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Abstract

Extracting semantic topics from short texts
presents a significant challenge in the field of
data mining. While efforts have been made to
mitigate data sparsity issue, the limited length
of short documents also results in the absence
of semantically relevant words, causing biased
evidence lower bound and incomplete labels
for likelihood maximization. We refer to this
issue as the label sparsity problem. To com-
bat this problem, we propose kNNTM, a neu-
ral short text topic model that incorporates a
k-Nearest-Neighbor-based label completion al-
gorithm by augmenting the reconstruction la-
bel with k nearest documents to complement
these relevant but unobserved words. Further-
more, seeking a precise reflection of distances
between documents, we propose a fused multi-
view distances metric that takes both local word
similarities and global topic semantics into con-
sideration. Extensive experiments on multiple
public short-text datasets show that kNNTM
model outperforms the state-of-the-art baseline
models and can derive both high-quality topics
and document representations.

1 Introduction

Depiste the success of topic models in numer-
ous NLP tasks (Boyd-Graber et al., 2017) for un-
covering the underlying semantic concepts (Blei
et al., 2003), traditional topic models often suf-
fer from poor performances when applied to short
text contents, e.g., social media posts and news
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headlines (Yan et al., 2013). This deficiency can
be attributed to the lack of word co-occurrence in-
formation due to the limited length for a single
short document, known as the data sparsity prob-
lem (Murshed et al., 2022).

Many topic models have been developed to over-
come the data sparsity issue. The Dirichlet Multino-
mial Mixture (DMM) model (Yin and Wang, 2014;
Li et al., 2016, 2017) constraints that each short
text is generated by a single topic. Biterm Topic
Model (Yan et al., 2013; Cheng et al., 2014) utilizes
the rich corpus-level word co-occurrence patterns
for inferring topics. And some works (Mehrotra
et al., 2013; Quan et al., 2015; Zuo et al., 2016) ag-
gregate semantically similar texts into long pseudo-
documents. Recently, with the developments of
neural topic models (NTMs) (Srivastava and Sut-
ton, 2017), there are also attempts to mitigate the
data sparsity issue by utilizing biterm graph (Zhu
et al., 2018) and topic quantization techniques (Wu
et al., 2020, 2022).

Though these above works have achieved good
performances and mitigated the data sparsity issue
to some extent, there are still problems that they
ignore. Under the variational autoencoding frame-
work, current mainstream NTMs are optimized
by the maximum likelihood objective, which is
achieved by maximizing the evidence lower bound
(ELBO). However, the limited length of short texts
results that only a few words get described in a
document, while many other semantically relevant
words remain unobserved (Zhang and Lauw, 2022).
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Figure 1: A motivating example of label sparsity issue
in short text topic modeling and kNN-based label com-
pletion of the unobserved words.

As shown in the motivating example in Figure 1,
the document in the center talks about CPU chips
and contains words like ’chip’ and ’intel’. How-
ever, many semantically related words like ’core’,
’processor’, and ’cpu’ remain uncovered. Such ’in-
complete’ short documents will lead to a biased
evidence lower bound as the possibilities of those
unobserved but relevant words are completely ig-
nored, resulting in a sub-optima optimization of
the maximum likelihood. To be more specific, the
absence of these relevant words leads to an incom-
plete target for the reconstruction objective during
variational autoencoding, which makes the prob-
abilities of the absent words get inappropriately
suppressed and results in biased training signals.
This problem, different from the data sparsity prob-
lem of the input data, is referred to as the label
sparsity problem in this paper.

Inspired by the above observation, we propose
to explicitly augment the reconstruction target
in short text NTM with semantically related words
to provide unbiased training signals. One direct
approach to derive these words is to leverage the
similarities between pre-trained word embeddings.
However, word embeddings trained with general
corpora may not capture the word co-occurrence
patterns from a specific domain. Moreover, simply
relying on word similarities ignores the context in-
formation on the document level. In this paper, we
propose kNNTM, a short text topic modeling frame-
work, which incorporates a k-Nearest-Neighbor-
based label completion algorithm by aggregat-
ing k documents semantically closest to the tar-
get document to augment its reconstruction label.
As illustrated in Figure 1, documents with seman-
tically relevant words are retrieved by k-nearest
neighbor searching, and the label distribution gets
augmented by complementing the probabilities of
originally unobserved words. The kNN approach
is shown to be effective in multiple fields for in-

formation supplementation and data completion,
like machine translation (Khandelwal et al., 2021),
healthcare prediction (Zhang et al., 2021), and com-
puter vision (Yu et al., 2021). In our scenario of
short text topic modeling, aggregating k nearest
documents for label completion helps to make full
use of the word co-occurrence information and doc-
ument relations from the original dataset.

However, one remaining challenge of the kNN-
based label completion is to seek a proper dis-
tance metric that could precisely reflect the similar-
ities between short documents with scarce context.
A good metric should reflect both the word-level
similarities and the global semantic resemblance.
Therefore, we propose a multi-view distance metric
by fusing the distances from the input space and the
semantic space to leverage both local and global
similarities information. The distance metric in
the input space depicts the local word similarity,
which is defined with the optimal transport distance
between bag-of-words distributions, with cost func-
tions built upon word similarities from both general
corpora and the specific dataset. And the metric
in the hidden space reflects the global semantic
resemblance, which is defined through the lens
of topic semantics with the similarities between
document-topic distributions. With the fused multi-
view distance metric, we can take various factors
into account when evaluating the distances between
documents, and provide a reasonable distance met-
ric for the kNN algorithm.

Our contributions are summarized as follows:
• We identify the label sparsity problem in short

text neural topic modeling, and propose a novel
topic modeling framework, kNNTM, to combat
this issue by a kNN-based label completion algo-
rithm with similar document aggregation.

• We propose a fused multi-view distance metric
that takes both global and local semantic similar-
ities into consideration to support the kNN label
completion algorithm.

• Extensive experiments are conducted on three
short text datasets, and both quantitative and qual-
itative results demonstrate that kNNTM outper-
forms state-of-the-art baselines, and could gener-
ate high-quality topics and meaningful document
representations.

