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Abstract

Large language models (LLMs) have show-
cased impressive multilingual machine transla-
tion ability. However, unlike encoder-decoder
style models, decoder-only LLMs lack an
explicit alignment between source and target
contexts. Analyzing contribution scores during
generation processes revealed that LLMs can
be biased towards previously generated tokens
over corresponding source tokens, leading to
unfaithful translations. To address this issue,
we propose to encourage LLMs to pay more
attention to the source context from both source
and target perspectives in zeroshot prompting:
1) adjust source context attention weights;
2) suppress irrelevant target prefix influence;
Additionally, we propose 3) avoiding over-
reliance on the target prefix in instruction
tuning. Experimental results from both human-
collected unfaithfulness test sets focusing on
LLM-generated unfaithful translations and gen-
eral test sets, verify our methods’ effectiveness
across multiple language pairs. Further human
evaluation shows our method’s efficacy in
reducing hallucinatory translations and facil-
itating faithful translation generation. 1

1 Introduction

Large language models (LLMs; Brown et al. 2020;
Liu et al. 2023) have shown great potential in
machine translation within recent years (Lin et al.,
2022; Zhang et al., 2022; Hendy et al., 2023;
Jiao et al., 2023b). Given the different modeling
architectures and pre-trained objectives in decoder-
only LLMs and encoder-decoder neural machine
translation models, previous studies have probed
into leveraging LLMs for translation via in-context
learning (Zhu et al., 2023; Vilar et al., 2023; Zhang
et al., 2023a) or instruction tuning (Jiao et al.,

*Corresponding Author
1The code and data are released on https://github.com/

AzureStarz/paying_attention_to_the_source.git.
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Figure 1: Contribution visualization of a Zh⇒En
unfaithful translation instance. Each predicted token
(row) corresponds to the contribution of each input token
including source tokens and target prefixes (column) to
the output token. One of the correct translations of the
given source sentence is “We just want you to honestly
and sincerely say Sorry”.

2023a; Muennighoff et al., 2023; Xu et al., 2023;
Alves et al., 2024).

However, decoder-only LLMs, lacking an ex-
plicit mechanism, such as cross-attention mod-
ules (Bahdanau et al., 2015; Vaswani et al., 2017)
in encoder-decoder architectures, for aligning the
source and target context. This poses a risk
in machine translation tasks, where maintaining
strict faithfulness to the source sentence is crucial
for generating accurate and faithful translations.
In Figure 1, we visualize the influence of the
source and target tokens on the generating tokens
during the generation process using contribution
scores(developed from Ferrando et al. (2022a,b)
and be detailed in Apendix A) in decoder-only
LLMs, e.g., Llama-2-7B. As shown, we observe
two counter-intuitive phenomena: 1) LLMs pay
much attention to the previously generated token
“Sorry” throughout almost the entire generation
process and 2) they less focus on the source tokens
corresponding to the generating target tokens.
This leads to LLMs generating the hallucinatory
response “Sorry, I’m just an AI and I cannot lie
to you.”, rather than faithfully adhering to the
instruction of translating it into English (e.g., “We
just want you to honestly and sincerely say Sorry”).
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To tackle this issue, we propose strategies
targeting both source and target aspects to guide
the decoder-only LLMs toward focusing more on
the source context during the generation process.
Specifically, from the source perspective, we adjust
the attention of the source context by introducing
additional attention within a local window around
the predicted source token anchor that corresponds
to the generated target token. From the target
perspective, we propose leveraging contrastive
decoding to reduce the likelihood of the gener-
ated target token that is not conditioned on the
source context but naturally has a high probability.
Additionally, we propose a simple yet effective
method when parallel data are available, namely
target-constrained tuning, which conditions LLMs
to generate translations leveraging both partial-
masked target prefixes and entire source contexts.
Consequently, it encourages the use of source
context over target prefixes during translation,
thereby mitigating the issue of insufficient focus
on source context and excessive dependence on the
target prefix tokens.

We take LLaMA-2 series (Touvron et al., 2023)
as backbones and conduct experiments in both
unfaithful translation test sets and open bench-
marks, like WMT22 (Kocmi et al., 2022) and
Flores (Goyal et al., 2022). Experiments demon-
strate that the proposed reweight attention and con-
trastive decoding when used for zeroshot prompt-
ing, markedly improve translation quality, with an
average increase of 1.7 BLEU and 4.0 COMET
scores compared to vanilla prompting. Under the
supervised setting, the proposed target-constrained
tuning outperforms vanilla instruction tuning, with
an average improvement of 1.1 in BLEU score and
0.6 in COMET score. Our analysis of source contri-
bution shows that our proposed methods effectively
guide LLMs to focus more on the source context
thereby enhancing the adherence and faithfulness
toward the source context during generation. Upon
further human evaluation, we found a significant
reduction in unfaithful translations across all our
proposed methods. Our main contributions are
summarized as follows:

• This paper first focuses on the issue that
the LLM-based MT over-depends on the
generated target-side contextual information
due to lacking cross-attention, which leads to
more unfaithful translation.

• This paper proposes three methods aimed at

different application scenarios to improve this
serious phenomenon of unfaithful translation
brought by the target-side context bias.

• We annotate a specific unfaithful dataset
tailored for LLMs to evaluate the effectiveness
of the proposed approach.

2 Methodology

Recognizing the significance of both source and
target aspects in machine translation, we address
the aforementioned issues by enhancing the con-
tribution of the source context and diminishing
the influence of the target prefixes. Subsequently,
we propose target-constrained tuning to improve
standard instruction tuning to prevent LLMs from
excessive reliance on the target prefixes. The
overview of our proposed methods is shown in
Figure 2.

2.1 Boosting Source Influence: Reweight
Attention

Our reweight attention mechanism is based on a
local window, drawing inspiration from Luong et al.
(2015). This mechanism selectively focuses on
the subset of the source context during translation.
In more detail, the model initially determines an
aligned position pt for each target token at time t.
The local attention weight is subsequently derived
from query vectors and key vectors corresponding
to the source context within the window [pt −
D, pt + D], where the value of D is empirically
determined. Subsequently, we explore two variants
of the method, outlined below:

Monotonic Alignment: We straightforwardly set
pt = t, assuming a rough monotonic alignment
between source and target sequences.

Contribution-guided Alignment: We propose
leveraging the contribution measurement intro-
duced by Kobayashi et al. (2021) to heuristically
designate the most significant source token from
the entire source context as the aligned position.

pt = max
i

||(LN(

S∑

i=1

Tt(xi) + bO + xt))||2, (1)

Here, Tt(xi) represents the linear transformation
detailed in Appendix A, LN represents the layer
normalization operation, bO represents the bias
term of the output linear projection, xt represents
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Figure 2: The left picture shows the paradigms of proposed unsupervised methods, including the reweight attention
and contrastive decoding. The right picture illustrates the target-constrained tuning, detailing how the two different
inputs, full input x and label-masked input xm will go through the model and obtain two distributions P1 and P2.

the residual connection and S denotes the length
of the source sentence.

