tio of underfitting instances consistently decreases
across various tasks. It indicates the effectiveness
of our method in alleviating interference for multi-
task contrastive learning and results in a more pow-
erful and robust sentence representation model.

6 Conclusion

In this work, we proposed Data-CUBE, a data cur-
riculum method for multi-task instruction based
sentence representation learning. The key idea of
our approach is to reduce the cross-task and cross-
instance interference risks by using a more suit-
able data curriculum of instances for training. To
achieve this, we employed a simulated annealing
algorithm to find the optimal task order to mini-
mize the cross-task interference, and assigned all in-
stances per task into easy-to-difficult mini-batches
to reduce the cross-instance interference. Experi-
mental results on MTEB sentence representation
evaluation tasks have shown that our approach can
boost the performance of state-of-the-art baselines.

Limitations

Although Data-CUBE is a model-agnostic and data-
agnostic approach to enhancing instruction-based
sentence representation models, due to the lack of
experimental details, we have yet not employed it
on the state-of-the-art models. Actually, the im-
provement of integrating our approach on Instruc-
tor is able to indicate its effectiveness. We will
conduct more experiments using our approach on
other strong baselines in the future. Furthermore,
due to our limited computational resources, we
have not explored our method on larger models,
e.g., 3B and 7B LLaMA. We also leave it in our
future work, and explore more efficient and effec-
tive data curriculum methodology for large-scale
datasets and models.
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Appendix

A The process of training with
DATA-CUBE

Algorithm 1: Training with Data-CUBE
Input :Original Data D = {di}, the

temperature τ , cooling rate α, and
max iterations N of SA, and the
backbone model

Output :Instruction-tuned model M ’

1 // Task Curriculum
2 Initialize a random order O′ = {oi}
3 for i in range(N) do
4 Õ′ ← Swap a random pair of tasks inO′

5 Calculate ∆(O,O′) using Eq. 6
6 if ∆(O′, Õ′) > 0 then
7 O′ ← Õ′

8 else if rand() < p(O′
, Õ′

, τs) then
9 O′ ← Õ′

10 end
11 τs ← α · τs
12 end

13 // Instance Curriculum
14 for di in D do
15 Calculate ϕ(q̃, s̃(+), s̃(−)) of each

instance in di using Eq. 8
16 Arrange di to d′i in descending order

based on ϕ
17 end

18 // Combine Two-level Curriculum
19 Initialize an empty D′

20 for oi in O do
21 Choose dataset d′i corresponding to oi
22 Select the first batch B of d′i
23 D′.append(B)
24 d′i.remove(B)
25 end

26 // Multi-task Contrastive training
27 Use D′ to train the backbone model with

Eq. 3
28 Get the final instruction-tuned model

B Training Settings

Training Dataset. We opt for the multi-task
sentence-pair dataset MEDI (Su et al., 2023), com-
prising 330 sub-datasets spanning various tasks and
domains, with a total of 1.4 million instances for

training. Each sub-task is accompanied by corre-
sponding natural language instructions elucidating
its detailed goal or description.

Training Details To arrange the task-level cur-
riculum, we utilize the simulated annealing algo-
rithm and early stop at approximately 2 million
steps to obtain a suboptimal task order O. To rear-
range the instance-level curriculum, we calculate
the difficulty of instances (ϕ in Eq. 8) in advance
and sort all the instances in each task by descending.
After pre-reassigning the training data following
Data-Cube, we start training from the checkpoint of
INSTRUCTOR-large (335M parameters) (Su et al.,
2023) with a batch size of 64. We use a softmax
temperature τ of 0.01 and optimize the model with
the AdamW optimizer. The warmup ratio is set to
0.1 and the learning rate is 2× 10−5.

C Evaluation Settings

Evaluation Dataset We conduct evaluations
on four task categories within the MTEB
dataset (Muennighoff et al., 2023), encompassing
a total of 28 downstream tasks. For STS tasks,
we choose 10 datasets (e.g., BIOSSES (Sogan-
cioglu et al., 2017), STS12-77 (Agirre et al., 2012,
2013, 2014, 2015, 2016; Cer et al., 2017), and
SICK-Relatedness (Marelli et al., 2014)), to as-
sess the performance. We employ Spearman’s
correlation of the English test set as the evalua-
tion metric. Reranking tasks include AskUbun-
tuDupQuestions (Lei et al., 2016), MindSmall (Wu
et al., 2020), SciDocsRR (Cohan et al., 2020),
and StackOverflowDupQuestions (Liu et al., 2018).
Mean Average Precision (MAP) of the test set
is utilized to measure performance. Cluster-
ing tasks encompass 11 datasets, such as Arxiv-
ClusteringS2S, ArxivClusteringP2P, BiorxivClus-
teringS2S, BiorxivClusteringP2P, MedrxivCluster-
ingP2P, MedrxivClusteringS2S (Muennighoff et al.,
2023), RedditClustering, RedditClusteringP2P,
StackExchangeClustering, StackExchangeCluster-
ingP2P (Geigle et al., 2021), and TwentyNews-
groupsClustering*. In these clustering tasks, we
use v-measure of the test set as the evaluation met-
ric. Pair Classification tasks consist of SprintDu-
plicateQuestions (Shah et al., 2018), TwitterSe-
mEval2015 (Xu et al., 2015), and TwitterURLCor-
pus (Lan et al., 2017). Performance is assessed
using accuracy on the test set.

*https://scikit-learn.org/0.19/datasets/twentynewsgroups.html
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Baseline Models We select several sentence rep-
resentation methods that have achieved state-of-the-
art performance on STS tasks, including publicly
available models scaling from 100M to 11B param-
eters, and APIs without exact parameter amounts.
Concretely, we select traditional no-instruction sen-
tence representation models (e.g., GloVe (Penning-
ton et al., 2014), USE (Cer et al., 2018), Con-
triever (Izacard et al., 2022b), GTR (Ni et al.,
2022b), SimCSE (Gao et al., 2021), SGPT (Muen-
nighoff, 2022), E5 (Wang et al., 2022a), and Sen-
tenceT5 (Ni et al., 2022a)), instruction-based mod-
els (e.g., Jina (Günther et al., 2023), Udever (Zhang
et al., 2023), Stella †, BGE (Xiao et al., 2023),
GTE (Li et al., 2023), and INSTRUCTOR), and
APIs (e.g., OpenAI Text Embedding (Neelakantan
et al., 2022), Voyage ‡, Cohere §, and Ember ¶).

†https://huggingface.co/infgrad/stella-base-en-v2
‡https://docs.voyageai.com/
§https://txt.cohere.com/introducing-embed-v3/
¶https://docs.llmrails.com/embedding/embed-text
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