2 Related Works

Neural Topic Modeling With the recent develop-
ments of neural variational inference (Kingma and

13763



Welling, 2014; Rezende et al., 2014), many neu-
ral topic models (NTMs) are proposed for higher
scalability and easier inference. NVDM (Miao
et al., 2016) and ProdLDA (Srivastava and Sutton,
2017) are two representative works, which lever-
age Gaussian and logistic normal distribution as
approximations of the Dirichlet prior. And many
subsequent NTMs have been investigated. Some
focus on improving the encoder network, e.g.,
recurrent networks (Rezaee and Ferraro, 2020),
graph neural networks (Yang et al., 2020; Xie
et al., 2021). Some works aim for a better ap-
proximation of the Dirichlet prior, e.g., Wasser-
stein autoencoders (Nan et al., 2019), reject sam-
pling (Burkhardt and Kramer, 2019), and Weibull
distribution (Zhang et al., 2018). Some works at-
tempt to find new training paradigms, e.g., adver-
sarial training (Wang et al., 2019, 2020; Hu et al.,
2020), and optimal transport (Zhao et al., 2021;
Wang et al., 2022). The most recent work of NTM
to the best of our knowledge is ECRTM (Wu et al.,
2023), which incorporates an embedding clustering
regularization on the topic and word embeddings.
Despite their success in modeling topics on normal
long texts, these works still suffer from the sparsity
issue of short texts.

Topic Models for Short Text Conventional short
text topic models can be mainly categorized into
three classes. The Dirichlet Multinomial Mixture
(DMM) models (Yin and Wang, 2014; Li et al.,
2016, 2017) assume that each short text is gen-
erated by a single topic, thus reducing the com-
plexity for topic inference. Biterm Topic Model
(BTM) (Yan et al., 2013; Cheng et al., 2014) uti-
lizes the rich corpus-level word co-occurrence pat-
terns and splits the entire dataset into numerous
biterms. Self-aggregation models (Mehrotra et al.,
2013; Quan et al., 2015; Zuo et al., 2016) tend to
aggregate semantically similar short text into long
pseudo-documents to infer topics.

Another line of research focuses on neural
topic modeling for short texts. GraphBTM (Zhu
et al., 2018) generalizes the BTM model and per-
forms variation autoencoding on biterm graph from
randomly-sampled mini-corpus. NQTM (Wu et al.,
2020) shares similar insights with DMM and quan-
tizes document-topic distributions to obtain peakier
distributions. And the TSCTM model (Wu et al.,
2022) further improves upon NQTM by introduc-
ing a contrastive loss on quantized distributions.
MCTM (Zhang and Lauw, 2022) focuses on short

texts in the variable-length corpus and learns a se-
mantics predictor based on long documents within
the corpus. However, current neural topic models
for short text mainly focus on mitigating the data
sparsity problem from the input side, yet ignore the
insufficient training signals for the reconstruction
objective, namely the label sparsity issue, brought
by the limited length of a single document.

3 Methodology

3.1 Problem Formulation
Consider a corpus D with ND documents,
where each document d contains Nd words
{xd1 , . . . , xdNd

} belonging to a vocabulary of size
V . The target is to discover K topics from the
corpus. Each topic is defined as a distribution
βk ∈ ∆V over the words in the vocabulary, namely
the topic-word distribution. Meanwhile, for each
input document, the model should also infer a dis-
tribution over the topics, i.e., the document-topic
distribution, denoted as θ ∈ ∆K .

3.2 Model Architecture
We choose the Quantization Topic Model
(QTM) (Wu et al., 2020, 2022), as the basic model
architecture for kNNTM. QTM is a VAE-based
neural topic model that quantizes topic represen-
tations for peakier topic distributions. Here we
briefly introduce the model architecture. For more
detailed implementations, please refer to the origi-
nal paper (Wu et al., 2020).

3.2.1 Text encoder
The text encoder takes document d in the form of
bag-of-words as the input xd, and produces cor-
responding hidden topic representation hd ∈ RK ,
and the topic representation is further normalized
into a probability simplex to obtain the document-
topic distribution θd ∈ ∆K by a softmax function
θd = softmax

(
hd

)
.

3.2.2 Topic Quantization
The document-topic distributions is further quan-
tized to alleviate the data sparsity problem, The
quantized distribution is defined as

θdq = ek, where k = argminj

∥∥∥θd − ej

∥∥∥
2
, (1)

where e = (e1, e2, ..., eK) ∈ RK×K are K pre-
set quantization prototypes. These prototypes are
initialized as different one-hot vectors and get opti-
mized during training.
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Figure 2: The overall structure of kNNTM. The left side is the model architecture including encoding, quantization,
and decoding. The right side is the kNN-based label completion module with a fused multi-view distance metric.

3.2.3 Decoder and Objective Function
The decoder network consists of topic-word dis-
tributions β, and tries to reconstruct the observed
texts with the quantized distributions Let xd denote
the bag-of-words form of a document d, then the
reconstruction objective for topic models is

LRECON

(
xd

)
= −xd⊤ log

(
softmax

(
βθdq

))
.

(2)
Besides the reconstruction loss, the QTM lever-

ages a regularizer constraining the distances be-
tween original and quantized distributions,

LREG(θ
d) =

∥∥∥sg(θd)− θdq

∥∥∥
2
+ λ

∥∥∥sg(θdq )− θd
∥∥∥
2
,

(3)
where sg(·) is a stop gradient operation, and λ is
set to 0.1 following (Wu et al., 2020, 2022). The
final objective function for the model is

LTM(xd) = LRECON(x
d) + LREG(θ

d) (4)

3.3 kNN-based Label Completion
The core difference between kNNTM and other
neural topic models is the kNN-based label com-
pletion module. As discussed in the Introduction
and Figure 1, short text modeling faces the la-
bel sparsity problem. The limited length of short
texts makes some semantically related words un-
observed in the short document. The probabilities
of these words are ignored and lead to a biased
evidence lower bound during optimization. When
optimizing the neural topic model with LTM, the
probabilities of the observed words get encouraged,
while the probabilities of those unobserved but
relevant words get discouraged as the predicted
probability vector get normalized by the softmax
function, leading to biased training signal and sub-
optimal optimization. Therefore, a label comple-
tion module is needed to derive the hidden relevant

words and construct an unbiased label for the re-
construction objective.

Motivated by the above thoughts, we propose the
kNN-based label completion algorithm. Given a
document xd, we find its nk nearest neighbors with
a distance metric, dist(·, ·) (we leave the design of
the metric to the next section). The set of nk nearest
neighbors is denoted asNxd , and the reconstruction
label is augmented with a coefficient α as

x̃d = xd + α ∗ 1

nk

∑

xj∈Nxd

xj . (5)

3.4 Fused Multi-View Distance Metric

To perform an effective kNN algorithm, a reliable
distance metric is required to precisely measure
the similarities between short documents. Here we
propose a fused multi-view distance, which fuses
distances from both the input BoW space and hid-
den topical semantic space and takes information
from both local word-level relations and global
topic-level similarities.