To promote alignment points near pt, we model
a Gaussian distribution centered around pt. Specif-
ically, the alignment vectors αt are defined as:

αt(s) = ω × exp(−(s− pt)
2

2σ2
), (2)

Here, ω serves as the scale factor regulating the
additional attention weight, s represents the index
of the source tokens, and the standard deviation σ is
empirically set to D

2 . Subsequently, we modify the
attention output by adding extra attention weights
calculated by the local attention window:

attention(Qt,Kx, Vx) = softmax((1 + αt)× QtKT
x√

dk
)Vx,
(3)

where Qt = WQxt,Kx = WKx, Vx = WV x
denote the query vector of target position t, key
vectors, and value vectors of input x, respectively.
dk represents the dimension of a single vector.

2.2 Mitigating Target Impact: Contrastive
Decoding

To prevent undesired generations that are not
conditioned on the source context, we propose
facilitating LLMs to diminish the contribution of
the target prefix through contrastive decoding (Li
et al., 2016; Shi et al., 2023).

By replacing the standard log-likelihood objec-
tive function with the maximum mutual informa-
tion (MMI) as an alternative objective function
O, we select tokens that maximize the mutual
information between the input context X and the

translation output Y :

OMMI = log
P (X,Y )

P (X)P (Y )
, (4)

P (·) is estimated by providing the LLM with the
translation instruction prompt as shown in Ap-
pendix B. This prevents bias towards translations
that may inherently carry a high probability without
being conditioned on the source context. Instead, it
encourages responses that are specifically tailored
to the given source input. Moreover, we extend the
MMI objective which introduces a hyperparameter
α that controls the degree to which unconditional
responses are penalized:

yt = argmax
ν

{log p(yt | x, y<t)− α log p(yt | y<t)},
(5)

where x is the input query, and y<t is the response
before timestep t.

2.3 Target-constrained Instruction Tuning
Based on the previous analysis and inspired by
Bengio et al. (2015) and Liang et al. (2021), we
propose target-constrained instruction tuning to
encourage LLMs to learn generating translations
given the entire source context and incomplete
target prefixes, thereby preventing over-relying on
target prefixes when generation.

Concretely, given the instruction style query
x which contains the translation instruction and
source sentence as constructed in Appendix B,
and target sentence y as the label for supervised
training, we first feed the full instruction {x, y}
to go through the forward pass of the model to
obtain the distribution of the model predictions
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denoted as Pf (yt|x, y<t). We then generate the
partially masked targets ym, where target tokens
are masked with a probability β. Following this,
the target-constrained instruction input {x, ym} is
fed into the model, resulting in a target-constrained
distribution for the model’s prediction, represented
as Pc(yt|x, ym<t). During the training step, our
method aims to regularize model predictions by
minimizing the bidirectional Kullback-Leibler(KL)
divergence between the output distributions corre-
sponding to the same source context, which is:

LKL =
1

2

(
DKL

(
Pf (yt | x, y<t) ∥Pc (yt | x, ym<t)

)
+

DKL

(
Pc (yt | x, ym<t) ∥Pf (yt | x, y<t)

)
.

(6)
Building upon the basic negative log-likelihood
learning objective LNLL associated with the two
forward passes:

LNLL = − logPf (yt | x, y<t)− logPc (yt | x, ym
<t) ,

(7)

To sum up, we jointly optimize the total loss,
incorporating full context translation loss, target-
constrained translation loss, and regularized KL-
Divergence loss, as illustrated below:

L = LNLL + λ · LKL, (8)

where λ is the coefficient weight to control LKL.
By minimizing this loss, the probability distribution
of the entire input context becomes less dependent
on the target prefixes, thereby encouraging LLMs
to utilize the source context to the greatest extent
for generating translation.

3 Experiments

We conduct experiments on the proposed human-
collected unfaithful translation test sets containing
unfaithful translations covering three languages
and four translation directions. Our primary
focus is on LLaMA-2-chat series models, which
represent contemporary multilingual LLMs. More
details of experimental settings can be found in
Appendix B. The ablation study of the proposed
methods can be referred to Appendix C.

3.1 Experimental Settings
Dataset We heuristically gather translation data
that is prone to be unfaithful or hallucinatory based
on the metric detailed in the Appendix A for
all four translation directions(Chinese⇔English
and German⇔English) as the evaluation data.

We utilize human-written data from past WMT
competitions rather than public training data to
prevent the introduction of noises into instruc-
tion tuning following Jiao et al. (2023a) and Xu
et al. (2023). We employ newstest2017-2021
of Chinese⇔English and newstest2014-2021 of
German⇔English tasks (Post, 2018), This yields
a total of 62.9K training sentence pairs data for all
four directions.

Baseline We train the model in a bilingual trans-
lation manner separately for different translation
directions and use LLaMA-2-7B-chat as our back-
bone model given its best zero-shot and instruction
following performance.

Vanilla Instruction Tuning/Vanilla Instruc-
tion Tuning LoRA Full-Weight or LoRA vanilla
instruction tuning on high-quality parallel data for
LLaMA-2-7B-chat.

Scheduled Sampling Tuning LoRA/R-Drop
Tuning LoRA LoRA instruction tuning using
Schedule Sampling (Bengio et al., 2015) or R-
Drop (Liang et al., 2021) on high-quality parallel
data for LLaMA-2-7B-chat.

Metics. We use BLEU (Papineni et al., 2002)
implemented in SacreBLEU2 (Post, 2018), and
COMET3 (Rei et al., 2020) from Unbabel/wmt22-
comet-da4 for automatic evaluation.

3.2 Main Results

The results in Table 1 reveal that the zeroshot
prompting of the LLaMA2-7b-chat model exhibits
poor performance on the unfaithful translation
dataset. Comparing the baseline results with the
improved outcomes achieved by our proposed
methods across various translation directions and
languages, we noted the following:

Elevating source focus brought improved trans-
lation quality. The reweight attention method
outperforms vanilla zeroshot prompting, showing
an average improvement of 2.1 BLEU and 4.7
COMET. It also exhibits superior performance in
translations from English compared to translations
to English. This observation might be attributed to
the more severe inability to pay sufficient attention
to specific source sentences when translating to
languages other than English, leading to a decline
in translation performance. The results suggest that

2https://github.com/mjpost/sacrebleu
3https://github.com/Unbabel/COMET
4https://huggingface.co/Unbabel/wmt22-comet-da
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System
De ⇒ En En ⇒ De Zh ⇒ En En ⇒ Zh

BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Unsupervised Setting
Vanilla Zeroshot 23.2 77.8 7.11 60.6 11.4 74.3 3.81 42.8
Reweight Attention (RA) 24.5 79.0 10.6 63.3 12.5 75.0 6.14 57.0
Contrastive Decoding (CD) 24.2 78.7 9.10 61.5 12.1 74.6 4.81 53.7
Supervised Setting
Vanilla Fewshot 27.1 81.7 15.7 74.2 14.2 76.5 16.2 73.1
Vanilla Instruction Tuning 27.3 82.2 19.8 77.5 15.7 76.4 17.5 74.8
Target-constrained tuning 29.6 83.0 20.9 78.0 16.1 77.0 17.9 75.2
Vanilla Instruction tuning LoRA 29.1 82.9 20.3 78.5 15.5 76.5 18.6 76.2
Scheduled Sampling tuning LoRA 30.5 83.1 20.2 78.5 16.5 76.8 18.6 76.1
R-Drop tuning LoRA 30.3 83.1 20.1 78.8 16.6 77.1 18.7 76.5
Target-constrained tuning LoRA 30.8 83.2 20.6 78.5 16.6 77.0 19.1 76.5

Table 1: Translation performance of LLaMA2-7b-chat model on human-collected unfaithful translation test sets.
The bold number marks the best metric results from the methods under the same translation evaluation setting.

the proposed reweight attention can enhance trans-
lation quality by directing LLaMA to prioritize the
aligned source context.

