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Abstract

It is very challenging to curate a dataset
for language-specific knowledge and common
sense in order to evaluate natural language un-
derstanding capabilities of language models.
Due to the limitation in the availability of an-
notators, most current multilingual datasets are
created through translation, which cannot eval-
uate such language-specific aspects. Therefore,
we propose Multilingual CommonsenseQA
(mCSQA) based on the construction process
of CSQA but leveraging language models for a
more efficient construction, e.g., by asking LM
to generate questions/answers, refine answers
and verify QAs followed by reduced human
efforts for verification. Constructed dataset
is a benchmark for cross-lingual language-
transfer capabilities of multilingual LMs, and
experimental results showed high language-
transfer capabilities for questions that LMs
could easily solve, but lower transfer capabil-
ities for questions requiring deep knowledge
or commonsense. This highlights the neces-
sity of language-specific datasets for evalua-
tion and training. Finally, our method demon-
strated that multilingual LMs could create QA
including language-specific knowledge, sig-
nificantly reducing the dataset creation cost
compared to manual creation. The datasets
are available at https://huggingface.co/
datasets/yusuke1997/mCSQA.

1 Introduction

Can you choose the correct answer in Table 1?
Each choice is semantically very close, making it
difficult for non-native speakers to distinguish them.
However, native speakers who have language-
specific commonsense and knowledge can choose
the most plausible choice considering subtle nu-
ances. Despite the need to consider different back-
grounds for each language, the datasets to evaluate
the natural language understanding (NLU) capa-
bilities of language models (LMs) are mostly for
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Figure 1: The comparison of the dataset creation process
for mCSQA and (J) CSQA includes two key changes for
efficient and low-cost creation of multilingual datasets.
First, the question generation process shifts from human
annotators to an LM. Second, an LM assists humans for
the quality verification process.

Japanese Question (Translated to English)

Q:お年寄りは？
(Who is the elderly person?)

(a)わし
(me)

(b)わたし
(me)

(c)ぼく
(me)

(d)おれ
(me)

(e)うち
(me)

English Question (Translated to Japanese)

Q: How do we make a cake?
(ケーキを作るにはどうする？)

(a) roast
(焼く)
(burn)

(b) broil
(焼く)
(burn)

(c) grill
(焼く)
(burn)

(d) toast
(焼く)
(burn)

(e) bake
(焼く)
(burn)

Table 1: Examples require language-specific knowledge.
They cannot be solved without such knowledge, as the
translations consolidate the nuances into a single word.

a few major languages such as English, and thus,
many languages lack such datasets. When focusing
on the cross-lingual capability of LMs, datasets
created from scratch in multiple languages are lim-
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ited, and currently, evaluations mostly use datasets
created through translation. However, as can be
seen from the example in Table 1, datasets cre-
ated through translation cannot accurately evalu-
ate language-specific commonsense or knowledge.
Therefore, it is necessary to create datasets for each
language from scratch, but the manual creation of
such datasets is limited by the availability of anno-
tators and financial costs.

To tackle this problem, as shown in Figure 1,
we propose a method to efficiently create multi-
lingual NLU datasets from multilingual resources
by replacing some of the manual annotation pro-
cesses with generative multilingual LMs. In this
study, we focus on CommonsenseQA (CSQA) (Tal-
mor et al., 2019), a dataset for evaluating com-
monsense reasoning capabilities within NLU eval-
uations. CSQA is a major commonsense reason-
ing Question-Answering dataset manually created
from the multilingual knowledge base Concept-
Net (Speer et al., 2017). However, due to such
limitations, CSQA has been created from scratch
only in English and Japanese, JCommonsenseQA
(JCSQA) (Kurihara et al., 2022). Therefore, we
create a Multilingual CommonsenseQA (mCSQA)
that extends CSQA to eight languages1 using our
proposed method.

Furthermore, we evaluated the cross-lingual
language-transfer capabilities of multilingual LMs
focusing on language-specific common sense and
knowledge using mCSQA. The results showed high
language-transfer capabilities for questions that
LMs could easily solve, but lower transfer capa-
bilities for questions requiring deep knowledge
or commonsense. The total cost per question in
mCSQA was reduced to one-hundredth of that for
CSQA.

To summarize, our contributions are as follows:

• We propose an efficient and low-cost method
for creating NLU datasets by generative mul-
tilingual LMs.

• We demonstrate the potential effectiveness of
using multilingual LMs for creating datasets
from multilingual resources.

• mCSQA makes it possible to analyze the
cross-linguistic commonsense understanding
capabilities and transfer performance from
each language beyond English.

1English (en), Japanese (ja), Chinese (zh), German (de),
Portuguese (pt), Dutch (nl), French (fr), Russian (ru)

• The analysis revealed that, when focusing on
language transfer capabilities using mCSQA,
we identified cases where language-specific
knowledge is required and cases where it is
not, thereby confirming the need for non-
translated language-specific datasets.