3.4.1 Distance from the Input Space

As the original form of the input document, the bag-
of-word vectors naturally contain the information
for evaluating the distances between documents.
However, directly comparing the bag-of-word vec-
tors would result in a bad distance metric, as the
hidden semantic relations between words are not
explored. Documents with different but highly rele-
vant word sets would be considered dissimilar with-
out considering the hidden relation between words.
Therefore, we propose to evaluate the distance
between two bag-of-words vectors with a word
semantic-based optimal transport (OT) distance.
Firstly we introduce the OT distance between two
probability vectors a ∈ ∆Da

and b ∈ ∆Db
, which
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is defined as:

distOT
M (a, b) := min

γ∈U(a,b)
⟨γ,M⟩, (6)

where ⟨·, ·⟩ denotes the Frobenius dot-product,
U(a, b) denotes the transport polytope of a and b,
U(a, b) := {γ ∈ RDa×Db

+ | γ1 = a, γ⊤1 = b},
and M ∈ RDa×Db

≥0 is a cost matrix indicating the
transportation cost between probability vectors.

Therefore, with an appropriate cost matrix M ∈
RV×V
≥0 depicting the semantic similarities between

words, the OT distances will become a suitable dis-
tance metric for gauging the distance between two
bag-of-words vectors, namely distOT

M (x̂di , x̂dj ),
where x̂d is the normalized bag-of-words vector.

We propose two perspectives to build cost matrix
M. The first aspect is to leverage the word embed-
dings pre-trained with general corpora. The cosine
similarities between pre-trained word embeddings
have been proven to be highly effective in reflect-
ing the semantic similarities between words. The
cost matrix is built as

Mcos
i,j = (1.0− scos (wi, wj)) /2, (7)

where scos(·) is the cosine similarity function, and
wi is the i-th word in the vocabulary.

Though effective, word embeddings pre-trained
with general corpora may not be able to capture the
co-occurrence patterns in a specific domain. Hence,
we propose another way to build the cost matrix M
with the word co-occurrences of the current corpus.
Concretely, the cost matrix is built as

Mcoo
i,j = 1.0− (p(wi|wj) + p(wj |wi)) /2, (8)

where p(wi|wj) is the conditional probability of
word wi given wj , and is calculated as p(wi|wj) =
df(wi, wj)/df(wj), where df(wi, wj) is the fre-
quency that the word wi and wj co-occur.

Finally, to leverage both the rich information
from general corpora and specific patterns from the
current dataset, we fuse the two OT distances to
formulate the distance from input space as:

distBoW(xdi , xdj ) = ρ ∗ distOT
Mcos(x̂di , x̂dj )

+ (1.0− ρ) ∗ distOT
Mcoo(x̂di , x̂dj ).

(9)

where ρ is a fusing hyper-parameter.

3.4.2 Distance from the Semantic Space
Besides the bag-of-words vector, the topic distri-
bution for each document is also an effective se-
mantic representation of documents. The metric

defined on the bag-of-words vectors mainly utilizes
local word-level similarities, whereas the metric
defined on the topic distributions can depict se-
mantic distances between documents from a global
view, since the topics reveal the hidden semantic
structures of the entire corpus. Incorporating the
metric defined on topic distributions would encour-
age topically similar documents to fall into the
neighborhood of the target document.

However, one important problem is that the
document-topic distributions keep evolving during
training and cannot be pre-computed beforehand. It
is also impractical to go through the entire dataset
to compute the distributions whenever the near-
est neighbors are needed due to excessively high
time costs. Therefore, we maintain a memory bank
{m1, ...mND

}, to store the most recent document-
topic distributions. Entries within the memory bank
get updated every time the document-topic distri-
bution are computed during training,

md = θdt , (10)

where θdt is the document-topic distribution for doc-
ument d computed in the t-th iteration during train-
ing. And the distance from the topical semantic
space is defined as

distTopic(xdi , xdj ) = ∥θdi −mdj∥2. (11)

3.4.3 Multi-View Distance Fusion
To get a balanced distance metric considering
both similarities in the BoW and the topic spaces,
we fuse the above two distances with a hyper-
parameter η as

distFuse(xdi , xdj ) = η ∗ distTopic(xdi , xdj )
+ (1.0− η) ∗ distBoW(xdi , xdj ).

(12)

3.5 Training Procedure and Objective
To stabilize the training process, we adopt a two-
phase training strategy. We first pre-train the topic
model with the objective in Eq.4 without label
augmentation for P epochs to get more accurate
document-topic distributions for distance calcula-
tion. After pre-training, we use the augmented
label from Eq.5 for the reconstruction loss,

LkNN(x
d) = −x̃d⊤ log

(
softmax(βθdq )

)
. (13)

and the final training objective is

LkNNTM(xd) = LkNN(x
d) + LREG(θ

d). (14)

The overall structure of kNNTM is shown in
Fig.2, and we provide the detailed training proce-
dure in the Algorithm 1 in Appendix A.
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4 Experiment Settings

4.1 Datasets

In the experiments, we use three public benchmark
short text datasets: 1) GoogleNews with titles of
over 10,000 news articles categorized into 152 clus-
ters, 2) Snippet consisting of over 10,000 web
search results across 8 domains, 3) StackOverflow
with 20,000 question titles from 20 different tags.

We utilized the aforementioned datasets pro-
vided by the STTM library1 (Qiang et al., 2020).
Additionally, we further filter out words with a fre-
quency below 3 and documents with a length less
than 2. Please refer to Appendix B.1 for the de-
tailed statistics for each dataset after preprocessing.

4.2 Baseline Methods

We compare our model with the following state-of-
the-art baselines: prodLDA (Srivastava and Sutton,
2017), a prominent work of NTM with black-box
neural variational inference; WLDA (Nan et al.,
2019), a NTM with the Wasserstein autoencoder
framework; ECRTM (Wu et al., 2023), a NTM
with an topic embedding clustering regularization,
which is the state-of-the-art NTM for normal long
documents; NQTM (Wu et al., 2020), a neural
short text topic model with topic distribution quanti-
zation and negative sampling; MCTM (Zhang and
Lauw, 2022), a NTM that predicts missing seman-
tics for short documents based on other long doc-
uments in variable-length corpora; TSCTM (Wu
et al., 2022), a state-of-the-art short text neural
topic model based on NQTM with a contrastive
objective on quantized distributions.

4.3 Implementation Datails

We follow the settings for hyper-parameters shared
with (Wu et al., 2022), including learning rate,
batch size, epoch number, etc. And for hyper-
parameters exclusive to our method, we conduct
grid search to determine the optimal values. Please
refer to Appendix B.3 for detailed settings.

