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Abstract

Temporal validity is an important property of
text that has many downstream applications,
such as recommender systems, conversational
AI, and user status tracking. Existing bench-
marking tasks often require models to identify
the temporal validity duration of a single state-
ment. However, many data sources contain ad-
ditional context, such as successive sentences
in a story or posts on a social media profile.
This context may alter the duration for which
the originally collected statement is expected to
be valid. We propose Temporal Validity Change
Prediction, a natural language processing task
benchmarking the capability of machine learn-
ing models to detect context statements that
induce such change. We create a dataset con-
sisting of temporal target statements sourced
from Twitter and crowdsource corresponding
context statements. We then benchmark a set
of transformer-based language models on our
dataset. Finally, we experiment with a multi-
tasking approach to improve the state-of-the-art
performance.

1 Introduction

Information is not impervious to time. Whether
it be a post on a social media timeline like “I am
going grocery shopping”, a statement like “Barack
Obama is the president of the United States” in
a knowledge repository, or an advertisement like
“Ariana Grande concert in town this weekend”, sen-
tences frequently contain inherently time-sensitive
information. Consequently, readers have to reason
over whether the statement is still current and accu-
rate when they ingest the information. This prop-
erty of a statement can be described as its temporal
validity (Almquist and Jatowt, 2019; Hosokawa
et al., 2023; Lynden et al., 2023).

Unlike event duration prediction (Pan et al.,
2006; Gusev et al., 2011; Vempala et al., 2018;
Ocal et al., 2024), where the goal is to evaluate how
long certain events take to unfold, temporal validity
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Figure 1: A visualization of the TVCP task. A context
statement from the content stream (e.g., a set of social
media posts or a news article) provides additional infor-
mation about the temporal validity duration of the target
statement.

encompasses the contemporaneity and truthfulness
of a statement at a given time. This means factors
such as the statement creation time and the relative
occurrence time of any information within it must
also be considered. Similar to previous work in the
growing field of temporal commonsense reasoning
(Wenzel and Jatowt, 2023a; Jain et al., 2023), deter-
mining the temporal validity of a statement often
relies on our prior commonsense understanding of
the world due to underspecified temporal expres-
sions. However, it can be difficult to accurately
reason over this property when sentences actually
belong to a larger content stream. For example,
extracting a single post from a social media time-
line or a single sentence from a book may remove
important contextual information about the state-
ment’s validity period.

The most frequently benchmarked task in the
temporal validity domain requires models to esti-
mate the duration for which a statement is valid
in isolation (Almquist and Jatowt, 2019; Lynden
et al., 2023), despite datasets often being created
from streams of texts, such as WikiHow articles or
blog posts. To introduce the contextual dimension
to such models, we propose a new natural language
processing task called Temporal Validity Change
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Prediction (TVCP), visualized in Figure 1. This
task is focused on identifying context statements
that impact the duration for which a target state-
ment is expected to be valid.

TVCP can be used to benchmark or fine-tune
temporal commonsense reasoning in machine learn-
ing models, an area in which even recent large
language models (LLMs) still underperform (Bian
et al., 2023; Jain et al., 2023). TVCP may also be
linked to domains that are dependent on implicit
temporal knowledge, such as narrative-, temporal
information-, and temporal relation extraction (Ver-
hagen et al., 2007, 2010; UzZaman et al., 2013;
Santana et al., 2023). Moreover, it provides an ad-
ditional signal for duration-based temporal validity
classifiers and can be used to identify temporal con-
text statements in future data collection processes
for various tasks related to temporal validity. In this
sense, TVCP is a strong driver for future research
into context-aware temporal validity reasoning. Fi-
nally, TVCP-based classifiers could also improve
model performance on various downstream tasks,
such as the following.

Content Prioritization: Social media services
like Twitter rely on recommender systems to pri-
oritize the vast amount of content that their users
produce. For certain content, such as time-sensitive
breaking news, estimating its importance through
engagement metrics may not sufficiently reflect
its urgency. By considering the temporal validity
(Takemura and Tajima, 2012; Koul et al., 2022), it
is possible to better estimate which content should
be urgently shown to users. TVCP can be used to
leverage a stream of social media posts as possi-
ble context to better estimate the temporal validity
duration of any previously observed post.

User Status Tracking: Similarly, the content
of a user’s posts on social media could be utilized
for other analytical or business purposes, such as
predicting revenue streams (Asur and Huberman,
2010; Deng et al., 2011; Lassen et al., 2014; Lu
et al., 2014) or identifying trends in a community’s
or an individual user’s behaviour (Li et al., 2018;
Abe et al., 2018; Shen et al., 2020). TVCP can
identify posts that refer to previously observed
time-sensitive information and detect chains of
thought about topics that may not be self-contained.

Conversational AI: Foundation models, such
as CHATGPT (Ouyang et al., 2022) and BARD

(Manyika, 2023), could incorporate the temporal
validity of statements provided by the user to keep
track of knowledge that is still relevant to the con-

versation. Using TVCP, new messages can provide
context for previously learned time-sensitive facts.

While we focus on consumer-driven downstream
tasks, TVCP also generalizes to more structured
language and statements, such as in knowledge
repositories, news articles, or scientific literature.

Our main contributions are the following:

1. We define a novel natural language processing
task (TVCP) that requires models to predict
the impact of a context statement on a target
statement’s temporal validity duration.

2. We build a dataset composed of time-sensitive
target statements, as well as follow-up state-
ments that provide context on the temporal
validity duration of the target statements.

3. We evaluate the performance of a set of
transformer-based language models (LMs) on
our dataset, including LLMs such as GPT-
3.5-TURBO (Ouyang et al., 2022), GPT-4-
TURBO (Achiam et al., 2023), LLAMA 2 (Tou-
vron et al., 2023), and MIXTRAL 8X7B (Jiang
et al., 2024).

4. We propose an augmentation to the fine-tuning
process that leverages temporal validity dura-
tion labels to improve the performance of the
state-of-the-art classifier.

2 Related Work

2.1 Temporal Commonsense Reasoning
Temporal commonsense reasoning is considered
one of several categories of commonsense reason-
ing (Storks et al., 2019; Bhargava and Ng, 2022).
A major driver of research specifically into tem-
poral common sense appears to have been the
transformer architecture (Vaswani et al., 2017)
and resulting LMs (Radford et al., 2018; Ken-
ton and Toutanova, 2019). In recent years, sev-
eral datasets that specifically aim to benchmark
temporal commonsense understanding have been
published (Zhou et al., 2019; Ning et al., 2020;
Zhang et al., 2020; Qin et al., 2021; Zhou et al.,
2021), while ROCSTORIES (Mostafazadeh et al.,
2016) appears to be the only dataset focussing on
this type of reasoning before the publication of
the transformer architecture. Small adjustments to
transformer-based LMs are often proposed as state-
of-the-art solutions for these datasets (Pereira et al.,
2020; Yang et al., 2020; Zhou et al., 2020; Pereira
et al., 2021; Kimura et al., 2021; Zhou et al., 2021,
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2022; Cai et al., 2022; Yu et al., 2022). Similarly,
temporalized transformer models are popular solu-
tions for tasks such as document dating or semantic
change detection (Rosin and Radinsky, 2022; Rosin
et al., 2022; Wang et al., 2023).