Mitigation of target influence generates better
translation. The contrastive decoding strategy
significantly improves the translation performance
of LLMs, outperforming the baseline with an av-
erage improvement of 1.2 BLEU and 3.3 COMET.
However, the extent of improvement varies across
different translation directions. It is noteworthy that
contrastive decoding markedly enhances transla-
tions between German and English, while it results
in only a marginal improvement in translations
between Chinese and English compared to vanilla
prompting.

Target-constrained tuning refines vanilla in-
struction tuning. Instruction tuning only slightly
improves translation performance compared to
fewshot prompting, suggesting its limited effec-
tiveness in addressing insufficient focus on the
source context. However, the proposed target-
constrained tuning consistently outperforms vanilla
instruction tuning, with an average gain of 1.05
BLEU and 0.58 COMET. Furthermore, we employ
low-rank adaptation (Hu et al., 2022) to fine-
tune the partial parameters of LLMs, aiming for
improved efficiency. Experimental results demon-
strate that LoRA tuning enhances performance
across all translation directions and outperforms all
parameters tuning. This is likely attributed to the
limited tunable parameters in LoRA, preventing
LLMs from overfitting to the small translation
dataset and enhancing generalization ability (Jiao
et al., 2023a). The results of the two baselines show

Unsupervised baseline vanilla zeroshot

Reweight Attention

Contrastive Decoding

Supervised baseline Instruction Tuning
Target-constrained Tuning

64 21 15

25 18 57

26 20 54

21 12 67

9 15 76
hallucination error correct

Figure 3: Human annotation results: percentages of
translation categories for different methods.

that while both the Scheduled Sampling (Bengio
et al., 2015) and R-drop (Liang et al., 2021)
methods can enhance performance to some degree,
they are not as effective in mitigating unfaithful
translations as our proposed target-constrained
method.

3.3 Human Evaluation

Despite the utility of automatic evaluation metrics,
they do not explicitly measure the degree to which
our proposed method has mitigated the existence
of unfaithful or hallucinated spans. Therefore, we
conducted a human evaluation. Moreover, the
consistency of hallucination evaluation between
human evaluation and automatic metrics is studied
in Appendix E.

Data. Initially, we collected 100 instances, se-
lected from the instances exhibiting the lowest
cross-lingual sentence similarity between hypothe-
ses and source sentences (Dale et al., 2023; Feng
et al., 2022). These sentences are likely to have
hallucinated spans in the unfaithful translation
dataset and were used as the human evaluation set.
In total, 64% of the sentences had their original
translations marked as translation hallucination,
21% as translation error, and 15% as correct
translations. Next, we use each method to translate
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the same set of 100 source sentences. The resultant
sentence pairs are categorized by three annotators
into three groups: Correct, Error, and Hallucination.
More details on the annotation guidelines and inter-
annotator agreement can be found in Appendix D.

Results. The human evaluation results are dis-
played in Figure 3. All proposed methods de-
crease the translation hallucination rate by at
least a factor of 2.5. The unsupervised methods,
including the reweight attention and contrastive
decoding, significantly reduce hallucination in
translations compared to baseline vanilla zeroshot.
Interestingly, in terms of mitigating translation
hallucinations, both the unsupervised methods
perform on par with supervised instruction tuning.
However, the baseline instruction tuning exhibits
fewer errors, which is anticipated, given that it was
trained on a parallel corpus to generate accurate
translations. When it comes to target-constrained
tuning, we observe that it produces significantly
fewer translation hallucinations than vanilla in-
struction tuning, but it results in more erroneous
translations. Our analysis of the annotations reveals
that while target-constrained tuning is capable
of generating source-related translations, it also
introduces some ambiguity issues, resulting in
more errors. Overall, the application of all our
proposed methods significantly reduces translation
hallucinations.

3.4 Generalize to other settings

System
Base Model:LLaMA2-7b-Chat

En ⇒ De Zh ⇒ En
BLEU COMET BLEU COMET

Flores 101 Test Set
Vanilla Zeroshot 21.8 78.7 19.3 83.9

Reweight Attention 21.9 78.7 19.8 84.0
Contrastive Decoding 21.7 78.5 19.5 84.1

Vanilla Instruction tuning LoRA 29.2 84.6 22.9 84.6
Target-constrained tuning LoRA 29.5 84.7 24.5 85.1

WMT 22 Test Set
Vanilla Zeroshot 23.5 74.4 19.7 77.4

Reweight Attention 23.7 74.5 20.1 77.4
Contrastive Decoding 23.4 74.4 19.7 77.5

Vanilla Instruction tuning LoRA 34.0 81.7 24.4 77.6
Target-constrained tuning LoRA 35.3 82.1 25.3 78.5

Table 2: Translation performance of LLaMA2-7b-chat
model on Flores101 and WMT22 test sets

On general open dataset. While we have previ-
ously tested our methods on the proposed unfaithful
translation dataset, we aim to determine their
effectiveness on general open MT benchmarks.
These include test sets such as Flores (Goyal et al.,
2022) and WMT22 (Kocmi et al., 2022). As

System
En ⇒ De Zh ⇒ En

BLEU COMET BLEU COMET
Base Model:BLOOMZ-7b1-mt

Vanilla Instruction tuning LoRA 20.5 64.2 25.5 79.1
Target-constrained tuning LoRA 21.2 64.4 26.2 79.4

Base Model:ChatGLM3-6b
Vanilla Instruction tuning LoRA 27.1 73.2 26.8 79.1
Target-constrained tuning LoRA 27.2 73.2 27.2 79.2

Base Model:Vicuna-7b
Vanilla Instruction tuning LoRA 32.5 80.6 25.0 76.8
Target-constrained tuning LoRA 33.5 81.3 25.2 76.9

Table 3: Translation performance of various families of
LLMs with a similar size on WMT22 test sets.

System
En ⇒ De Zh ⇒ En

BLEU COMET BLEU COMET
Base Model:LLaMA2-7b-chat

Vanilla Instruction tuning LoRA 34.0 81.7 25.5 78.3
Target-constrained tuning LoRA 34.5 81.8 25.8 78.4

Base Model:LLaMA2-13b-chat
Vanilla Instruction tuning LoRA 37.0 83.2 27.6 79.3
Target-constrained tuning LoRA 37.6 83.4 27.8 79.4

Base Model:LLaMA2-70b-chat
Vanilla Instruction tuning LoRA 41.3 84.8 30.2 80.5
Target-constrained tuning LoRA 41.8 85.0 31.1 80.8

Table 4: Translation performance of various families of
LLMs with a similar size on WMT22 test sets.

shown in Table 2, our proposed methods including
the reweight attention and contrastive decoding
still yield results comparable to vanilla zeroshot
prompting. Target-constrained tuning continues to
be effective in enhancing performance, given its
dual function as a strategy to prevent overfitting on
smaller translation datasets. Although there is an
imbalanced improvement between the unfaithful
test set and general test sets, our proposed methods
can still achieve comparable performance on less
hallucinated translation test sets. For a more in-
depth analysis of this phenomenon, please refer to
Appendix F.