5 Experimental Results

We evaluate the topic models from two perspec-
tives: topic-word distribution and document-topic
distribution. For the former, we assess the quality
of topics based on coherence and diversity. Re-
garding the latter, we utilize the performances from
the clustering task as previous studies (Zhao et al.,

1https://github.com/qiang2100/STTM

2021; Wang et al., 2022). To verify models’ effec-
tiveness under different topic numbers, following
previous work (Wu et al., 2022), we conducted
experiments under 50 and 100 topics, respectively.

5.1 Topic Quality
Metric Following previous work in topic mod-
eling (Dieng et al., 2020; Wu et al., 2022), we
evaluate the quality of learned topics from two per-
spectives, Topic Coherence and Topic Diversity.

For topic coherence, we adopt a widely-used
coherence metric, CV (Röder et al., 2015), which is
shown to be better than other coherence metrics like
UMASS (Mimno et al., 2011) and NPMI (Aletras
and Stevenson, 2013) and have been adopted by
many works in short text topic modeling (Wu et al.,
2020; Wang et al., 2021; Wu et al., 2022). We use
the well-adopted library Palmetto2 to compute CV

with Wikipedia texts as the reference corpus. For
topic diversity, we employ the Topic Uniqueness
(TU ) for evaluation (Nan et al., 2019; Dieng et al.,
2020). which is defined as the proportion of unique
words among all the topical words.

Moreover, as pointed out in (Wu et al., 2020),
there exists a trade-off relation between the coher-
ence and diversity metrics. Higher TU scores tend
to cause lower CV scores and vice versa. To pro-
vide a more comprehensive metric for topic quality,
following previous work (Dieng et al., 2020), we
adopt the Topic Quality (TQ) metric as the product
of the topic diversity and coherence score,

TQ = CV ∗ TU. (15)

We take the top 15 words with the highest proba-
bilities of each topic for the aforementioned metrics
following (Wu et al., 2022).

Results The results are shown in Table 1. From
the results, we could find that our kNNTM model
outperforms or achieves compatible performances
with the start-of-the-art baselines, which proves
the existence of the label sparsity problem and the
effectiveness of our solution. We can find the kN-
NTM achieves high TU scores under many set-
tings, which indicates that labels augmented by
multiple documents bring more diverse information
for topic optimization. Furthermore, in terms of
the comprehensive evaluation metric, Topic Quality
(TQ), kNNTM outperforms the baseline models in
four distinct settings and attains comparable results
in the remaining two scenarios. This underscores

2https://github.com/dice-group/Palmetto
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Model prodLDA WLDA ECRTM NQTM MCTM TSCTM kNNTM

GoogleNews

K = 50

CV 0.313±0.008 0.305±0.008 0.302±0.003 0.300±0.002 0.361±0.011 0.313±0.002 0.312±0.004
TU 0.936±0.022 0.882±0.012 0.876±0.050 0.972±0.003 0.556±0.026 0.996±0.003 0.995±0.004
TQ 0.294±0.013 0.269±0.008 0.265±0.016 0.312±0.004 0.201±0.004 0.312±0.004 0.311±0.002

top-Purity 0.333±0.016 0.388±0.023 0.521±0.032 0.393±0.015 0.262±0.019 0.570±0.019 0.581±0.008
top-NMI 0.372±0.007 0.621±0.013 0.773±0.017 0.634±0.008 0.486±0.010 0.773±0.013 0.799±0.004

K = 100

CV 0.322±0.006 0.308±0.007 0.304±0.005 0.302±0.003 0.356±0.002 0.302±0.006 0.305±0.007
TU 0.786±0.019 0.662±0.012 0.923±0.036 0.943±0.018 0.614±0.081 0.971±0.003 0.980±0.004
TQ 0.252±0.009 0.204±0.004 0.280±0.009 0.285±0.006 0.219±0.030 0.293±0.005 0.299±0.006

top-Purity 0.366±0.007 0.484±0.011 0.333±0.083 0.567±0.030 0.180±0.049 0.766±0.007 0.786±0.007
top-NMI 0.382±0.003 0.676±0.007 0.547±0.067 0.712±0.012 0.397±0.059 0.842±0.004 0.868±0.002

Snippet

K = 50

CV 0.349±0.003 0.329±0.008 0.322±0.003 0.339±0.011 0.352±0.026 0.348±0.007 0.366±0.004
TU 0.987±0.003 0.848±0.033 0.981±0.005 0.974±0.007 0.750±0.028 0.994±0.002 0.998±0.002
TQ 0.345±0.003 0.279±0.004 0.316±0.004 0.331±0.012 0.264±0.019 0.346±0.006 0.365±0.004

top-Purity 0.503±0.017 0.586±0.026 0.751±0.015 0.630±0.026 0.443±0.008 0.712±0.009 0.762±0.007
top-NMI 0.172±0.008 0.273±0.010 0.444±0.008 0.302±0.016 0.177±0.015 0.381±0.010 0.427±0.006

K = 100

CV 0.327±0.007 0.326±0.006 0.320±0.011 0.309±0.006 0.355±0.013 0.329±0.004 0.341±0.006
TU 0.950±0.001 0.669±0.006 0.981±0.017 0.928±0.005 0.581±0.045 0.948±0.003 0.979±0.002
TQ 0.310±0.006 0.218±0.004 0.314±0.010 0.286±0.007 0.206±0.009 0.312±0.003 0.334±0.006

top-Purity 0.477±0.005 0.635±0.005 0.392±0.092 0.682±0.005 0.421±0.026 0.759±0.009 0.819±0.005
top-NMI 0.132±0.002 0.298±0.003 0.241±0.076 0.325±0.004 0.157±0.013 0.387±0.005 0.436±0.001

StackOverflow

K = 50

CV 0.259±0.001 0.279±0.005 0.284±0.016 0.268±0.004 0.320±0.003 0.284±0.002 0.284±0.006
TU 0.865±0.009 0.804±0.025 0.924±0.023 0.915±0.003 0.492±0.009 0.952±0.004 0.950±0.007
TQ 0.224±0.002 0.224±0.003 0.262±0.009 0.245±0.003 0.158±0.004 0.271±0.003 0.269±0.006

top-Purity 0.227±0.003 0.443±0.003 0.319±0.024 0.433±0.035 0.290±0.019 0.576±0.007 0.607±0.010
top-NMI 0.074±0.002 0.296±0.001 0.258±0.014 0.298±0.029 0.280±0.013 0.423±0.007 0.463±0.004

K = 100

CV 0.253±0.002 0.283±0.008 0.266±0.002 0.276±0.004 0.307±0.012 0.273±0.005 0.264±0.002
TU 0.672±0.011 0.615±0.033 0.801±0.033 0.795±0.007 0.586±0.003 0.808±0.012 0.833±0.002
TQ 0.170±0.004 0.174±0.001 0.216±0.010 0.210±0.003 0.180±0.006 0.220±0.007 0.220±0.002

top-Purity 0.167±0.005 0.406±0.008 0.099±0.002 0.467±0.038 0.281±0.008 0.571±0.010 0.616±0.014
top-NMI 0.046±0.003 0.267±0.006 0.086±0.004 0.308±0.029 0.273±0.001 0.393±0.003 0.440±0.010

Table 1: The results for metrics of topic quality and text clustering on three datasets under 50 and 100 topics. The
best-performing method is highlighted in bold and the second best method is underlined. We run each model 3
times with different random seeds and report the mean the standard deviation.

the capability of our model to effectively strike a
balance between topic coherence and diversity, re-
sulting in the extraction of high-quality topics that
exhibit both coherence and diversity.