The temporal commonsense taxonomy defined
by Zhou et al. (2019) is frequently referenced. It
contains the five dimensions of duration (how long
an event takes), temporal ordering (typical order
of events), typical time (when an event happens),
frequency (how often an event occurs) and station-
arity (whether a state holds for a very long time or
indefinitely).

2.2 Temporal Validity

Compared to temporal commonsense reasoning,
temporal validity of text is a less well-researched
field (Almquist and Jatowt, 2019; Lynden et al.,
2023; Hosokawa et al., 2023). It effectively
combines three dimensions of the taxonomy by
Zhou et al. (2019): Stationarity, to reason about
whether a statement contains time-sensitive infor-
mation, typical time, to reason about when the time-
sensitive information occurs, and duration, to rea-
son about how long the time-sensitive information
takes to resolve. As shown in Equation 1, the tem-
poral validity of a statement s at a time t is a binary
value that defines whether the information in s is
valid (true) at the given time.

TV(s,t)=





True if information in s is valid at t,

False otherwise
(1)

Note that by definition, stationary statements do
not contain any time-sensitive information (e.g.,
“Japan lies in Asia”). As expected, the temporal
validity of such a statement is constant for any
timestamp t.

2.3 Related Tasks

Moments of Change (MoC)
Our goal of identifying statements of a certain
impact from a stream of texts draws some parallels
to recent work in identifying MoCs based on
content shared on online platforms. MoCs are
most commonly escalations or changes in a user’s
mood, often evaluated on mental health datasets
(De Choudhury et al., 2016; Pruksachatkun et al.,
2019; Tsakalidis et al., 2022). However, certain
concepts, such as the content-agnostic extraction
of user timelines (i.e., subsets of a user’s posting

history) and longitudinal modelling, are applicable
to other domains. Hills et al. (2023) propose
a framework for evaluating timeline extraction
methods, based on whether the extracted timelines
are dense in the desired ground truth feature.
In the future, it would be possible to adapt this
framework to evaluate different approaches for
extracting timelines rich in temporal context
statements. However, our desired change points
are not clearly abstracted by measurable concepts
such as emotion or post sentiment, which Hills
et al. (2023) show to have a strong correlation
with the presence of MoCs in mental health. In
this work, we also evaluate individual context
statements, rather than employing longitudinal
modelling. We chose this design as our proposed
task is already rather difficult to perform for LMs,
and the combination of several context statements
may lead to clashing signals, as can be seen in
Figure 1.

Temporal Validity Duration Prediction (TVDP)
TVDP is the primary existing task that is evalu-
ated in temporal validity research (Takemura and
Tajima, 2012; Almquist and Jatowt, 2019; Lynden
et al., 2023). The goal is to estimate the duration for
which a statement is valid, starting at the statement
creation time. We formalize this task in Equation 2,
where ts is the timestamp at which the statement s
is created.

TVDP(s)=maxt≥ts{t | TV(s,t)=True} (2)

The TVDP task is useful for text sources such
as social media, where information on the posting
time of a statement is readily available and can
be used to infer the timespan during which the
statement is valid.

Temporal Validity Reassessment (TVR)
In TVR, defined also as Temporal Natural Lan-
guage Inference by Hosokawa et al. (2023), the
goal is a reassessment of the temporal validity of
a target statement (st), given additional context
in the form of a follow-up statement (sf ). For-
mally, we define TVR in Equation 3 (SUO = sup-
ported, INV = invalidated, UNK = unknown),
where TVc(s, t) is the temporal validity of a state-
ment s at a time t given context c. The UNK class
is assigned in cases where TVsf (st, tsf ) is neither
clearly supported nor invalidated by the context.
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Method Task Data Source Duration Bias Model # Samples
Takemura and Tajima (2012) TVDP Twitter - SVC 9,890
Almquist and Jatowt (2019) TVDP Blogs, News, Wikipedia years SVC 1,762
Hosokawa et al. (2023) TVR Image Captions seconds1 LM 10,659
Lynden et al. (2023) TVDP WikiHow hours LM 339,184
Ours TVCP Twitter hours LM 5,055

Table 1: Summary of related work

TVR(st,sf )=





SUO TVsf (st,tsf )=True

INV TVsf (st,tsf )=False

UNK TVsf (st,tsf )=Unclear

(3)

Unlike TVDP, this task format does not require
an explicit temporal anchoring of the target state-
ment to reason over its validity, making it partic-
ularly useful for downstream applications such as
story understanding, wherein a larger text stream
of individual statements is provided with no clear
temporal anchoring of statements. We propose
Temporal Validity Reassessment as a new name for
this task moving forward, to scope and align it with
other tasks in the temporal validity domain.

2.4 Comparison with Related Work

Table 1 shows the most closely related research
within the temporal validity domain. Our dataset is
based on the TVCP task, whereas previous work
was based on the TVDP and TVR tasks.

A distinctive attribute is the text source and the
resulting temporal validity duration bias. For ex-
ample, sentences sourced from news or Wikipedia
articles often appear to be valid for years or longer.
On the other hand, image captions may only con-
tain ongoing information for a few seconds. We
decided to source our sentences from Twitter due to
its alignment with our proposed use cases. Similar
to Lynden et al. (2023), our collected statements
tend to be valid for a few hours on average.

We follow recent research by evaluating our
dataset using transformer-based LMs, whereas ear-
lier approaches relied on methods such as support
vector classifiers (SVC).

With the exception of COTAK (Lynden et al.,
2023), datasets tend to be relatively small. As
crowdsourcing is used in all datasets referenced
in Table 1 to annotate text spans with common-
sense information, the costs of dataset creation can

1Based on analysis of a sample. TVDP labels are not
available for the full dataset.

quickly escalate. We also use crowdsourcing to cre-
ate sample context statements, further restricting
the overall size of our dataset.

3 Task

In the context of the previously described related
tasks, we propose Temporal Validity Change Pre-
diction (TVCP). Similar to TVR, we require st
and sf as an input for classification and determine
a ternary label that provides information about the
impact of sf on st. However, while TVR can be
considered a standalone temporal validity reason-
ing process, TVCP primarily provides an addi-
tional signal for estimating the temporal validity
duration of a statement, and is best used in con-
junction with TVDP and a downstream task format
where explicit temporal anchors for target state-
ments can be derived. Formally, we define TVCP
in Equation 4 (DEC = decreased, UNC = un-
changed, INC = increased), where TVDPc(s) is
the temporal validity duration of a statement s
given context c. Figure 2 shows an example com-
paring the three temporal validity tasks.

TVCP(st,sf )=





DEC TVDP(st)>TVDPsf (st)

UNC TVDP(st)=TVDPsf (st)

INC TVDP(st)<TVDPsf (st)

(4)

Of note are the implicit semantic roles of st and
sf . While sf acts as additional contextual informa-
tion, any information that is newly introduced in
sf should not be evaluated on its temporal validity.
The goal of the task is exclusively to estimate the
change in the temporal validity duration of st.