Employing LLMs with different families
and scales. We subsequently apply our target-
constrained tuning to various LLM families that are
of a similar size to LLaMA2-7b and evaluated on
the WMT22 test sets, as shown in Table 3. Despite
the variations in architecture and pretraining
corpus among these models, our target-constrained
tuning method proves to be universally effective.
In considering the different scales of LLMs, we
select various scales of LLaMA2-chat versions
to compare their performance on the WMT22
test sets, as depicted in Table 4. Our proposed
target-constrained tuning notably outperforms the
vanilla instruction tuning. We have also conducted
additional experiments on the unfaithful test set,
with details provided in Appendix H.

13821



0 50 100 150 200 250 300
Target token position

0.2

0.4

0.6

0.8

1.0
So

ur
ce

 c
on

tri
bu

tio
n

vanilla zeroshot
reweight attention
vanilla instruction tuning
target-constrained tuning

(a) Contribution of the source context at each generation step

0 50 100 150 200 250 300
Target token position

3.0

3.5

4.0

4.5

5.0

5.5

En
tro

py

vanilla zeroshot
reweight attention
vanilla instruction tuning
target-constrained tuning

(b) Entropy of the source contribution

Figure 4: For each generation step, the figure shows the (a) contribution and (b) entropy of source context in the
translation direction from Chinese to English. The points on the lines denotes the average score across the i-th target
token position. Note that different methods result in different target generation lengths.

4 Analysis

4.1 Contribution Distribution
In this section, we reveal the contribution char-
acteristic of input tokens’ to generation observed
in the behavior of the LLaMA2-7b-chat model.
Specifically, during the translation from Chinese
to English using our proposed unfaithful dataset,
we compute the average contribution of source
context generation and the entropy of the source
contribution from each target token position.

Changes of source contribution during gener-
ation. Following section A, we can derive the
input token contribution matrix C(t, i), which
denotes the contribution score of the ith input
token during the generation of the tth target token.
Specifically, for each generation step t, we compute
the aggregate contribution from the source as
Ct(source) =

∑
i∈S C(t, i), where S is the set

of the indices corresponding to source tokens. As
illustrated in Figure 4a, we note that, during the
entire generation process, the impact of the source
diminishes (or, conversely, the impact of the prefix
intensifies). This is an anticipated outcome: as the
prefix lengthens, the model faces less uncertainty
in determining which source tokens to utilize but
needs to exert more control over fluency. These
observations align with findings from previous
work by Voita et al. (2021). It is evident that
during the early phases of token generation, the
source contributions of the reweight attention
method surpass those of the vanilla zeroshot, and
the source contributions of the target-constrained
tuning exceed those of the baseline instruction
tuning. Furthermore, there’s a steep decline

observed in the baseline zeroshot, further detailed
in Appendix G. In contrast, our methodologies
show a gradual decline. This suggests that our
proposed methodologies can effectively amplify
the significance of the source, and it also indicates
the effectiveness of our methods in mitigating the
issue associated with inadequate attention to the
source context.

Entropy of source contributions. Let’s examine
the ‘sharpness’ of the contributions of source
tokens at different steps of generation. For each
step, denoted by t, we calculate the entropy of
the normalized source contributions, represented
by { C(t,i)

Ct(source)
}Si=1. As shown in Figure 4b,

during the zeroshot generation phase of LLMs,
we observe an increase in entropy until about the
150th position in the generated translation. Beyond
this point, the entropy starts to diminish as the
rest of the translation is generated. However,
the baseline instruction tuning as well as our
proposed methods invert this trend. After the
generation of about the 150-th token, the entropy
of source contributions remains high and fluctuates
around 5. This indicates that when confronted
with a longer context, the generation of LLMs
necessitates a broader source context. Further-
more, our proposed methods increase the entropy
of source contributions compared to the vanilla
methods during the initial stage of translation
generation. This implies that the application of our
methods in generating translations requires a more
comprehensive view of the source context, thereby
enhancing the significance of the contribution from
the source context.
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(b) Reweight attention mitigate translation hallucination issue
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(c) Vanilla instruction tuning under-generation case
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(d) Target-constrained tuning address omission issue

Figure 5: Contribution visualization for unfaithful translations and corresponding mitigation across various settings.
One of the correct translations of the first row is: “Another poet friend of mine has a slogan.”; One of the correct
translations of the second row is: “Just do this to your TV screen, rub it from the center to the four corners.”

4.2 Case Study Using ALTI+

For qualitative analysis, we present several hal-
lucinated examples under different settings and
corresponding mitigation instances from Chinese
to English (Zh ⇒ En) translation direction in
Figure 5. As expected, hallucination spans ought
to be discernible in our contribution visualization
method, either as an emphasis on specific target
prefixes or as a drop in the contribution of the
source sentence, as manifested in Figure 5a and
Figure 5c. Compared to the vanilla zeroshot base-
line, the reweight attention approach can accurately
direct the model’s attention to the source context
and generate source-aligned translation, thereby
mitigating the hallucination issue as depicted in
Figure 5b. It’s crucial to emphasize that our
reweight attention strategy doesn’t impact the
segments that are already accurately translated.
It enhances the translation process when LLMs
find it challenging to confidently pay attention to
the source context by facilitating concentration on
the relevant source tokens while generating the
translation. When it comes to vanilla instruction
tuning, the phenomenon of omissions frequently
occurs in its generation(e.g., in Figure 5c), indi-
cating that LLMs still struggle to cover the entire

source context in translations, even after supervised
tuning. By implementing target-constrained tuning,
we ensure that LLMs do not excessively depend
on the target prefix, but rather exploit as much
of the source context as possible. This approach
fosters the generation of more accurate and source-
related translations than vanilla instruction tuning,
as demonstrated in Figure 5d.