It is worth noting that MCTM model achieves
the highest CV scores under almost every setting,
whereas its TU scores are notably diminished. This
indicates that a set of coherent words frequently
repeats across MCTM’s topics. Therefore, in spite
of some coherent topics being discovered, many
of those are repetitive and uninformative, hence
making its TU and TQ scores hardly comparable
with other methods.

5.2 Text Clustering

Metric To evaluate the quality of document-topic
distributions, we leverage the short text clustering
task following (Wang et al., 2022; Wu et al., 2022),
and report the Purity and Normalized Mutual Infor-
mation (NMI) (Schütze et al., 2008), where docu-
ment labels are used during evaluation. Specifically,
to compute Purity and NMI, following previous
works (Zhao et al., 2021; Wu et al., 2022), we di-
rectly take the most significant topic as the cluster

Methods CV TU TQ top-Purity top-NMI

kNNTM 0.341 0.979 0.334 0.819 0.436

w/o-kNN 0.323 0.947 0.306 0.753 0.385
w/o-Topic 0.340 0.967 0.328 0.809 0.427
w/o-BoW 0.320 0.986 0.315 0.799 0.420
w/-sim 0.343 0.969 0.332 0.793 0.413

Table 2: Ablation Studies on Snippet Dataset.

assignment for each document, and the metrics are
denoted as top-Purity and top-NMI. Moreover,
we also calculate the results with the cluster assign-
ments from K-Means algorithm, which could be
found in Appendix D.

Results We report the results of text clustering
Table 1. From the results, we can find out that
the kNNTM model consistently outperforms all
baseline models under almost every setting. The
performances indicate that kNNTM can infer high-
quality document-topic distributions which accu-
rately reflect the semantics of documents.

5.3 Ablation Studies

To analyze the effects of different modules of kN-
NTM, we compare kNNTM with its following
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Figure 3: Sensitivity analysis on neighbor number nk.
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Figure 4: Sensitivity analysis on the coefficient α.

variants: 1) kNNTM-w/o-kNN: kNNTM without
kNN label completion module, degenerating to the
basic QTM model. 2) kNNTM-w/o-Topic: kN-
NTM with a distance metric without considering
distances from the hidden topic space. 3) kNNTM-
w/o-BoW: kNNTM with a distance metric with-
out considering the distances from the input BoW
space. 4) kNNTM-w/-sim: kNNTM without kNN
algorithm, and complementing labels directly with
words based on pre-trained word embeddings.

The ablation studies are conducted on the Snip-
pet dataset under 100 topics. The results are re-
ported in Table 2, and the standard deviations are
shown in Appendix Table 7 due to space limit. The
effectiveness of the kNN label completion mod-
ule is proved by the improvement from kNNTM-
w/o-kNN to the original kNNTM. The decreases
in kNNTM-w/o-Topic and kNNTM-w/o-BoW in-
dicate the importance of both views in the fused
distance metric. Moreover, while CV sightly in-
creases on kNNTM-w/-sim, the decreases of the
performances on TU , TQ, and text clustering met-
rics indicate the kNN-based completion method
would lead to higher topic quality and better topic
distributions as it can better utilize the word pat-
terns from current dataset.

5.4 Sensitivity Analysis

We conduct sensitivity analysis on two important
hyper-parameters of kNNTM, the number of aggre-
gated neighbors nk, and the coefficient α balancing
the original label and the augmented label.

As shown in Figure 3, as nk gradually increases,
the coherence score CV and the overall topic qual-
ity TQ increase initially and then decline when nk

gets too large. A similar phenomenon can be found

on those metrics about text clustering, but the TU
score keeps increasing. The reason might be that
increasing nk will bring more diverse documents
during label completion and further increase the
diversity of learned topics. But more diverse doc-
uments will introduce more noisy words that are
unrelated to the current document, and finally de-
grades the overall performance of the topic model.

For the coefficient α, a similar phenomenon
could be found in Figure 4. As α increases, the
training objective of the model puts more atten-
tion on the retrieved neighbor documents, whereas
it can dominate the probabilities of the original
documents once α gets too large, which can also
degrade the model performance.

5.5 Topic Visualization

For qualitative evaluations of topics, we show the
examples of topic words yielded by different base-
lines and our kNNTM model on the Snippet dataset
in Table 3. We can observe that baseline models
with lower TU , such as WLDA and MCTM, gen-
erate some repetitive topics with repeated words,
such as "wikipedia", "encyclopedia", "physics",
"physicist" and "astrophysics". Such repetitive sets
of coherent words will lead to abnormally high re-
sults on CV scores, making it unfair to compare
with other methods. However, we can see that kN-
NTM only generates a single coherent topic for
each corresponding topic and its topic quality is
apparently higher.

6 Conclusions

In this paper, we identify the label sparsity prob-
lem in short text topic modeling, resulting from the
inherently limited document length. Subsequently,
we design an novel neural short text topic modeling
framework dubbed kNNTM, which mitigates the
label sparsity problem with a kNN label comple-
tion module that aggregates semantically similar
documents to augment the reconstruction labels. To
effectively find similar documents, a fused multi-
view distance metric is proposed considering both
local word similarities and global document seman-
tics. Extensive experiments show that kNNTM
outperforms the baselines and can generate high-
quality topic and document representations.