We find that temporal validity change generally
occurs along two dimensions. The first dimension
is implicit versus explicit change. For example,
an appointment mentioned in a target statement
may be declared postponed in the follow-up state-
ment, which would be an explicit change. On the
other hand, the author may instead note in a follow-
up statement that the appointment is for a surgery,
which may cause us to re-evaluate the duration of
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Figure 2: An example of TVDP, TVR and TVCP.
Even when a context statement supports that an action
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the expected temporal validity duration (TVCP).
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Figure 3: Causes of temporal validity duration change
in our qualitative analysis

the appointment, although the event itself has not
changed. The second dimension is a change to
the occurrence time versus the duration of the in-
formation. For example, a flight may be delayed,
in which case the occurrence time changes. Al-
ternatively, the flight might have to be re-routed
mid-air due to bad weather, in which case the dura-
tion changes. Figure 3 shows the frequency of each
combination of dimensions in a qualitative analysis
of 200 context statements from our dataset. Gen-
erally, changes to the duration tend to be slightly
more frequent than changes to the occurrence time.
This makes sense, as context is less likely to change
the occurrence time of already ongoing informa-
tion, which constitutes a large part of our target
statements.

4 Dataset

We create a dataset for training and benchmark-
ing TVCP, where each sample is a quintuple
<st,sf ,TVDP(st),TVDPsf (st),TVCP(st,sf )>.

st consists of posts sampled from Twitter. After
retrieving tweets from the full-archive search API,
we apply RegEx-based rules to remove tweets that
may not be self-contained (e.g., indications of lists
or threads). We also employ several LMs to detect
spam, offensive content, and statements that are
likely stationary. Any remaining tweets that do not
contain temporal information are tagged during the
crowdsourcing process and discarded from the final
dataset. The full collection pipeline is explained
in more detail in Appendix A. Our code, includ-
ing all preprocessing steps, is published under the
CC BY 4.0 licence (Wenzel and Jatowt, 2024).

We quantify three types of time-sensitive infor-
mation. Actions (e.g., “I am baking bread”), events
(e.g., “Job interview tomorrow”), and temporary
states (e.g.,“It is nice out today”). We analyse the
time-sensitive information in 100 target statements
and visualize the result in Figure 4. Notably, one-
third of sampled statements contain at least two
distinct pieces of time-sensitive information with
differing temporal validity spans, a trait that further
distinguishes temporal validity research from event
duration prediction. As previous work often fo-
cuses only on actions (Zhou et al., 2020; Hosokawa
et al., 2023; Lynden et al., 2023), our dataset may
contain more diverse temporal information in com-
parison.

Figure 4: Types of time-sensitive information in our
qualitative analysis

For each target statement st, we ask two crowd-
workers to estimate TVDP(st) from the logarith-
mic class design shown in Equation 5, which mod-
els uncertainty seen in humans when pinpointing
distant events (Jatowt and Au Yeung, 2011; Varsh-
ney and Sun, 2013; Howard, 2018). If the annota-
tors disagreed on the label, we supplied a third vote.
We discarded any tweets that were annotated as no
time-sensitive information, less than one minute or
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more than one month, and tweets where no major-
ity agreement could be reached. Table 2 shows the
number of accepted and rejected statements, broken
down by whether a third vote was supplied. The
label distribution of accepted statements is shown
in Figure 5.

Third Vote Accepted Rejected
No 867 571
Yes 1,012 546

Table 2: Number of annotated target statements ac-
cepted or rejected from our dataset

t∈{less than one minute,1-5 minutes,5-15 minutes,15-45 minutes,

45 minutes-2 hours, 2-6 hours, more than 6 hours, 1-3 days, 3-7 days,

1-4 weeks, more than 1 month, no time-sensitive information}
(5)
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Figure 5: Distribution of TVDP labels (before temporal
validity change) in our dataset

Both sf and TVDPsf (st) were provided by
a separate set of crowdworkers, given st and
TVDP(st) as an input. Authors were asked to pro-
vide a statement sf that would cause the temporal
validity duration of st to decrease, remain the same,
or increase, respectively. The updated temporal va-
lidity duration label is provided by the same author,
meaning the target TVCP label, which is derived
from the duration labels, is guaranteed to match the
author’s intent.

For each target statement, we provide one sam-
ple per TVCP class, thus ensuring a balanced
dataset. Each sample consists of distinct sf ,
TVDPsf (st), and TVCP(st, sf ) labels. We col-
lect 5,055 samples from 1,685 target statements,
noting average word counts for st (16.1, σ = 4.40)
and sf (14.6, σ = 3.29). Similar to Hosokawa et al.
(2023), our crowdsourced context statements are on
average shorter than the target statements and have

lower variance, likely due to participants aiming to
replicate the form of the provided samples.

In Figure 6, we plot the temporal validity change
delta, which is the class distance between the origi-
nal and the updated TVDP estimate. We find that,
in most cases, the temporal validity duration of a
target statement is shifted into the adjacent class.
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Figure 6: Temporal validity change delta distribution

Crowdsourcing was conducted on Amazon Me-
chanical Turk. We split the crowdsourcing work
into two distinct tasks: The annotation of target
statements with a temporal validity duration esti-
mate (TVDP), and the subsequent creation and
annotation of context statements. Working on ei-
ther task required participants to fulfil certain cri-
teria, such as a long track record of previous work
on the platform with a high acceptance rate. In
addition, each task required participants to pass a
multiple-choice qualification test. Finally, results
were manually vetted per participant up to a certain
threshold to ensure that participants were properly
following the task descriptions. The full task setup
for both crowdsourcing tasks is described in Ap-
pendix B. Other than the annotations, the only data
we collect are sample counts and work times by
each pseudonymized participant. We do not collect
any personal or identifying data. We publish the re-
sulting dataset for public use under the CC BY 4.0
licence (Wenzel and Jatowt, 2023b). In accordance
with the Twitter developer policy2, we only publish
the Tweet IDs of sourced statements.

5 Experiments

5.1 Language Models
The evaluated models include fine-tuned
transformer-based LMs as well as LLMs prompted
in a few-shot setting. We evaluate BERT (Kenton
and Toutanova, 2019) and ROBERTA (Liu et al.,
2019) as baseline models. SELFEXPLAIN (Sun
et al., 2020), which achieved state-of-the-art results
on the TNLI dataset, and still performs very

2https://developer.twitter.com/en/
developer-terms/policy, accessed 12.10.2023
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competitively on datasets such as SST-5 (Socher
et al., 2013) and SNLI (Bowman et al., 2015),
represents a state-of-the-art transformer-based
classification model. We initialize these models
with pre-trained weights and fine-tune them on our
dataset. For LLMs, we evaluate GPT-3.5-TURBO,
GPT-4-TURBO, MIXTRAL 8X7B, and LLAMA 2
in a few-shot setting. Our prompt is based on
chain-of-thought reasoning (Wei et al., 2022).
Further, we follow the TELeR taxonomy (Santu
and Feng, 2023) to the best of our abilities to
create an appropriate prompt. Our prompt is
single-turn and instruction-based with a defined
system role, and contains a high-level general
directive, bullet-list style subtasks, few-shot
samples, and an explicit statement asking the LLM
to explain its output. The evaluated models, their
parameter counts (if publicised), and the evaluation
modes are listed in Table 3. The training and
prompting process is described in more detail
in Appendix C. We use 42 as the random seed
consistently throughout the initialization and
training process of all fine-tuned models.