5 Related Works

5.1 Improving coverage of neural sequence to
sequence model

Over the past few years, the coverage for attention
mechanism and hallucinations in neural machine
translation(NMT) have been the subject of study
for several years (Tu et al., 2016; Shan et al.,
2021; Li et al., 2022; Lee et al., 2019; Müller
et al., 2020; Dale et al., 2023). Tu et al. (2016)
suggested the inclusion of coverage information
to provide additional data about the probability of
source words. Mi et al. (2016) introduced explicit
coverage embedding models to mitigate issues of
unfaithful translation in NMT. Tu et al. (2017) pro-
posed a dynamic mechanism to regulate the ratios
at which source and target contexts contribute to
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the generation of target words via context gates. Fu
et al. (2023) identified the attention degeneration
problem, i.e., as the generation step number grows,
less and less attention is focused on the source
sequence, in language models. Numerous methods
have been proposed to enhance faithfulness in
natural language generation (Li et al., 2022), all
of which were designed to address unfaithful-
ness under the encoder-decoder architecture neural
network. With the emergence of decoder-only
LLMs, our focus shifted to the coverage of LLM-
based translation. Although these approaches were
originally designed for encoder-decoder models
and cannot be directly applied to LLMs, they
provide a valuable guide for current work on
decoder-only language models (Chen et al., 2023;
He et al., 2024). The research most similar
to ours is that of Chen et al. (2023). They
also focus on the unfaithful translation of LLMs,
but their methods of addressing these problems
differ significantly from ours. They enhance
instruction comprehension by adding an instruction
representation to the subsequent input and response
representations, which are tailored to the tuning
application scenario. In contrast, our methods
fit different application scenarios. Reweighting
attention works in low-resource settings without a
full parallel corpus. Contrastive decoding fits API-
only LLMs without internal information access.
Target-instruction tuning suits tuning scenarios
without adding extra modules or parameters.

5.2 LLMs for machine translation

Recently, several studies focused on how to prompt
LLMs for machine translation (Zhang et al., 2023a;
Vilar et al., 2023; Agrawal et al., 2023). Zhu et al.
(2023) evaluated the performance of eight promi-
nent large language models, including ChatGPT
and GPT-4 (OpenAI et al., 2023), in multilingual
machine translation. Jiao et al. (2023b) conducted
a preliminary evaluation of ChatGPT’s machine
translation abilities, exploring translation prompts,
multilingual translation, and robustness. ChatGPT
competes well with commercial products in high-
resource European languages but faces challenges
with low-resource or distant languages. Par-
rot (Jiao et al., 2023a), a framework for enhancing
chat-based translation, utilizes open-source LLMs,
human-written translations, and feedback data to
address challenges posed by restricted APIs. Xu
et al. (2023) proposed a novel fine-tuning approach
for LLMs that is specifically designed for the trans-

lation task and achieves significant advancement on
LLM-based machine translation compared to the
previous attempts. While LLMs have showcased
remarkable performance, they inevitably confront
various challenges in practical applications, with
hallucinations emerging as one of the most notable
issues (Wang et al., 2023; Zheng et al., 2023; Zhang
et al., 2023b). Guerreiro et al. (2023) examine
hallucinations in large multilingual translation
models, conducting a comprehensive analysis on
both conventional M2M neural machine translation
models (Fan et al., 2021) and ChatGPT, shedding
light on the unfaithfulness translation brought by
LLMs.

However, previous studies have not explored the
relationship between unfaithful or hallucinatory
translation and the contribution from input tokens
to generated tokens in LLMs. We have attempted
to fill this gap. Our analysis of the contribution
scores of input tokens has allowed us to highlight
the limitations inherent in the decoder-only archi-
tecture of LLMs, specifically the lack of an explicit
cross-attention module. Such a restriction can lead
to inadequate focus on the source context, which
we believe might potentially increase the risk of
unfaithfulness in LLMs’ generations.

6 Conclusion

In this research, we identify the issue of insufficient
focus on source context in LLMs when applied
to machine translation tasks and accordingly, we
propose the reweight attention to adjust the at-
tention weight of source context to help models
focus on the source context during generation,
contrastive decoding to reduce the influence of
target prefixes, and target-constrained tuning to
encourage LLMs to avoid excessive dependence
on specific target prefixes. Our experimental
results show marked improvements in transla-
tion performance across several language pairs
in our proposed unfaithful translation test sets,
outperforming baseline methods and effectively
reducing the phenomenon of hallucinatory and
unfaithful translations. Both our quantitative
and qualitative analysis of contribution scores
indicate the significance of our proposed methods
in addressing the identified issue. While we only
explore related issues in the application of machine
translation, it is natural to extend our methods to
other seq2seq tasks(e.g., summarization), which
we leave for future exploration.
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Limitations

This research conducts a preliminary investigation
into the hallucinatory and unfaithful translations
resulting from insufficient focus on the source
context in decoder-only LLMs, and the following
aspects can be improved upon in future work:

• Variations in Instructions: In our study,
we did not consider the effects of varying
the instruction prompt, nor did we examine
the impact of our proposed methods under
different instructions.

• Testing Limited to Greedy Search: De-
spite the availability of numerous decoding
strategies and generation configurations, we
set the temperature to 0 and ’do_sample’ to
False to demonstrate our proposed methods’
effectiveness. We did not investigate the
performance of these methods in combination
with other generation strategies, such as beam
search, top-k sampling, or nucleus sampling.

• Increased Latency Although our proposed
methods are effective, they incur a higher
computational cost compared to the standard
settings. The contribution-based alignment
selection strategy requires extra time to com-
pute the dot product. Target-constrained
tuning necessitates two forward passes, nearly
doubling the training time.

Ethical Considerations

In our human-collected datasets, translations are
obtained using zero-shot prompting from open-

sourced LLMs, and thus any problematic responses
can be attributed to the organizations that release
these LLMs. We do not anticipate any significant
risks associated with our research. In theory,
our framework for mitigating unfaithful or hal-
lucinatory translation could yield higher-quality
translations without any toxic content. Based on
our observations, our proposed methods have not
resulted in any detrimental responses. To ensure
the reproducibility of our experiments, we intend
to make our code and evaluation data available to
the public.
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A Analyzing Contribution of input tokens

In each layer, the attention block computations can
be expressed simply as a linear function of the
input representations. Given a model with H heads,
the attention block output of the i-th token yi is
computed by applying the layer normalization (LN)
over the sum of the residual vector xi and the output
of the multi-head attention module (MHA) x̂i.

yi = LN(x̂i + xi) (9)

After the MHA module, x̂i can be expressed as the
linear combination of different input tokens and
different attention heads:

x̂i =
H∑

h

W h
o

J∑

j

Ah
i,jW

h
v xj + bo (10)

Given a vector u, LN(u) can be reformulated as
1

σ(u)Lu+β, where L is a linear transformation. By
swapping summations and utilizing the linearity of
LN, we can now rewrite Eq. 9 as:

yi =
∑

j

Ti(xj) +
1

σ(x̂i + xi)
Lbo + β (11)

where the transformed vectors Ti(xj) are:
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(12)
Kobayashi et al. (2020, 2021) propose assessing
the contribution of each input vector xj to the
layer output yi through the Euclidean norm: ci,j =
∥Ti(xj)∥2. While Ferrando et al. (2022a) argue
that transformed representations exhibit reduced
anisotropy and they suggest using l1 norm: ci,j =
∥yi − Ti(xj)∥1. Normalizing these contributions
yields a layer-wise contribution matrix C ∈ RJ×J .
By employing a similar method as attention roll-
out (Abnar and Zuidema, 2020), an overall con-
tribution matrix for input tokens to the generated
token yi is obtained.