Limitations

One limitation of the proposed kNNTM model is
the time complexity of computing the OT distances.
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Models Topic Word Examples

prodLDA

pentium amd intel chip athlon core processors processor
disney walt newsgroups drama graduation quotations usenet time
hiv aids boxing prevention horse racing goalkeeper epidemic
academy nuclear oscar awards weapons weapon military award

WLDA

medical treatment hospital care surgery health mental patient
wikipedia wiki encyclopedia psychological commercial natural simple law
wikipedia wiki encyclopedia disambiguation participants retrieved article literally
tickets paris french tennis inventory roland garros france

ECRTM

wikipedia wiki retrieved encyclopedia real-time simple aesthetics meanings
hiv prevention cdc aids respiratory nida resp nanotechnology
duo pentium athlon amd processor itanium cores cpu
naval commander navy weapons nuclear carlisle force fleet

NQTM

memory upgrade upgrades virtual ddr machine ram cache
income tax salary interview effective monster skills mobile
force navy air mil military units fleet personnel
film producer encyclopedia wiki wikipedia rugby consisting states

MCTM

ucsd physicist physics mathematics sociology astrophysics anthropology
physics aesthetics sociology anthropology mathematics physicist astrophysics
astrophysics physicist predicting predictions discoveries eia gsfc geophysics
physics economics movies pentium ucsd aesthetics bollywood astrophysics

TSCTM

academy awards oscar winners nominees annual oscars award
duo processor anandtech core intel imac xeon chips
navy commander force mil fleet military naval air
physics theoretical quantum particle solid mechanics reasoning quant

kNNTM

intel duo itanium chip imac xeon core processor
navy mil commander force corps naval nuclear fleet
hiv aids unaids prevention ucsf aidsinfo influenza epidemic
academy winners nominees annual awards oscar nominee oscars

Table 3: Visualization of topics learned by different methods on Snippet dataset.

The original OT distance metric is known to have
high complexity, and computing distances between
each pair of documents also increases the time over-
head. The inherent small text lengths and the accel-
erated algorithms for OT metric can help alleviate
this issue, and the computations of the distances be-
tween different text pairs can be easily parallelized,
but when dealing with excessively large datasets,
kNNTM still faces high time cost. For future work,
we hope to design a sampling strategy for kNNTM ,
aiming to restrict the nearest neighbor searching to
a limited number of candidate documents instead
of the entire dataset, and thus lowering the time
cost of our model.
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Acknowledgments

This work is supported by the National Natural
Science Foundation of China (No.U23A20468).

References

Nikolaos Aletras and Mark Stevenson. 2013. Evaluating
topic coherence using distributional semantics. In
Proceedings of the 10th international conference on
computational semantics (IWCS 2013)–Long Papers,
pages 13–22.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993–1022.

Jordan L Boyd-Graber, Yuening Hu, David Mimno, et al.
2017. Applications of topic models, volume 11. Now
Publishers Incorporated.

Sophie Burkhardt and Stefan Kramer. 2019. Decou-
pling sparsity and smoothness in the dirichlet varia-
tional autoencoder topic model. J. Mach. Learn. Res.,
20(131):1–27.

13770



Xueqi Cheng, Xiaohui Yan, Yanyan Lan, and Jiafeng
Guo. 2014. Btm: Topic modeling over short texts.
IEEE Transactions on Knowledge and Data Engi-
neering, 26(12):2928–2941.

Adji B Dieng, Francisco JR Ruiz, and David M Blei.
2020. Topic modeling in embedding spaces. Trans-
actions of the Association for Computational Linguis-
tics, 8:439–453.

Xuemeng Hu, Rui Wang, Deyu Zhou, and Yuxuan
Xiong. 2020. Neural topic modeling with cycle-
consistent adversarial training. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9018–9030.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-
bor machine translation. In International Conference
on Learning Representations.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Diederik P Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings.

Chenliang Li, Yu Duan, Haoran Wang, Zhiqian Zhang,
Aixin Sun, and Zongyang Ma. 2017. Enhancing topic
modeling for short texts with auxiliary word embed-
dings. ACM Transactions on Information Systems
(TOIS), 36(2):1–30.

Chenliang Li, Haoran Wang, Zhiqian Zhang, Aixin Sun,
and Zongyang Ma. 2016. Topic modeling for short
texts with auxiliary word embeddings. In Proceed-
ings of the 39th International ACM SIGIR conference
on Research and Development in Information Re-
trieval, pages 165–174.

Rishabh Mehrotra, Scott Sanner, Wray Buntine, and
Lexing Xie. 2013. Improving lda topic models for
microblogs via tweet pooling and automatic label-
ing. In Proceedings of the 36th international ACM
SIGIR conference on Research and development in
information retrieval, pages 889–892.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neu-
ral variational inference for text processing. In In-
ternational conference on machine learning, pages
1727–1736. PMLR.

David Mimno, Hanna Wallach, Edmund Talley, Miriam
Leenders, and Andrew McCallum. 2011. Optimizing
semantic coherence in topic models. In Proceed-
ings of the 2011 conference on empirical methods in
natural language processing, pages 262–272.

Belal Abdullah Hezam Murshed, Suresha Mallappa,
Jemal Abawajy, Mufeed Ahmed Naji Saif, Hasib
Daowd Esmail Al-Ariki, and Hudhaifa Mohammed

Abdulwahab. 2022. Short text topic modelling ap-
proaches in the context of big data: taxonomy, survey,
and analysis. Artificial Intelligence Review, pages
1–128.

Feng Nan, Ran Ding, Ramesh Nallapati, and Bing Xi-
ang. 2019. Topic modeling with wasserstein autoen-
coders. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
6345–6381.

Jipeng Qiang, Zhenyu Qian, Yun Li, Yunhao Yuan,
and Xindong Wu. 2020. Short text topic modeling
techniques, applications, and performance: a survey.
IEEE Transactions on Knowledge and Data Engi-
neering, 34(3):1427–1445.

Xiaojun Quan, Chunyu Kit, Yong Ge, and Sinno Jialin
Pan. 2015. Short and sparse text topic modeling via
self-aggregation. In 24th International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, pages
2270–2276. AAAI Press/International Joint Confer-
ences on Artificial Intelligence.

Mehdi Rezaee and Francis Ferraro. 2020. A dis-
crete variational recurrent topic model without the
reparametrization trick. Advances in neural informa-
tion processing systems, 33:13831–13843.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic backpropagation and ap-
proximate inference in deep generative models. In
International conference on machine learning, pages
1278–1286. PMLR.

Michael Röder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the space of topic coherence
measures. In Proceedings of the eighth ACM inter-
national conference on Web search and data mining,
pages 399–408.

Hinrich Schütze, Christopher D Manning, and Prab-
hakar Raghavan. 2008. Introduction to information
retrieval, volume 39. Cambridge University Press
Cambridge.

Akash Srivastava and Charles Sutton. 2017. Autoen-
coding variational inference for topic models. In 5th
International Conference on Learning Representa-
tions.