Model Name # Params Evaluation
BERT-BASE 110M Fine-tuned
ROBERTA-BASE 125M Fine-tuned
SELFEXPLAIN 127M Fine-tuned
MIXTRAL 8X7B 47B Few-shot
LLAMA 2 70B Few-shot
GPT-3.5-TURBO - Few-shot
GPT-4-TURBO - Few-shot

Table 3: Summary of evaluated models

For all fine-tuned models, we also provide a
multitask implementation, in which we add two
regression layers that aim to respectively predict
TVDP(st) and TVDPsf (st) from the same hidden
representation. For these layers, we calculate the
loss as the mean squared error between a single out-
put neuron and a linear mapping of the TVDP class
index to the range [0, 1]. Our intuition is that em-
beddings with an understanding of TVDP labels
may be better suited for TVCP. Inspiration for
this approach are models that utilize the interplay
between temporal dimensions to improve their tem-
poral commonsense reasoning performance, such
as SYMTIME (Zhou et al., 2021) or SLEER (Cai
et al., 2022). The number of trainable parameters
added by this approach is negligible.

5.2 Quantitative Analysis
Evaluation Metrics
We evaluate two metrics, accuracy and exact

match (EM). Accuracy is simply the fraction of
correctly classified samples. EM is the fraction of
target statements for which all three corresponding
samples were correctly classified. This metric pun-
ishes inconsistency in the model more strictly, thus
providing a better view of the true performance
and task understanding of each model (Wenzel and
Jatowt, 2023a), while disincentivizing shallow rea-
soning behaviours commonly seen in transformer
models (Helwe et al., 2021; Tan et al., 2023).

We report the mean EM and accuracy across a
five-fold cross-validation split. Each split consists
of 70% training data, 10% validation data, and
20% test data. The results are shown in Table 4. In
the remainder of this section, we refer to the best-
performing model, SELFEXPLAIN with multitask
fine-tuning, as MULTITASK.

Model Acc (+ MT) EM (+ MT)
LLAMA 2 46.5 (N/A) 9.7 (N/A)
MIXTRAL 8X7B 63.0 (N/A) 22.5 (N/A)
GPT-4-TURBO-1106 69.3 (N/A) 30.4 (N/A)
GPT-3.5-TURBO-1106 67.9 (N/A) 31.1 (N/A)
ROBERTA 78.7 (+1.1) 48.2 (+2.1)
BERT 84.8 (−0.2) 61.2 (+0.9)
SELFEXPLAIN 88.5 (+ 1.1) 69.8 (+ 2.8)

Table 4: Model evaluation results, sorted by mean EM
score. MT = multitask implementation.

Foundation Model Performance
In our evaluation, few-shot prompted foundation
models consistently rank far below fine-tuned,
smaller LMs, including simple baselines such as
BERT and ROBERTA. This is consistent with
previous research (Bian et al., 2023; Jain et al.,
2023), which shows that temporal reasoning is an
area in which foundation models are lacking. An-
other possible reason for the discrepancy is that the
few-shot learning approach likely leads to a lack
of knowledge about dataset-specific traits that a
trained classifier could leverage.

LLAMA 2 in particular suffers from a high rate
(26.07%) of explanations that violate the prompt
by not providing one of the three target classes.
This behaviour is not seen in other LLMs. In-
terestingly, while accuracy slightly increases for
GPT-4-TURBO compared to GPT-3.5-TURBO, the
EM score does not increase, indicating that there
is no need to resort to exceedingly large models to
achieve state-of-the-art few-shot results on TVCP.

When breaking down the classification accu-
racy by the temporal validity change delta (Fig-
ure 7), MULTITASK strongly outperforms GPT-
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3.5-TURBO on both neutral (i.e., a change delta
of 0) and non-neutral (i.e., a change delta of > 0)
context statements. However, while the perfor-
mance of MULTITASK remains relatively stable
across all delta values, GPT-3.5-TURBO shows a
decrease in accuracy on non-neutral context state-
ments with a small temporal validity change delta.

0 1 2 >2

0.65

0.7

0.75

0.8

0.85

0.9 MULTITASK
GPT-3.5-TURBO

Change Delta

Ac
cu

ra
cy

Figure 7: Temporal validity change delta vs. accuracy
in MULTITASK and GPT-3.5-TURBO

Multitasking
We note a positive impact on the EM score from im-
plementing multitasking in all fine-tuned models.
To measure the statistical significance of imple-
menting multitask learning on SELFEXPLAIN, we
use a technique known as bootstrapping. We re-
sample from both classification sets 10,000 times
with replacement and evaluate the fraction of re-
sulting samples where MULTITASK outperforms
SELFEXPLAIN. We find p = 0.0012 for accuracy,
with a 95% confidence interval of [0.0036, 0.0192].
For EM, the significance is smaller at p = 0.0216,
with a 95% confidence interval of [0.0006, 0.0397],
due to the smaller number of samples, as EM is
based on target statements.

5.3 Further Analysis and Experiments

Data Quantity
To evaluate the impact of training data quantity
on classifier performance, we train the MULTI-
TASK classifier on a single train-val-test split
(80%/10%/10%) with different amounts of training
data. The results can be seen in Figure 8. At 100%
of our training data, the model begins to telegraph
a performance plateau, but does not yet appear to
be saturated.
Pre-Fine-Tuning
We experiment with pre-fine-tuning from other tem-
poral commonsense tasks by comparing the perfor-
mance of three BERT-based models. BERT-BASE-
UNCASED contains regular weights as learned dur-
ing BERT’s pre-training, while the two variants
BERT-TACOLM (Zhou et al., 2020) and BERT-
COTAK (Lynden et al., 2023) each use weights
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Figure 8: Training data quantity vs. performance met-
rics in MULTITASK

fine-tuned on their respective temporal common-
sense datasets. The pre-fine-tuned weights for both
models are published by the respective authors.
We fine-tune the models from the published check-
points on our dataset under the same conditions as
our main evaluation. The mean accuracy and EM
score for each model is listed in Table 5. Our eval-
uation shows that the use of weights fine-tuned on
other temporal commonsense tasks does not seem
to have a positive impact on the final TVCP perfor-
mance of the model. It is possible that, although the
resulting embeddings of models fine-tuned on tem-
poral commonsense tasks are more aligned with
temporal properties (Zhou et al., 2020), other im-
portant information in the embeddings is lost, lead-
ing to an overall decreased performance.

Model Acc EM
BERT-COTAK 83.2 58.2
BERT-TACOLM 83.5 59.1
BERT-BASE 84.8 61.2

Table 5: Results of pre-fine-tuning experiments

Error Patterns
In Figure 9, we compare the confusion matri-
ces between true labels and GPT-3.5-TURBO and
MULTITASK, respectively. We see that in terms of
relative performance, MULTITASK struggles more
with distinguishing between the decreased and in-
creased classes, whereas GPT-3.5-TURBO classi-
fies a rather large amount of neutral statements as
non-neutral, and vice versa.