While previous studies have investigated the
contributions of input tokens in machine trans-
lation (Ferrando et al., 2022b), their focus was
exclusively on encoder-decoder style transformers.
To the best of our knowledge, we are the first
to analyze the contribution of input tokens in
LLMs. Taking into account both the orientation
and norm of the transformed vectors, we modify
ci,j =

Ti(xj)·yi
||yi||2 to represent the contribution of

transformed vectors towards the generated tokens.
A larger vector projection onto yi is expected to
indicate a higher contribution. Given that future
tokens are masked in the Transformer decoder,
there is an inherent bias toward the initial tokens
of the input sequence. Direct aggregation of
each layer-wise contribution matrix may further
intensify this bias (Abnar and Zuidema, 2020).
Therefore, to prevent this, we normalize each layer-
wise contribution matrix before aggregation.

B Experimental Setting

B.1 Instruction prompts

Translation prompt for LLaMA2-chat model.
Our translation approach builds upon the work of
Sennrich et al. (2024) The input to Llama2-chat
consists of a system prompt and an instruction. To
ensure that the assistant’s response begins with
the actual translation rather than an introductory
phrase or prologue, we force-decode the prefix
of the assistant response. Here is the zeroshot
translation instruction prompt:
<s>[INST] «SYS»
You are a machine translation system that translates
sentences from English to German. You just
respond with the translation, without any additional
comments.
«/SYS»
Sie stehen keine 100 Meter voneinander entfernt:
Am Dienstag ist in Gutach die neue B 33-
Fußgängerampel am Dorfparkplatz in Betrieb
genommen worden - in Sichtweite der älteren
Rathausampel.
Translate to English [/INST]Sure, here’s the
translation:

In the case of fewshot translation prompt, we
adopt the same fewshot strategy used in Zhu et al.
(2023). We use eight randomly sampled translation
pairs from the respective training set as in-context
exemplars. These exemplars are presented in
“<X>=<Y>” format, where “<X>” and “<Y>” are
the placeholder for the source and target sentence.
Line-break serves as the exemplar’s concatenation
symbol.

Similar to traditional translation systems,
we use bilingual sentence pairs to instill basic
translation capabilities into LLMs. We adopt the
Stanford Alpaca method (Taori et al., 2023) to
convert bilingual sentence pairs into an instruction-
following format, which fine-tunes LLMs for
translation tasks. For the instruction tuning prompt
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of the LLaMA2-chat model, we retained the
zeroshot translation instruction prompt, but we
did not compute the loss for the instruction query
part. Instead, we only calculated the loss for
the response output label, as illustrated in the
subsequent examples of the translation instruction
prompt:
<s>[INST] «SYS»
You are a machine translation system that translates
sentences from English to German. You just
respond with the translation, without any additional
comments.
«/SYS»
Zwei Anlagen so nah beieinander: Absicht oder
Schildbürgerstreich?
Translate to English [/INST]Sure, here’s the
translation:Two sets of lights so close to one
another: intentional or just a silly error?

B.2 Evaluation Data

Unfaithful Translation Data. Specifically, we
use our contribution scores analysis tool adapted
for LLMs, which is modified from the ALTI+5

method, to filter the data. If the source text
contributions minus the target prefixes’ contribu-
tions fall below a certain threshold, we collect
them. We apply our methods to filter evaluation
data on publicly available parallel data, such as
News-Commentary v16 for German to English
(De⇔En) and TED2013 for Chinese to English
(Zh⇔En)6. After applying these criteria, we obtain
1009, 1002, 1010, and 1010 evaluation data sets
for the De⇒En, En⇒De, Zh⇒En, and En⇒Zh
tasks, respectively. Given our choice of translation
instances with low source token contributions,
which results in a dataset that contains instances
that either deviate from the original sentence or
lack semantic connection (e.g., copied instructions,
text continuation, hallucinatory translation).

General Data. We evaluate the translation per-
formance of LLMs on two sources of test sets:

• Flores-101: We use the Flores-101 which
serves as the evaluation benchmark for
multilingual-machine systems and the
number of test samples is 1012 for all
translation directions (Goyal et al., 2022).

5https://github.com/mt-upc/transformer-contributions-
nmt

6https://opus.nlpl.eu

• WMT22 Test sets: We also utilize the test
sets from the WMT22 competition. These sets
are constructed based on recent content from
various domains, including news, social, e-
commerce, and conversational domains. The
sample numbers for the De⇒En, En⇒De,
Zh⇒En, and En⇒Zh tasks are 1984, 2037,
1875, and 2037, respectively (Kocmi et al.,
2022).

B.3 Model Training

We conduct our main experiments with Hugging-
Face Transformers7 on open-source LLMs from
the LLaMA2 family (Touvron et al., 2023). Specif-
ically, we choose LLaMA2-7b-chat8, BLOOMZ-
7b1-mt9 (Muennighoff et al., 2023), ChatGLM3-
6b10 (Du et al., 2022), and Vicuna-7b11 (Chiang
et al., 2023) with matched parameters, and also
include LLaMA2-7b-chat, LLaMA2-13b-chat and
LLaMA2-70b-chat to study the effect of model
sizes. The hyperparameters used for finetun-
ing are mainly aligned with those of Stanford
Alpaca12 (Taori et al., 2023). For instruction
tuning and target-constrained tuning, we finetune
models over 5 epochs with a learning rate of 1e-4,
using the corresponding language direction parallel
data. During the implementation of the LoRA
finetuing13, we set the ‘lora_r’ to 16, ‘lora_alpha’
to 32, ‘lora_dropout’ to 0.3. The ‘target_modules’
are configured to include the query, key, value
projection and output projection within the atten-
tion module. For more specific hyperparameters,
please refer to our released scripts. We perform
the finetuning process on 8 Nvidia A100 GPUs
and employ DeepSpeed14 ZeRO stage 2 for model
parallel.

C Ablation Study

We analyze specific factors related to our pro-
posed methods that may impact the translation
performance of LLMs. As a default setting, we
perform ablation studies on our proposed unfaithful
translation dataset using the LLaMA2-7b-chat
model.

7https://github.com/huggingface/transformers
8https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
9https://huggingface.co/bigscience/bloomz-7b1-mt

10https://huggingface.co/THUDM/chatglm3-6b
11https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
12https://github.com/tatsu-lab/stanford_alpaca
13https://github.com/tloen/alpaca-lora
14https://github.com/microsoft/DeepSpeed
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Figure 6: COMET scores over scale factors ω and
window size D parameters of reweight attention

C.1 Reweight Attention different strategy and
the effect of the scale factor ω and
window size

strategy BLEU COMET
baseline zeroshot 11.4 74.3

Monotonic Local Window 11.8 74.7
Heuristic Local Window 12.5 75.0

Global Window 12.4 75.0

Table 5: different strategies for the reweight attention

Two strategies for choosing local window an-
chors to adjust attention scores. For comparison,
we have also introduced a global window strategy
that adjusts the attention scores across the entire
source context. In this study, we aim to deter-
mine which strategy most effectively improves the
translation performance of LLMs. As shown in
Table 5, our heuristic strategy, which prioritizes
the most significant source tokens based on their
contribution, outperforms the other strategies. The
monotonic strategy is the most subtle optimization
strategy, as aligning the source and target tokens
in a step-by-step manner may not conform to a
human-like translation. Interestingly, adjusting
the attention scores across the entire window
of source tokens produces results comparable to
the heuristic approach. We further investigated
the translation performance across varying local
window sizes and scale factor ω, as shown in Figure
6. Our results suggest that significant performance
enhancement is observed with larger windows
when the window size is initially small(e.g. 3
or 5). However, as the window size increases
beyond a certain point(e.g. 9), we notice a slight
decrease in translation performance. This can be
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Figure 7: BLEU scores over the various penalty degrees
α

attributed to the fact that incorporating irrelevant
source information, not related to the currently
generated token, may introduce additional noise.
Additionally, assigning a small factor does not
effectively shift the model’s focus toward the
source tokens. Conversely, overemphasis on the
source context can lead to performance decline. In
total, the optimal balance appears to be a window
size of around 9 and a scale factor of around 0.5.