Dongsheng Wang, Dandan Guo, He Zhao, Huangjie
Zheng, Korawat Tanwisuth, Bo Chen, and Mingyuan
Zhou. 2022. Representing mixtures of word embed-
dings with mixtures of topic embeddings. In Interna-
tional Conference on Learning Representations.

Rui Wang, Xuemeng Hu, Deyu Zhou, Yulan He, Yuxuan
Xiong, Chenchen Ye, and Haiyang Xu. 2020. Neural
topic modeling with bidirectional adversarial train-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
340–350.

Rui Wang, Deyu Zhou, and Yulan He. 2019. Atm:
Adversarial-neural topic model. Information Pro-
cessing & Management, 56(6):102098.

13771



Yiming Wang, Ximing Li, Xiaotang Zhou, and Jihong
Ouyang. 2021. Extracting topics with simultane-
ous word co-occurrence and semantic correlation
graphs: neural topic modeling for short texts. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 18–27.

Xiaobao Wu, Xinshuai Dong, Thong Nguyen, and
Anh Tuan Luu. 2023. Effective neural topic model-
ing with embedding clustering regularization. arXiv
preprint arXiv:2306.04217.

Xiaobao Wu, Chunping Li, Yan Zhu, and Yishu Miao.
2020. Short text topic modeling with topic distribu-
tion quantization and negative sampling decoder. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1772–1782.

Xiaobao Wu, Anh Tuan Luu, and Xinshuai Dong. 2022.
Mitigating data sparsity for short text topic model-
ing by topic-semantic contrastive learning. arXiv
preprint arXiv:2211.12878.

Qianqian Xie, Jimin Huang, Pan Du, Min Peng, and
Jian-Yun Nie. 2021. Graph topic neural network for
document representation. In Proceedings of the Web
Conference 2021, pages 3055–3065.

Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi
Cheng. 2013. A biterm topic model for short texts.
In Proceedings of the 22nd international conference
on World Wide Web, pages 1445–1456.

Liang Yang, Fan Wu, Junhua Gu, Chuan Wang, Xi-
aochun Cao, Di Jin, and Yuanfang Guo. 2020. Graph
attention topic modeling network. In Proceedings of
The Web Conference 2020, pages 144–154.

Jianhua Yin and Jianyong Wang. 2014. A dirichlet
multinomial mixture model-based approach for short
text clustering. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 233–242.

Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Ji-
wen Lu, and Jie Zhou. 2021. Pointr: Diverse point
cloud completion with geometry-aware transform-
ers. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 12498–12507.

Chaohe Zhang, Xin Gao, Liantao Ma, Yasha Wang,
Jiangtao Wang, and Wen Tang. 2021. Grasp: generic
framework for health status representation learning
based on incorporating knowledge from similar pa-
tients. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pages 715–723.

Delvin Ce Zhang and Hady Lauw. 2022. Meta-
complementing the semantics of short texts in neural
topic models. Advances in Neural Information Pro-
cessing Systems, 35:29498–29511.

Hao Zhang, Bo Chen, Dandan Guo, and Mingyuan
Zhou. 2018. WHAI: Weibull hybrid autoencoding
inference for deep topic modeling. In International
Conference on Learning Representations.

He Zhao, Dinh Phung, Viet Huynh, Trung Le, and Wray
Buntine. 2021. Neural topic model via optimal trans-
port. In International Conference on Learning Rep-
resentations.

Qile Zhu, Zheng Feng, and Xiaolin Li. 2018. Graphbtm:
Graph enhanced autoencoded variational inference
for biterm topic model. In Proceedings of the 2018
conference on empirical methods in natural language
processing, pages 4663–4672.

Yuan Zuo, Junjie Wu, Hui Zhang, Hao Lin, Fei Wang,
Ke Xu, and Hui Xiong. 2016. Topic modeling of
short texts: A pseudo-document view. In Proceed-
ings of the 22nd ACM SIGKDD international confer-
ence on knowledge discovery and data mining, pages
2105–2114.

A kNNTM Algorithm Framework

Algorithm 1 The training procedure of kNNTM
framework.

1: Input: the input corpus D, topic number K,
pre-training epoch number P , total epoch num-
ber T , the number of nearest neighbors nk,
hyperparameters α, η, ρ.

2: Output: K topic-word distributions βk, ND

document-topic distribution θd

3: for epoch from 1 to T do
4: for a random batch of B documents do
5: Lbatch ← 0;
6: for each document d in the batch do
7: compute the topic distribution θd;
8: if epoch ≤ P then
9: Lbatch ← Lbatch + LTM by Eq.4;

10: else
11: get augmented reconstruction label

x̃d by Eq.5 with distance in Eq.12;
12: Lbatch ← Lbatch + LkNNTM by

Eq.14;
13: end if
14: update md with θd by Eq.10;
15: end for
16: update model parameters with∇Lbatch
17: end for
18: end for

B Experimental Details

B.1 Dataset Statistics
We conduct our experiments on the following pub-
lic short text datasets:

GoogleNews: The GoogleNews dataset is from
the Google News site and includes the titles of over
10,000 news articles categorized into 152 clusters.
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Snippet: The Snippet dataset consists of over
10,000 search results from web across 8 different
domains, obtained using predefined phrases.

StackOverflow: The StackOverflow dataset is
sourced from the challenge data released by Kaggle.
The dataset we use is a subset of 20,000 question
titles randomly selected from 20 different tags from
the original dataset.

We present the detailed statistics of the above
three datasets after preprocessing in Table 4.

Datasets Number of
documents

Average
length

Number of
categories

Vocabulary
size

GoogleNews 11019 5.75 152 3476
Snippet 12294 14.42 8 4720
StackOverflow 16392 5.02 20 2300

Table 4: Statistics of 3 datasets after preprocessing.

Datasets nk α η ρ

GoogleNews 20 1.0 0.5 0.5
Snippet 30 1.0 0.2 0.6
StackOverflow 30 0.5 0.4 0.4

Table 5: Hyper-parameters for different datasets.

B.2 Baselines
Here we provide brief introductions to the baseline
methods compared in this paper.

prodLDA: prodLDA (Srivastava and Sutton,
2017) is a prominent work in neural topic models.
It employs black-box neural variational inference
and approximates the Dirichlet prior via a logistic
normal distribution.

WLDA: WLDA (Nan et al., 2019) utilizes the
Wasserstein autoencoder framework for neural
topic modeling and directly enforces the Dirich-
let prior through Maximum Mean Discrepancy.

ECRTM: To the best of our knowledge,
ECRTM (Wu et al., 2023) is the current state-
of-the-art neural topic model for normal long doc-
uments. It incorporates an embedding clustering
regularization that encourages word embeddings to
cluster around topic embeddings.