Table 6 shows some advanced concepts of the
TVCP task that current models struggle to prop-
erly evaluate. In the first sample, LMs take the
author’s concern of being kicked out as a hint that
the activity may be cut short. Here, it is important
to remember that TVCP labels are always based
on a change in the TVDP label of st. In this case,
sf indicates that the activity of rooftop training has
been ongoing for a long time already, and the over-
all duration of the activity is likely longer than we

1431



Predicted (GPT-3.5-TURBO)

Tr
ue

 C
la

ss

Predicted (MULTITASK)

Tr
ue

 C
la

ss

Figure 9: Confusion matrices for GPT-3.5-TURBO and
MULTITASK

Sample Items ŷ y
st: Gym is not seeing me today. I’m at the
rooftop training with the sun.
sf : How long can I stay up here before they
kick me out? It’s already 5pm..

D I

st: I may just watch my show.
sf : Been waiting all week for this!

I U

st: So many repos come at once Imma save all
and read later when I have time
sf : I might get a free window of time tomorrow
to read them.

U I

Table 6: A sample set of items misclassified by both
GPT-3.5-TURBO and MULTITASK. D = decreased,
U = unchanged, I = increased.

would expect from just seeing st without context.
In the second sample, although the context con-

tains a temporal quantifier (“all week”), it does not
impact the duration for which the author will be
watching the show. LMs sometimes overvalue tem-
poral quantifiers in context statements, leading to
incorrect classifications.

The final sample shows an example of ambiguity
in temporal validity durations. The context state-
ment clearly states the planned time at which the
action in st will take place, but the TVCP label
can differ based on the initial interpretation of st.
During crowdsourcing, our participants denoted st
as being likely to take place later on the same day.
In contrast, GPT-3.5-TURBO reasons that st will
take place in the following 1-3 days, leading to the
predicted unchanged label.

These advanced concepts of temporal validity
reasoning not only require more robust and expres-
sive LMs, but may also require a labelling scale
that can express ideas like uncertainty and ambigu-
ity, as it may even be hard for humans to pinpoint
a single appropriate temporal validity duration for
them. The quantification of such error patterns and
subsequent approaches to solving them provide an
interesting direction for future work.

6 Conclusion and Future Work

In this work, we have introduced TVCP, a task
designed to reason over the impact of context on
a statement’s temporal validity duration. While
TVCP is mainly intended as a driver for future
work, we propose downstream applications by
leveraging its output as a classification signal for
TVDP. We provide a benchmark dataset for our
task, as well as a set of baseline evaluation results.
We find that the performance of fine-tuned clas-
sifiers can be consistently improved by explicitly
incorporating TVDP labels as a loss signal. De-
spite the impressive feats performed by foundation
models, we report, similar to previous work (Bian
et al., 2023; Jain et al., 2023), poor performance in
the temporal commonsense domain. These findings
show that users should carefully evaluate whether
an LLM properly understands a given task before
choosing it over smaller, fine-tuned models. We
also show that models pre-fine-tuned on existing
temporal commonsense tasks do not necessarily
lead to better performance on TVCP. Finally, we
highlight several advanced concepts of temporal
validity that may be difficult to reason over for both
LMs and human annotators.

Future work could involve using TVCP-based
classifiers to collect a larger number of temporal
context statements. A comparison of context-aware
TVDP classifiers with previous models (Almquist
and Jatowt, 2019) could emphasize the importance
of accurate semantic segmentation between target-
and context statements. Further, the use of our
dataset for generative approaches could be ex-
plored, for example, in the context of generative
adversarial networks. Currently, we only evaluate
the impact of single context statements on a spe-
cific target statement. In the future, longitudinal
timeline modelling, as applied in MoC, could be ap-
propriated to reason over larger sections of a user’s
posting history. For our multitasking implementa-
tion, directions for future work could be changes
to hyperparameters such as the weight of the auxil-
iary loss, changes to the definition of the auxiliary
task (e.g., log-scaled regression or ordinal classifi-
cation), or even entirely new auxiliary tasks. In the
realm of LLMs, further experiments with different
zero-shot or few-shot prompting strategies are also
feasible. Finally, research into models differenti-
ating temporal and stationary information could
significantly enhance the development of future
temporal validity research.
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Limitations

Although we focus on creating a reproducible
training- and evaluation environment, some vari-
ables are out of our control. For example, bit-wise
reproducibility is only guaranteed on the same
CUDA toolkit version and when executed on a
GPU with the same architecture and the same num-
ber of streaming multiprocessors. This means that
an exact reproduction of the models discussed in
this article may not be possible. Nevertheless, we
expect trends to remain the same across GPU archi-
tectures.

One of the major limitations of our approach is
likely the dataset size. Although a relatively small
dataset size is common in temporal commonsense
reasoning, we find that our model performance still
increases with the amount of training data used.
The existing synthesized context statements in our
dataset could be used to bootstrap an approach for
automatically extracting additional samples from
social media to alleviate this issue.

The data we collect is not personal in nature.
However, the possibility of latent demographic bi-
ases in our data exists, for example, regarding cer-
tain language structures or expressions used in the
creation of follow-up statements. This could lead to
the propagation of any such bias when the dataset
is used to bootstrap further data collection, which
should be considered in future work.

Our external validity is mainly threatened by
two factors. First, our context statements are crowd-
sourced. While we apply several steps to ensure the
produced context is sensible, it is unclear whether
context on certain platforms, such as on social me-
dia, manifests in similar structures as in our dataset,
with respect to traits such as sentence length, gram-
maticality, and phrasing.

Second, similar to how pre-training weights
from other temporal commonsense tasks do not
seem to improve the classifier performance on our
dataset, the weights generated as part of our train-
ing process are likely very task-specific, and may
not generalize well to other tasks or text sources.

Overall, we recommend the use of the TVCP
dataset and resulting classifiers for bootstrapping
further research into combining the duration- and
inference-based temporal validity tasks, as well as
research into directly predicting updated temporal
validity durations and improving the generalizabil-
ity to different text sources, rather than for a direct
downstream task application.
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A Twitter Collection Pipeline

To collect candidate tweets, we query the Twitter
full-archive search API with the following parame-
ters:

− p l a c e _ c o u n t r y : KP l a n g : en
− i s : r e t w e e t − i s : r e p l y
− i s : q u o t e − has : h a s h t a g s
− has : c a s h t a g s − has : l i n k s
− has : m e n t i o n s − has : media
− has : images − has : v i d e o _ l i n k

Essentially, our goal is to collect English can-
didate tweets that are self-contained. This means
we discard tweets that refer to other tweets (replies,
mentions, retweets, or quote retweets), tweets that
contain media that might provide external context
(such as videos, images, links, or other types of
media), and tweets that contain Twitter-specific
features (hashtags, cashtags). Since Twitter’s API
does not allow queries based only on these condi-
tions, we add a constraint stating that the source
country of the tweet may not be North Korea, to
minimize the impact on the generalizability of our
target statements.

From these collected tweets, we drop duplicates
and then perform basic preprocessing, including
the removal of emojis, non-ASCII characters, and
excess whitespace characters. As a sanity check,
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we remove any remaining tweets that contain http ,
@, or #. Most such tweets will already have been
filtered by the API query, so not many tweets are
lost in this step. We then apply a set of filtering
steps, which are summarized in Figure 10, and are
explored further in the remainder of this section.

