@inproceedings{akhtar-etal-2024-chartcheck,
title = "{C}hart{C}heck: Explainable Fact-Checking over Real-World Chart Images",
author = "Akhtar, Mubashara and
Subedi, Nikesh and
Gupta, Vivek and
Tahmasebi, Sahar and
Cocarascu, Oana and
Simperl, Elena",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.828",
doi = "10.18653/v1/2024.findings-acl.828",
pages = "13921--13937",
abstract = "Whilst fact verification has attracted substantial interest in the natural language processing community, verifying misinforming statements against data visualizations such as charts has so far been overlooked. Charts are commonly used in the real-world to summarize and com municate key information, but they can also be easily misused to spread misinformation and promote certain agendas. In this paper, we introduce ChartCheck, a novel, large-scale dataset for explainable fact-checking against real-world charts, consisting of 1.7k charts and 10.5k human-written claims and explanations. We systematically evaluate ChartCheck using vision-language and chart-to-table models, and propose a baseline to the community. Finally, we study chart reasoning types and visual attributes that pose a challenge to these models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="akhtar-etal-2024-chartcheck">
<titleInfo>
<title>ChartCheck: Explainable Fact-Checking over Real-World Chart Images</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mubashara</namePart>
<namePart type="family">Akhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikesh</namePart>
<namePart type="family">Subedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sahar</namePart>
<namePart type="family">Tahmasebi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Simperl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Whilst fact verification has attracted substantial interest in the natural language processing community, verifying misinforming statements against data visualizations such as charts has so far been overlooked. Charts are commonly used in the real-world to summarize and com municate key information, but they can also be easily misused to spread misinformation and promote certain agendas. In this paper, we introduce ChartCheck, a novel, large-scale dataset for explainable fact-checking against real-world charts, consisting of 1.7k charts and 10.5k human-written claims and explanations. We systematically evaluate ChartCheck using vision-language and chart-to-table models, and propose a baseline to the community. Finally, we study chart reasoning types and visual attributes that pose a challenge to these models.</abstract>
<identifier type="citekey">akhtar-etal-2024-chartcheck</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.828</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.828</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>13921</start>
<end>13937</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ChartCheck: Explainable Fact-Checking over Real-World Chart Images
%A Akhtar, Mubashara
%A Subedi, Nikesh
%A Gupta, Vivek
%A Tahmasebi, Sahar
%A Cocarascu, Oana
%A Simperl, Elena
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F akhtar-etal-2024-chartcheck
%X Whilst fact verification has attracted substantial interest in the natural language processing community, verifying misinforming statements against data visualizations such as charts has so far been overlooked. Charts are commonly used in the real-world to summarize and com municate key information, but they can also be easily misused to spread misinformation and promote certain agendas. In this paper, we introduce ChartCheck, a novel, large-scale dataset for explainable fact-checking against real-world charts, consisting of 1.7k charts and 10.5k human-written claims and explanations. We systematically evaluate ChartCheck using vision-language and chart-to-table models, and propose a baseline to the community. Finally, we study chart reasoning types and visual attributes that pose a challenge to these models.
%R 10.18653/v1/2024.findings-acl.828
%U https://aclanthology.org/2024.findings-acl.828
%U https://doi.org/10.18653/v1/2024.findings-acl.828
%P 13921-13937
Markdown (Informal)
[ChartCheck: Explainable Fact-Checking over Real-World Chart Images](https://aclanthology.org/2024.findings-acl.828) (Akhtar et al., Findings 2024)
ACL