NQTM: NQTM (Wu et al., 2020) proposes
learning peakier topic distributions and discovering
better topics through topic distribution quantization
and negative sampling.

MCTM: MCTM (Zhang and Lauw, 2022) fo-
cuses on variable-length corpora and utilizes meta-
learning to train a missing semantics predictor for
short documents based on other long documents.

TSCTM: TSCTM (Wu et al., 2022) is a state-
of-the-art short text neural topic model. It builds
upon NQTM and introduces a contrastive objective
on quantized distributions.

B.3 Implementation Details
Regarding the training environment, our method
is implemented using PyTorch 1.12.1 with Python
3.9.16, and the experiments are conducted on four
GeForce RTX 2080Ti GPUs. Regarding the model
architecture, the encoder network consists of a 3-
layer MLP, and we set the hidden layer’s dimension
to 128. Training is performed using the Adam op-
timizer (Kingma and Ba, 2014) with a learning
rate of 0.002. We use a batch size (B) of 200, 20
pre-training epochs (P ), and a total of 200 epochs
(T ). For other hyper-parameters, please refer to
Table 5. We use grid search to determine the value
of the above hyperparameters. And for all base-
lines, we follow the hyperparameter settings re-
ported in their original papers. Additionally, we
employ 300-dimensional GloVe embeddings as pre-
trained word embeddings for all the methods that
require word embeddings.

C Metrics for Topic-Word Distribution

C.1 Topic Coherence
We use CV as the topic coherence metric in
our experiments. For a topic z with T words
{x1, x2, ..., xT }, the definition of CV is

CV (z) =
1

T

T∑

i=1

scos (vNPMI (xi) ,vNPMI (x1:T )) ,

(C.1)
where scos(·) is the cosine similarity between two
vectors, and the vNPMI vector is defined as

vNPMI (xi) = {NPMI (xi, xj)}j=1,...,T

vNPMI (x1:T ) =

{
T∑

i=1

NPMI (xi, xj)

}

j=1,...,T

.

(C.2)
And the NPMI indicates the Normalized Pointwise
Mutual Information between words and is calcu-
lated as

NPMI (xi, xj) =
log

p(xi,xj)+ϵ
p(xi)p(xj)

− log (p (xi, xj) + ϵ)
, (C.3)

where p(xi, xj) is the co-occurrence probability
within a reference corpus.
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Model prodLDA WLDA ECRTM NQTM MCTM TSCTM kNNTM

GoogleNews
K = 50

km-Purity 0.333±0.016 0.447±0.022 0.535±0.030 0.494±0.018 0.542±0.025 0.595±0.017 0.612±0.006
km-NMI 0.372±0.007 0.664±0.012 0.789±0.019 0.706±0.007 0.705±0.008 0.793±0.009 0.825±0.004

K = 100
km-Purity 0.364±0.003 0.607±0.007 0.502±0.008 0.660±0.011 0.433±0.079 0.769±0.003 0.788±0.005
km-NMI 0.381±0.003 0.731±0.004 0.690±0.012 0.756±0.003 0.581±0.056 0.845±0.004 0.871±0.003

Snippet
K = 50

km-Purity 0.503±0.017 0.617±0.028 0.761±0.015 0.667±0.017 0.673±0.003 0.723±0.012 0.775±0.004
km-NMI 0.172±0.008 0.298±0.012 0.440±0.009 0.332±0.013 0.328±0.008 0.390±0.011 0.438±0.006

K = 100
km-Purity 0.476±0.004 0.677±0.014 0.805±0.010 0.699±0.006 0.683±0.026 0.761±0.010 0.821±0.007
km-NMI 0.132±0.002 0.322±0.003 0.437±0.008 0.339±0.003 0.331±0.015 0.390±0.005 0.436±0.001

StackOverflow
K = 50

km-Purity 0.227±0.003 0.465±0.007 0.404±0.042 0.452±0.041 0.428±0.017 0.586±0.005 0.613±0.009
km-NMI 0.074±0.005 0.323±0.003 0.290±0.033 0.315±0.033 0.320±0.012 0.433±0.007 0.468±0.003

K = 100
km-Purity 0.166±0.005 0.440±0.005 0.451±0.026 0.480±0.038 0.401±0.006 0.574±0.009 0.615±0.011
km-NMI 0.046±0.003 0.296±0.004 0.350±0.018 0.317±0.029 0.300±0.007 0.397±0.002 0.443±0.008

Table 6: The results for metrics of text clustering on three datasets under 50 and 100 topics. The best-performing
method is highlighted in bold and the second best method is underlined. We run each model 3 times with different
random seeds and report the mean the standard deviation.

Methods CV TU TQ top-Purity top-NMI

kNNTM 0.341±0.006 0.979±0.002 0.334±0.006 0.819±0.005 0.436±0.001

w/o-kNN 0.323±0.008 0.947±0.009 0.306±0.010 0.753±0.001 0.385±0.005
w/o-Topic 0.340±0.008 0.967±0.002 0.328±0.008 0.809±0.009 0.427±0.003
w/o-BoW 0.320±0.006 0.986±0.002 0.315±0.006 0.799±0.007 0.420±0.002
w/-sim 0.343±0.008 0.969±0.005 0.332±0.009 0.793±0.013 0.413±0.006

Table 7: Ablation Studies on Snippet Dataset with 100 topics. We run each model 3 times with different random
seeds and report the mean the standard deviation.

C.2 Topic Diversity
We use Topic Uniqueness (TU ) as the met-
ric for topic diversity. The TU of K topics
{z1, z2, ..., zK} could be calculated as:

TU =
1

K

K∑

i=1

1

T

T∑

j=1

1

cnt
(
xzij

) , (C.4)

where cnt(xi) indicates number of times that the
word xi appears in all topics.

D More Results on Text Clustering

Metrics To evaluated the models on text cluster-
ing method, besides top-Purity and top-NMI, we
also apply the K-Means algorithm to assign clus-
ters to different documents. We set cluster number
set as the topic number K and apply the KMeans
algorithm on all the document-topic distribution
vectors. The metrics are denoted as km-Purity and
km-NMI.

Results We show the results in Table 6. From
the results, we could draw the same conclusions
as in section 5.2. Our kNNTM model outperforms
all baseline models under almost every setting,
and achieves compatible results in a few scenar-
ios. That indicates kNNTM possesses the ability

to obtain high quality document-topic distributions
and derive the hidden semantics for each document.

E More Results of Ablation Studies

Due to space limit, the standard deviations of the
results in the Ablation Studies section are not re-
ported in the main paper. Here we provide the main
and the standard deviation of the results in Table 7,
corresponding to Table 2.
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