Twi�er Collector

Syntac�c Filtering

Seman�c Filtering

Content-Based 
Filtering

Crowdsourced
Valida�on

Sample standalone tweets 
without Twi�er-specific features.

Filter very short/long tweets,
and tweets with specific syntax.

Filter by domain-specific pa�erns, 
remove oversampled events.

Model-Based
Ranking

Filter offensive content and spam.

Rank statements by predicted . 
Priori�ze temporal statements.

Ask crowdworkers to tag 
remaining sta�onary statements.

During Collec�on

A�er Collec�on

A�er Filtering

Figure 10: Summary of the tweet collection pipeline

A.1 Syntactic Filtering
We first filter tweets by length, removing tweets
with less than 25 or more than 200 characters. We
also remove tweets containing question marks, af-
ter noting in our initial inspection that questions
often have ambiguous temporal validity durations
that depend on the dialogue (e.g., a question might
no longer be considered temporally relevant after
it has been answered). We leave such special cases
to future work. We remove tweets starting with a
period ( .), which often manifests as ... , as well
as tweets starting with a comma (,), as they indi-
cate that a tweet may be a continuation of a prior
context. Similarly, tweets ending with a colon (:)
indicate that there is a dependence on some type of
following context that we have not captured.

A.2 Semantic Filtering
We devise a set of RegEx rules to capture specific
patterns, such as recurring word repetitions, which
were often associated with a small set of nonsensi-
cal spam in our sample dataset, such as “CAN WE
GO BACK CAN WE GO BACK CAN WE GO
BACK”. Another RegEx string is responsible for
detecting tweets containing phrases such as “Good
morning” or “Have a nice Monday”. These kinds
of expressions are commonly found on Twitter, and,
while they technically fit the task description, it is
unlikely that the temporal validity duration of such
a statement would be changed. Thus, we remove
them from our candidate statements to increase
the diversity and authenticity of generated follow-

up statements. Other RegEx strings aim to capture
common representations of threads or list iterations,
such as “1/3)” or “[2/x]”. Additionally, we remove
tweets with more than 25% quoted text from the
dataset. We find that such tweets often either con-
sist of full quotes (often associated with figures of
speech), or statements where the temporal validity
of the quote is at odds with that of the rest of the
statement.

A.3 Content-Based Filtering

To filter offensive content, we use a binary clas-
sification model based on ROBERTA, which can
be downloaded via the Huggingface transformers
library under the name “cardiffnlp/twitter-roberta-
base-offensive”. We also use the word-list-based
better-profanity Python library3. To minimize of-
fensive content in our dataset, we only keep tweets
that do not contain any profanity from the word
list and that are considered non-offensive by the
transformer model. To filter out additional spam,
we use a BERT-TINY-based binary classification
model trained on SMS spam, which can be found
under the name “mrm8488/bert-tiny-finetuned-sms-
spam-detection” in the Huggingface transformers
library. We find that most items have a relatively
low probability of being spam under this model,
with the upper fence being roughly 0.07. Thus, we
choose 0.07 as a cut-off point, removing all sam-
ples that exceed this probability. While not very
sophisticated, this model works well for detecting
texts containing hashes, Bitcoin addresses, or other
types of data that do not fit into our task description.

A.4 Model-Based Ranking

We apply an ensemble of models based on the pre-
viously mentioned COTAK (Lynden et al., 2023)
and ALMQUIST2019 (Almquist and Jatowt, 2019)
datasets. The authors of the COTAK dataset pub-
lish their model for estimating action effect du-
rations, which we retrieve from the Huggingface
transformers library under the name “mrfriedpota-
to/effect”. For the ALMQUIST2019 dataset, we
train a neural network based on the pooler output
of BERT-BASE-UNCASED, initialized with epoch
2 weights from TACOLM (Zhou et al., 2020). The
model parameters are frozen, while a single linear
layer predicting the output class is trained with a
dropout probability of 0.1. ADAMW (Loshchilov
and Hutter, 2018) was used as an optimizer with a

3https://pypi.org/project/better-profanity/
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learning rate of 1e− 5. The corresponding model
achieved 0.74 Micro-F1 and 0.69 Macro-F1 on an
80-10-10 train-val-test split after just a few epochs,
outperforming non-transformer-based methods pro-
posed in the original paper.

We rank statements by the averaged probability
that they are not classified as longer (than days)
in the COTAK-based model, and are not classified
as months or years in the ALMQUIST2019-based
model. A statement that either model classifies as
one of the classes mentioned above is automatically
assigned a score of -1. For all other statements,
the softmax scores of the remaining classes are
summed up, and the average of the two summed
probabilities is used as the score. We then sort the
resulting dataset by this score and prioritize the
highest-scoring statements for crowdsourcing.

B Crowdsourcing Setup

In this section, we provide details on the crowd-
sourcing implementation. As noted, we use Ama-
zon Mechanical Turk to collect crowdsourced data
from participants.

B.1 Temporal Validity Duration Estimation

We assume the average layman is not familiar with
the term temporal validity. Thus, we define the task
as “determining how long the information within
the tweet remains relevant after its publication”,
i.e., for how long the user would consider the tweet
timely and relevant. We provide the option no time-
sensitive information to tag any stationary state-
ments that were not removed during preprocessing.
The task is otherwise a relatively straightforward
classification task. We split our dataset into batches
of 10 samples that are grouped into a single human
intelligence task (HIT). For each HIT, we offer a
compensation of USD0.25, based on an estimated
6-9 seconds of processing time per individual state-
ment (i.e., 60-90 seconds per HIT). Figures 11 to
14 show the crowdsourcing task layout.

B.2 Follow-Up Content Generation

Compared to the temporal validity duration esti-
mation task, the follow-up content generation task
requires a much more robust understanding of the
overall concept of temporal validity and the respec-
tive semantic roles of the target- and follow-up
statements. Hence, we focus on providing a more
detailed explanation of the task. Figures 15 to 17
show the crowdsourcing task layout. The detailed

instructions tab is not listed due to its length, but
contains instructions that can also be found in the
code repository as part of the qualification test. No-
tably, we labelled the target statement as the context
tweet in this crowdsourcing task to emphasize that
participants should not alter this statement directly,
as this was a problem that occurred somewhat fre-
quently during pilot tests. This contrasts with our
formal definition of TVCP, where providing con-
text is the role of the follow-up statement.

Each HIT requires participants to provide three
follow-up statements, one for each TVCP class
(DEC, UNC, INC), as well as the corresponding
updated TVDP labels. For each HIT, we offer a
compensation of USD0.35. We base our compen-
sation on an estimated 30–40 seconds of processing
time per follow-up statement (i.e., 90–120 seconds
per HIT) due to the creative writing involved.

B.3 Discouraging Dishonest Activity

In initial pilot runs, we find that many submissions
are the result of spam, dishonest activity, or a com-
plete lack of task understanding, with many pro-
vided annotations being inexplicable by common
sense. To increase the quality of work on both
tasks, we introduced three measures.

First, we required participants to have an overall
approval rate of 90% on the platform, as well as
1,000 approved HITs. Without these requirements,
the amount of blatant spam (e.g., copy-pasted con-
tent) increases significantly.

Second, we devised qualification tests for both
tasks. Participants had to determine the temporal
validity durations for a set of sample statements
to work on the temporal validity duration estima-
tion task, and determine the correctness of follow-
up statements and their updated duration labels to
work on the follow-up content generation task.