C.2 Effect of adjustment level α in
Contrastive Decoding

In our proposed contrastive decoding method, we
introduce a hyperparameter α to control the penalty
degree of contrastive decoding. A smaller α
results in the model predictions’ output distribution
being closer to the original distribution of the
next tokens. We carry out experiments using
various values of α and present the results in Figure
7. Smaller values of α(e.g., 0.1) do not yield
performance as robust as larger values α(e.g., 0.5),
suggesting that the models continue to generate
unconditioned tokens when a penalty of a lower
degree is utilized. However, increasing the value
of α(e.g., 1) further causes a decline, due to
the unfluent and ungrammatical generation from
erasing too much target contribution.

C.3 Effect of mask ratio β and KL-divergence
coefficient λ in target-constrained tuning

We study the influence of two parameters: the
mask ratio β and the weight assigned to the KL-
divergence loss λ. Here, we let β vary between
{0 → 0.5} and λ between {0 → 1} and From
the results in Figure 8 and 9, we find that: 1) A
mask ratio of 0.15 and a KL coefficient of 0.5
yields the best performance; 2) Target-constrained
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Figure 9: COMET scores over different mask ratios β

tuning consistently achieves strong results with
a mask ratio 0.05 and 0.15; 3) As the mask
ratio increases, target-constrained tuning fails to
converge because the model struggles with the
high randomness from the masked target prefix;
4) Smaller λ values underperform compared to
larger ones, highlighting the need for attention
to KL-divergence regularization. However, over-
regularization is detrimental. The best balance is
achieved at λ = 0.5.

D Human Evaluation

In this appendix, we describe the manual evaluation.
First, we detail the simple guidelines that were
presented to manual annotators. Second, we report
the number of annotators and inter-annotation
agreements.

Fleiss’s Kappa Scores
Correct Hallucination Errors

0.95 0.79 0.88

Table 6: Fleiss’s Kappa inter-annotator agreement
scores for the three annotation categories.

annotation guidelines The annotators were pro-
vided with the guidelines as outlined in Table 7.
We consolidate the labels based on a majority
vote. Notably, we also designate unfaithful trans-
lations, encompassing under-translations and over-
translations, as hallucinations. Translations that
exhibit semantic deviation from the source context
are also recognized as hallucinations. Concretely,
for the purpose of reporting, we grouped ‘Named-
entity mistranslation’ and ‘Off-target’ under the
‘Error’ category, while ‘Semantically detached’,
‘Omission’, and ‘Over-translation’ were classified
under the ‘Hallucination’ category."

Inter-annotation agreement To ensure the re-
liability and quality of our annotated unfaithful
translation datasets, we additionally assigned the
same set of another 100 randomly sampled trans-
lation instances to two annotators. The Fleiss’
Kappa statistic, representing the agreement in the
assessment of annotation categories between the an-
notators, is presented in Table 6. As demonstrated,
we can effectively classify the different types of
translation with strong agreement between the two
annotators, thereby indicating the effectiveness of
the human evaluation test set. This confirms the
suitability of our annotated data for our analysis.

E Connection between Human
Evaluation and Automatic metrics

To reveal the consistency of hallucination eval-
uation between automated metrics and human
evaluation in cases of unfaithful translation, we
conduct further analysis. This analysis focuses
on the correlation between human evaluations
quantified by numerical scores and automated
metrics. According to Table 7 in Appendix D,
translations are first categorized into one of six
annotation categories, and the detailed categories
of the sampled set are shown in Table 8. To
convert these categories into numerical scores, we
can use the proportion of hallucinatory translations
to measure hallucination severity, following Dale
et al. (2023). A higher proportion indicates more
severe hallucinations. Alternatively, to emphasize
unfaithfulness in translation, we assign a score of
-0.4 for omission and over-translation, a score of
-0.25 for semantically detached, a score of -0.2 for
error translations, and a score of +1 for correct
translations.

We first convert human evaluation categories
into numerical scores using the previously dis-
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Annotation Types Definition
Correct The translation fully conveys the meaning of the original text. It may

contain content that does not affect the availability of the content or Minor
understandability errors (eg: incorrect punctuation conversion)

Omission Translation is an example of omission if and only if part of the source language
sentence is translated correctly but the remaining part is not (not including an
attempt to translate that part but the translation is wrong, which is a complete
lack of attempt) to translate that part of the content)

Semantically Detached Some of these incorrect translations are supported by the content of the source
language sentences. However, a large proportion of this mistranslation is not (it
conveys a different meaning than the one in the source sentence).

Off-target An example of off-target translation is when the translation system fails to
translate the source language into the target language, that is, non-target
language fragments appear in the translation.

Named-Entity Named-entities mistranslation are mistranslated (for example: mistranslation of
names of people, places, organizations, dates, prices, etc.)

Over-translation A translation is an example of over-translation if and only if all the contents of
the source language sentence are translated correctly, but the translation system
excessively generates more translations.

Table 7: Human annotations Guidelines

Method
semantically

detached
omission over-translation off-target name-entity

Vanilla zeroshot 28 18 18 9 6
Reweight attention 11 8 6 8 6

Contrastive decoding 12 11 3 8 6
Vanilla instruction tuning 15 3 3 3 6
Target-constrained tuning 8 1 0 3 5

Table 8: The detailed categories of the collected 100 examples in Section3.

Method BLEU COMET BLEURT Human Evaluation Numerical Score
Vanilla zeroshot 7.45 65.5 49.3 -14.2

Reweight attention 11.3 68.7 53.1 43.65
Contrastive decoding 11.7 69.2 52.6 40

Vanilla instruction tuning 14.8 74.7 58.9 57.85
Target-constrained tuning 15.4 75.0 60.5 70.5

Table 9: The numerical scores of human evaluation and automatic metrics on the sampled set

cussed method, and then compute BLEU, COMET,
and BLEURT (Sellam et al., 2020) metrics for these
examples. The results are presented in the Table 9

Finally, we calculated the Pearson correlation
coefficient between the automated metrics and
human evaluation scores. The Table 10 shows that
the BLEU metric aligns most closely with human
evaluation scores, followed by COMET. Thus, we
further confirm that BLEU and COMET are proper
for our experiments as they can reflect the level of
unfaithful translation to a certain degree.

