@inproceedings{chen-etal-2024-self-para,
title = "Self-Para-Consistency: Improving Reasoning Tasks at Low Cost for Large Language Models",
author = "Chen, Wenqing and
Wang, Weicheng and
Chu, Zhixuan and
Ren, Kui and
Zheng, Zibin and
Lu, Zhichao",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.842",
doi = "10.18653/v1/2024.findings-acl.842",
pages = "14162--14167",
abstract = "Recently, the self-consistency decoding strategy has shown the ability to improve performance for complex reasoning tasks with large language models (LLMs). However, the costs may be high because the sampling process of the strategy generates some low-probability text, resulting in low-quality reasoning paths. As a consequence, it requires a relatively large sampling number to obtain good aggregation performance. In this paper, we propose an alternative strategy, \textit{self-para-consistency}. It first generates multiple paraphrases for each test question, then generates reasoning paths for the original and all the paraphrased questions based on greedy decoding, and finally selects the most consistent answer. Since all the candidate paths have relatively high probabilities, the sampling number could be much smaller than the self-consistency strategy. Extensive experiments on complex reasoning datasets demonstrate the effectiveness of our method in reducing the sampling number.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2024-self-para">
<titleInfo>
<title>Self-Para-Consistency: Improving Reasoning Tasks at Low Cost for Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenqing</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weicheng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhixuan</namePart>
<namePart type="family">Chu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kui</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zibin</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhichao</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, the self-consistency decoding strategy has shown the ability to improve performance for complex reasoning tasks with large language models (LLMs). However, the costs may be high because the sampling process of the strategy generates some low-probability text, resulting in low-quality reasoning paths. As a consequence, it requires a relatively large sampling number to obtain good aggregation performance. In this paper, we propose an alternative strategy, self-para-consistency. It first generates multiple paraphrases for each test question, then generates reasoning paths for the original and all the paraphrased questions based on greedy decoding, and finally selects the most consistent answer. Since all the candidate paths have relatively high probabilities, the sampling number could be much smaller than the self-consistency strategy. Extensive experiments on complex reasoning datasets demonstrate the effectiveness of our method in reducing the sampling number.</abstract>
<identifier type="citekey">chen-etal-2024-self-para</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.842</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.842</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>14162</start>
<end>14167</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Self-Para-Consistency: Improving Reasoning Tasks at Low Cost for Large Language Models
%A Chen, Wenqing
%A Wang, Weicheng
%A Chu, Zhixuan
%A Ren, Kui
%A Zheng, Zibin
%A Lu, Zhichao
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F chen-etal-2024-self-para
%X Recently, the self-consistency decoding strategy has shown the ability to improve performance for complex reasoning tasks with large language models (LLMs). However, the costs may be high because the sampling process of the strategy generates some low-probability text, resulting in low-quality reasoning paths. As a consequence, it requires a relatively large sampling number to obtain good aggregation performance. In this paper, we propose an alternative strategy, self-para-consistency. It first generates multiple paraphrases for each test question, then generates reasoning paths for the original and all the paraphrased questions based on greedy decoding, and finally selects the most consistent answer. Since all the candidate paths have relatively high probabilities, the sampling number could be much smaller than the self-consistency strategy. Extensive experiments on complex reasoning datasets demonstrate the effectiveness of our method in reducing the sampling number.
%R 10.18653/v1/2024.findings-acl.842
%U https://aclanthology.org/2024.findings-acl.842
%U https://doi.org/10.18653/v1/2024.findings-acl.842
%P 14162-14167
Markdown (Informal)
[Self-Para-Consistency: Improving Reasoning Tasks at Low Cost for Large Language Models](https://aclanthology.org/2024.findings-acl.842) (Chen et al., Findings 2024)
ACL