Finally, we vet all participants’ responses indi-
vidually up to a certain threshold. For each task, we
manually verify the first 20 submissions of each an-
notator on their quality. We provide feedback and
manually adapt submissions when they are partially
incorrect. If submission quality is appropriate by
the time a participant reaches 20 submitted HITs,
we consider them as trusted, and only spot-check
every 5th submission thereafter. If submission qual-
ity does not sufficiently improve at this point, we
prohibit the participant from further working on
the task.
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Figure 11: The interface of the temporal validity duration estimation task

Figure 12: The summary section of the temporal validity duration estimation task guidelines
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Figure 13: The detailed description of the temporal validity duration estimation task guidelines

Figure 14: The examples section of the temporal validity duration estimation task guidelines
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Figure 15: The interface of the follow-up content generation task
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Figure 16: The summary section of the follow-up content generation task guidelines

Figure 17: The examples section of the follow-up content generation task guidelines
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C Evaluation Setup

C.1 Fine-Tuning Strategy

We perform several experiments to improve the
model setup for our fine-tuned baselines, BERT
and ROBERTA. First, for each model, we evaluate
two separate pipelines. The TRANSFORMERCLAS-
SIFIER pipeline concatenates both statements of a
sample before embedding them jointly, whereas
the SIAMESECLASSIFIER (Bromley et al., 1993;
Nandy et al., 2020) pipeline generates a separate
embedding for the target- and context statement,
and combines them to form a hidden representation
[hst , hsf , hst − hsf , hst ⊗ hsf ].

We perform hyperparameter testing regarding
the dropout probability before the classification
layer (0.1, 0.25, 0.5), the base learning rate (1e-2,
1e-3, 1e-4), and freezing the layers of the embed-
ding model (freeze, nofreeze). For both BERT
and ROBERTA in the freeze and nofreeze setting,
we perform grid search over the learning rate and
dropout probability.

For both hyperparameter optimization and model
training, we use the ADAMW optimizer with ε =
1e-8, β1 = 0.9, β2 = 0.999, weight_decay = 0.01
and optimize for cross-entropy loss. If the valida-
tion EM score does not exceed the best previously
observed value for 5 consecutive epochs, we stop
training early. The model epoch with the best vali-
dation EM score is used for evaluating the test set.
For hyperparameter testing, we use a predefined
train-val-test split (80%/10%/10%) rather than five-
fold cross-validation.

Table 7 shows the three best-performing config-
urations for BERT and ROBERTA in the freeze
and nofreeze settings, respectively, on the TRANS-
FORMERCLASSIFIER pipeline. Table 8 shows
the same results for the SIAMESECLASSIFIER

pipeline.
The most notable finding appears to be that

ROBERTA gets stuck in a false minimum of pre-
dicting a constant class when embedding layers are
unfrozen, leading to an accuracy of 0.33 and an
EM of 0. Hence, we freeze embedding layers for
ROBERTA in our main evaluation. ROBERTA-
based models with frozen embedding layers tend
to have a worse baseline performance, but have
a higher relative improvement when switching to
the SIAMESECLASSIFIER implementation. We hy-
pothesize that ROBERTA’s sentence embedding
token, <s>, may contain less information about the
full sequence than BERT’s [SEP] token, due to

Model DO LR #Epochs EM
ROBERTA-nofreeze 0.10 1e-4 1 0.000
ROBERTA-nofreeze 0.50 1e-3 1 0.000
ROBERTA-nofreeze 0.25 1e-3 1 0.000
ROBERTA-freeze 0.50 1e-3 15 0.238
ROBERTA-freeze 0.10 1e-4 16 0.256
ROBERTA-freeze 0.25 1e-3 14 0.262
BERT-freeze 0.10 1e-3 10 0.304
BERT-freeze 0.10 1e-4 8 0.315
BERT-freeze 0.25 1e-4 17 0.321
BERT-nofreeze 0.50 1e-4 4 0.548
BERT-nofreeze 0.10 1e-4 6 0.548
BERT-nofreeze 0.25 1e-4 5 0.613

Table 7: Best three models for each of the proposed con-
figurations in the TRANSFORMERCLASSIFIER pipeline

Model DO LR #Epoch EM
ROBERTA-nofreeze 0.10 1e-4 1 0.000
ROBERTA-nofreeze 0.50 1e-3 1 0.000
ROBERTA-nofreeze 0.25 1e-3 1 0.000
BERT-freeze 0.25 1e-4 5 0.339
BERT-freeze 0.25 1e-3 8 0.357
BERT-freeze 0.50 1e-4 9 0.387
ROBERTA-freeze 0.25 1e-4 17 0.512
ROBERTA-freeze 0.50 1e-4 13 0.518
ROBERTA-freeze 0.10 1e-4 21 0.548
BERT-nofreeze 0.50 1e-4 2 0.565
BERT-nofreeze 0.10 1e-4 4 0.577
BERT-nofreeze 0.25 1e-4 7 0.589

Table 8: Best three models for each of the proposed
configurations in the SIAMESECLASSIFIER pipeline

the lack of a next-sentence-prediction task during
pre-training.

For SELFEXPLAIN, we use the originally pro-
posed learning rate of 2e− 5 and no dropout. The
evaluation setup is otherwise identical. The final
layer of all models before classification has a di-
mensionality of 768. All models were trained and
evaluated on an MSI GeForce RTX 3080 GAMING
X TRIO 10G GPU using CUDA 11.7. Training and
evaluation of the models, as well as hyperparameter
tests, took around 15 GPU hours.

C.2 Few-Shot Prompting Strategy

For models evaluated via few-shot prompting, we
first provide the following system prompt:

“You are a language model specialized in
reasoning over temporal common sense.
You know that the temporal validity du-
ration of a statement is the duration for
which said statement contains relevant
and current information after its creation.
Information that takes place in the future,
such as "I will take a shower at 8 p.m.", is
considered valid from the point of state-
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ment creation until the information has
fully resolved.

Your task is to determine the impact of
a context statement on the temporal va-
lidity duration of a target statement. The
user will provide both statements. When
a statement can be interpreted in multiple
ways, assume the most likely interpreta-
tion is the correct one.

To solve the task effectively, follow the
steps outlined below:

1. Ignoring the context statement, de-
termine the temporal validity duration
of the target statement. Your estimate
must match one of the following labels:
[less than one minute, 1-5 minutes, 5-15
minutes, 15-45 minutes, 45 minutes - 2
hours, 2-6 hours, more than 6 hours, 1-
3 days, 3-7 days, 1-4 weeks, more than
one month]. Select exactly one class and
explain why it is the most fitting.

2. Once again, determine the most likely
of the above labels to match the temporal
validity duration of the target statement,
but this time, include any information
from the context statement that may in-
fluence the class label. Similar to step 1,
explain why you chose the class.

3. Compare the two class labels gen-
erated in step 1 and step 2 to infer the
change in the temporal validity duration.
Select the appropriate class label [de-
creased, unchanged, increased], depend-
ing on if the introduction of the context
statement decreased, remained neutral to,
or increased the temporal validity dura-
tion of the target statement. You must
surround this class label with backticks
(‘).”