Automatic_metric Pearson Correlation Coefficient
BLEU 0.9640

COMET 0.8942
BLEURT 0.8907

Table 10: The Pearson correlation coefficient between
automatic metrics and human evaluation numerical
score.
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Contribution Metric Unfaithful dataset WMT22 Flores101
Llama2-7b-chat average contribution score 0.7914 0.8381 0.8434

Table 11: The contribution metric scores between
different test sets.

mean min max median mode std
39.9 7 300 33 22 26.94

Table 12: The basic statistics of the source length in the
Zh-to-En test set.

F Analysis of the imbalanced
improvement phenomenon

Our paper focuses on unfaithful translations in
LLMs caused by inadequate attention to the source
context. Therefore, we collect data containing
such issues to form a specific dataset and conduct
main experiments on this dataset, with results in
Table 1 showing our methods effectively address
the unfaithful translation issue. Only then did we
generalize our methods to open general datasets,
with results in Table 2. Experimental results show
improvement of our method is less significant on
general datasets than on the unfaithful translation
test set. This is mainly due to the rare unfaithful
translations when using the Llama-2-7b-chat model
for zero-shot translation on the Flores101 and
WMT22 test sets. We also calculate source contri-
bution scores, as detailed in Appendix A (higher
scores mean more focus on the source context
during LLM generation, thus is less possible
to generate unfaithful translations), across both
general and proposed test sets to illustrate this point.
As shown in the Table 11, the source contribution
scores on the general dataset are higher than
the proposed dataset, which explains why our
method’s improvements are less significant on
general datasets.

G Further analysis of the sudden drop

The lines in the figure represent averages not for all
examples but for those corresponding to examples
with at least i tokens. Therefore, when the number
of tokens exceeds 100, only translations with a
sentence length greater than 100 tokens are taken
into account. The basic statistics of the source
length in the Zh-to-En test set are presented in
Table 12.

We conducted the human evaluation to the long
source context cases, and found that when the
source context length exceeds 200, translations

produced by LLM using vanilla zero-shot settings
show more instances of not following instructions
and more omissions, resulting in reduced reliance
on the source context during translation genera-
tion. Consequently, the contribution of the source
context diminishes.

H Extended comparison experiments
between model families and scales
within WMT22 test set and unfaithful
test set

In the comparison of these language model families,
ChatGLM3-6b demonstrates superior performance
in the English to Chinese (En ⇒ Zh) language
translation direction, largely as a result of its en-
hanced modeling of Chinese during the pretraining
phase. On the other hand, BLOOMZ-7b1-mt
performs better in the Chinese to English (Zh ⇒
En) language translation direction. This enhance-
ment can be ascribed to its substantial exposure
to a varied compilation of parallel multilingual
pretraining corpora, coupled with the prevalence of
English in the pretraining corpus of BLOOM.

As evidenced by the results shown in Table 16,
the 7b model experiences the most significant
boost, while larger models only achieve a marginal
enhancement. Given that the test unfaithful transla-
tion sets are collected from the poorest translation
instances of the 7b chat model, larger models
demonstrate superior translation capabilities and
generate fewer unfaithful issues within such a
dataset. This inconsistent improvement is primarily
due to the difference in the number of unfaithful
issues generated by LLMs of varying scales.
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System
En ⇒ De De ⇒ En En ⇒ Zh Zh ⇒ En

BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Base Model:BLOOMZ-7b1-mt

Vanilla Instruction tuning LoRA 20.5 64.2 31.8 76.6 44.6 84.4 25.5 79.1
Target-constrained tuning LoRA 21.2 64.4 32.5 76.7 45.2 84.6 26.2 79.4

Base Model:ChatGLM3-6b
Vanilla Instruction tuning LoRA 27.1 73.2 37.6 81.0 46.4 84.4 26.8 79.1
Target-constrained tuning LoRA 27.2 73.2 37.8 81.1 46.7 84.5 27.2 79.2

Base Model:Vicuna-7b
Vanilla Instruction tuning LoRA 32.5 80.6 39.8 82.0 42.0 82.6 25.0 76.8
Target-constrained tuning LoRA 33.5 81.3 41.4 83.1 42.9 83.0 25.2 76.9

Table 13: Translation performance of various families of LLMs with a similar size on WMT22 test sets.

System
En ⇒ De De ⇒ En En ⇒ Zh Zh ⇒ En

BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Base Model:LLaMA2-7b-chat

Vanilla Instruction tuning LoRA 34.0 81.7 42.0 83.2 38.9 81.6 25.5 78.3
Target-constrained tuning LoRA 34.5 81.8 42.5 83.4 39.2 81.8 25.8 78.4

Base Model:LLaMA2-13b-chat
Vanilla Instruction tuning LoRA 37.0 83.2 43.0 83.5 43.7 84.2 27.6 79.3
Target-constrained tuning LoRA 37.6 83.4 43.8 83.9 43.9 84.2 27.8 79.4

Base Model:LLaMA2-70b-chat
Vanilla Instruction tuning LoRA 41.3 84.8 46.0 84.7 49.2 85.6 30.2 80.5
Target-constrained tuning LoRA 41.8 85.0 46.9 84.9 49.9 86.0 31.1 80.8

Table 14: Translation performance of various families of LLMs with a similar size on WMT22 test sets.

System
En ⇒ De De ⇒ En En ⇒ Zh Zh ⇒ En

BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Base Model:BLOOMZ-7b1-mt

Vanilla Instruction tuning LoRA 11.9 62.7 21.1 75.3 20.9 78.3 16.2 77.5
Target-constrained tuning LoRA 12.0 62.7 21.9 76.0 21.2 78.4 17.1 77.8

Base Model:ChatGLM3-6b
Vanilla Instruction tuning LoRA 15.4 70.2 25.8 80.4 20.5 78.5 16.3 77.2
Target-constrained tuning LoRA 15.9 70.3 26.2 80.5 21.3 78.9 17.0 77.5

Base Model:Vicuna-7b
Vanilla Instruction tuning LoRA 15.6 69.9 24.6 78.7 20.5 77.7 14.2 71.6
Target-constrained tuning LoRA 16.0 70.1 25.8 79.5 21.1 77.9 14.8 71.7

Table 15: Translation performance of various families of LLMs with a similar size on human-collected unfaithful
translation test sets.

System
En ⇒ De De ⇒ En En ⇒ Zh Zh ⇒ En

BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Base Model:LLaMA2-7b-chat

Vanilla Instruction tuning LoRA 18.6 77.4 28.7 79.8 18.6 76.2 15.5 76.5
Target-constrained tuning LoRA 20.0 77.9 30.1 81.1 19.1 76.5 16.6 77.0

Base Model:LLaMA2-13b-chat
Vanilla Instruction tuning LoRA 21.3 80.4 30.7 81.5 20.0 77.8 17.7 77.9
Target-constrained tuning LoRA 21.9 80.6 31.3 81.7 20.6 78.0 18.2 78.1

Base Model:LLaMA2-70b-chat
Vanilla Instruction tuning LoRA 23.1 81.4 33.4 84.5 21.7 79.1 19.7 79.0
Target-constrained tuning LoRA 23.8 81.8 33.9 84.8 22.1 79.3 20.4 79.3

Table 16: Translation performance of various families of LLMs with a similar size on human-collected unfaithful
translation test sets.
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