After the system prompt, we provide nine sam-
ple conversation turns, each consisting of a user
prompt and a corresponding sample response by
the system. For each TVCP class, we provide three
samples. Each sample classification begins with
the following user prompt.

“Please determine the impact of the con-
text statement on the temporal validity
duration of the target statement.

Target Statement: [st]
Context Statement: [sf ]”

Afterwards, an explanation is provided by the as-
sistant role. All few-shot samples are listed below,
sorted by their target class. In the actual prompt,
we apply a fixed perturbation to the order of few-
shot samples to avoid recency bias in the model
responses. Zhao et al. (2021) show that when all
samples of a certain class are placed at the end of a
few-shot prompt, this might encourage the model
to assign said class more frequently. The temper-
ature of the models is set to 0 for all generative
experiments.

Target Statement: “My sister: We should go out
for a drink. Just ONE. Us: *end up getting drunk*”
Context Statement: “Just found out I have an early
morning meeting tomorrow”
Explanation: “The target statement suggests a
night out, which has already started. Such an occa-
sion may still continue for several hours after the
statement was made. For this reason, the most fit-
ting label is 2-6 hours. The context statement notes
an early morning meeting on the following day.
Upon finding out about this meeting, it is likely
that the author would cut their night out short. Al-
though it is not clear how much time has passed be-
tween the two statements, a reasonable assumption
is that the author would discover such a meeting
and subsequently cease the activity within the next
15-45 minutes. For this reason, the most fitting
label is 15-45 minutes. As the information in the
context statement decreases the temporal validity
duration of the target statement from 2-6 hours to
15-45 minutes, the final label is ‘decreased‘”

Target Statement: “Cab was early, so here I am at
Midway with an hour to spare. And get Dunkin’
Donuts does not actually have any donuts.”
Context Statement: “I might just take the earlier
train then, it’s a flex ticket anyway.”
Explanation: “The target statement states that
the author has an hour to spare at Midway. For
this reason, the most fitting label is 45 minutes -
2 hours. The context statement specifies that the
author could be taking an earlier train, reducing the
amount of time they have to spare at Midway. As
they do not seem to be in a hurry, the most fitting
updated label is 15-45 minutes. As the information
in the context statement decreases the temporal
validity duration of the target statement from 45
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minutes - 2 hours to 15-45 minutes, the final label
is ‘decreased‘”

Target Statement: “I have 1 extra LA Bakeshop
Cheesebread /Spanish Bread Mix. DM if you want
it.”
Context Statement: “Whoops, sorry. . . gone in
seconds.”
Explanation: “The target statement contains an
offer regarding some free bread mix. Depending
on the reach of the author, it is likely that someone
would be interested in this offer relatively quickly.
For this reason, the most fitting label is 15-45
minutes. The context statement states that the offer
was taken within seconds. If this statement can
be taken at face value, it suggests the most fitting
label is less than one minute. As the information
in the context statement decreases the temporal
validity duration of the target statement from 15-45
minutes to less than one minute, the final label is
‘decreased‘”

Target Statement: “taxi going home. back to
reality.”
Context Statement: “How can a week long
vacation feel like a single day. . . ?”
Explanation: “The target statement suggests that
the author is on a taxi ride home. The typical
duration of a taxi ride may be between 15-45
minutes. For this reason, the most fitting label is
15-45 minutes. The context statement provides
additional information about where the author
is coming from, and about the duration of their
vacation. However, the duration of the taxi ride is
unaffected by this information. For this reason,
the most fitting label is still 15-45 minutes. As
the information in the context statement does not
change the temporal validity duration of the target
statement, the final label is ‘unchanged‘”

Target Statement: “I swear I woke up with the
mindset to have a great day”
Context Statement: “Meditation really seems to
be working. . . maybe I should stick with it”
Explanation: “The target statement refers to a
mindset regarding the current day. As a result,
the most fitting label is More than 6 hours. The
context statement reveals meditation as a possible
cause for the author’s current mindset. The author
contemplates sticking with meditation to improve
their mood over a longer duration. However, the
context statement is not clear on if the author will

follow through on this thought, and the process
of meditation is not necessarily linked to the
author’s long-term feelings. For this reason, the
most fitting label is still More than 6 hours. As
the information in the context statement does not
change the temporal validity duration of the target
statement, the final label is ‘unchanged‘”

Target Statement: “BTW I’m playing splatoon
almost all day, come poke me”
Context Statement: “I can play this game for
hours. Maybe I should go pro”
Explanation: “According to the target statement,
the author plans on playing the game Splatoon
almost all day. For this reason, the most fitting
label is More than 6 hours. In the context statement,
the author further professes their enjoyment for
the game and contemplates possible future plans.
However, this information is not likely to impact
the duration for which the playsession in question
will continue. For this reason, the most fitting label
is still More than 6 hours. As the information in
the context statement does not change the temporal
validity duration of the target statement, the final
label is ‘unchanged‘”

Target Statement: “I’m watching Perfect Match
and I feel like this chic Francesca is so selflish”
Context Statement: “Why did they make her the
focus of the double runtime special???”
Explanation: “Perfect Match is a TV series with a
typical episode runtime between 38-65 minutes.
According to the target statement, the author has
already started watching the episode, so some of
the episode’s runtime has likely already passed.
For this reason, the most fitting label is 15-45
minutes. The context statement notes that the
episode is a double runtime special. In this case,
it is likely that the remaining runtime exceeds
45 minutes. For this reason, the most fitting
label is 45 minutes - 2 hours. As the information
in the context statement increases the temporal
validity duration of the target statement from 15-45
minutes to 45 minutes - 2 hours, the final label is
‘increased‘”

Target Statement: “I’m about to read some tech
news really quick then enjoy dinner.”
Context Statement: “Oh, I forgot we had
a reservation at that fancy dinner place later
today. . . I guess I’ll get by with chips for now”
Explanation: “Reading tech news and subse-
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quently enjoying dinner, as suggested by the target
statement, is likely to take longer than 45 minutes,
but unlikely to take longer than 2 hours. For this
reason, the most fitting label is 45 minutes - 2
hours. The context reveals that the author has a
dinner reservation later in the day, and will only be
eating chips for the time being. Since the dinner
is already mentioned in the target statement, it
remains valid until this event takes place. As the
reservation takes place later in the day, the most
fitting label is 2-6 hours. As the information in the
context statement increases the temporal validity
duration of the target statement from 45 minutes -
2 hours to 2-6 hours, the final label is ‘increased‘”

Target Statement: “just patiently waiting for my
bff to get here”
Context Statement: “He’ll be flying in from the
states next Monday. So excited!!!”
Explanation: “The target statement states that
the author is waiting on the arrival of their bff.
With no further information, it is reasonable this
refers to an imminent situation. For this reason,
the most fitting label is 15-45 minutes. The context
statement reveals that the author’s BFF is in fact
flying in from abroad in the following week, thus,
the event is not imminent. Since the context
statement mentions this event takes place on the
next Monday, it is not possible for more than 7
full days to pass before this event occurs. As a
result, the most fitting label is 3-7 days. As the
information in the context statement increases the
temporal validity duration of the target statement
from 15-45 minutes to 3-7 days, the final label is
‘increased‘”

1446