2 Background and Related Work

Commonsense reasoning task This task evalu-
ates how an LM can understand and infer object
recognition, visual information, and cultural or so-
cietal common sense, which are not typically de-
scribed in textual information. CSQA is a multiple-
choice question task that asks for the most plausi-
ble choice as an answer with some variants: JC-
SQA is in Japanese, CommonsenseQA 2.0 (Tal-
mor et al., 2021) is a more challenging dataset,
ECQA (Aggarwal et al., 2021) requires explaining
the process of deriving an answer, etc. There exist
other types of commonsense tasks: COPA (Roem-
mele et al., 2011) and BalancedCOPA (Kavumba
et al., 2019) ask about causal relationships between
everyday events; SocialIQA (Sap et al., 2019b)
asks about social common sense; PIQA (Bisk
et al., 2020) evaluates procedural knowledge; Hot-
potQA (Yang et al., 2018) requires multi-hop infer-
ence; DROP (Dua et al., 2019) captures arithmetic
operation capabilities; and tasks like understand-
ing language information (Liu et al., 2022b; Ko-
cijan et al., 2023; Sakaguchi et al., 2021; Wang
et al., 2019), understanding causal relationships
within documents (Mostafazadeh et al., 2020, 2016;
Zhang et al., 2018; Huang et al., 2019; Oster-
mann et al., 2018; Smirnov, 2019), and Common-
Gen (Lin et al., 2020), which asks to generate com-
mon sentences from given keywords. The above
datasets primarily focus on English, but there exist
datasets in Japanese (Omura et al., 2020; Takahashi
et al., 2019; Hayashibe, 2020), Chinese (Xu et al.,
2021, 2020; Wang et al., 2022), Russian (Shav-
rina et al., 2020; Taktasheva et al., 2022), and
Indonesian (Koto et al., 2022). For multilingual
datasets, most are extended versions of existing
ones through translation, such as X-COPA (Ponti
et al., 2020) from COPA, X-CSQA (Lin et al.,
2021) from CSQA, and X-CODAH (Lin et al.,
2021) from CODAH (Chen et al., 2019). A few
datasets, such as TyDiQA (Clark et al., 2020), are
created for each language from scratch.

Multilingual datasets When focusing on the
evaluation of multilingual performance of LMs,
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Methods Knowledge Alignment Costs

By translation ✗ ✓ ✓
Compilation of similar tasks ✓ ✗ ✓
From multilingual resources ✓ ✓ ✗

Ours ✓ ✓ ✓

Table 2: Categorize the multilingual datasets creation
methods.

the evaluation datasets are almost exclusively cre-
ated through three methods, as shown in Table 2:
(1) Translation from existing datasets in a major
language, e.g., English (Lin et al., 2021; Ponti
et al., 2020; Conneau et al., 2018; Artetxe et al.,
2020; Yang et al., 2019); (2) Compilation of sim-
ilar tasks across multiple languages (Zhang et al.,
2023c; Hu et al., 2023; Adelani et al., 2022; Roy
et al., 2020; Malmasi and Dras, 2015); (3) Cre-
ation from multilingual resources following the
same dataset creation process (Keung et al., 2020;
Huang et al., 2020; Buchholz and Marsi, 2006;
Clark et al., 2020; Schwenk and Li, 2018; Kabra
et al., 2023). However, (1) translated datasets of-
ten do not account for language-specific culture,
knowledge, common sense, or linguistic phenom-
ena, leading to a bias towards the background of the
source language (Hu et al., 2021; Lin et al., 2021;
Acharya et al., 2020; Clark et al., 2020; Park et al.,
2021; Kurihara et al., 2022). (2) Simply compiling
datasets curated for each individual language could
allow the evaluation of language-specific knowl-
edge and common sense. However, it is difficult
to align tasks across languages since most tasks
differ in their creation methods data sources or
philosophies. Thus, it just leads to evaluating the
transfer capability among comparable tasks, and
not evaluating the true transfer capabilities across
languages. Therefore, (3) only the datasets created
from multilingual resources can enable the evalu-
ation of language transfer capability, considering
the differences in language-specific knowledge and
common sense. Nevertheless, the manual creation
of such datasets is limited by the availability of
annotators and financial costs.

Dataset creation with LMs The superior per-
formance of generative language models allows
to create datasets automatically. SWAG (Zellers
et al., 2018) and HellaSwag (Zellers et al., 2019)
have created answer choice options through the out-
put of LMs. Such efforts have also been extended
to use LMs for data augmentation (Staliūnaitė

et al., 2021; Kumar et al., 2019, 2020; Lee et al.,
2021). WANLI (Liu et al., 2022a), created from
MNLI (Williams et al., 2018), employs GPT-
3 (Brown et al., 2020) for adversarial data aug-
mentation with manual checks to create chal-
lenging datasets. Some studies propose methods
to manually check quality of LM generation re-
sults (Tekiroğlu et al., 2020; Yuan et al., 2021;
Wiegreffe et al., 2022; Wang et al., 2021a; Li et al.,
2023). Additionally, there are attempts to cre-
ate datasets from scratch with emergent abilities
of LMs, without using any examples (He et al.,
2022; Wang et al., 2021b; Schick and Schütze,
2021; Meng et al., 2022; Ye et al., 2022). How-
ever, these studies have primarily focused on a sin-
gle language, e.g., English. Recently, the outputs
of language models themselves have been used
to create datasets (Honovich et al., 2023; Shao
et al., 2023; Sun et al., 2023; Peng et al., 2023)
for instruction-tuning (Wei et al., 2022a). Tar-
GEN (Gupta et al., 2023) employs a single lan-
guage model and splits the data generation process
into multiple steps, inputting the suitable prompt
for each step to ensure data diversity and reliability.
Putri et al. (2024) focus on middle-resource (In-
donesian) and low-resource (Sundanese) languages,
and investigate whether LLMs can create culturally
aware commonsense questions by comparing trans-
lation datasets and those generated by LLMs from
scratch.

3 Datasets Creation

Our mCSQA construction involves three main
steps (see Figure 2): extraction of sub-graphs from
ConceptNet, creation of question and choice pairs
with LMs, and verification of their quality by both
LMs and humans. We basically follow the creation
processes of CSQA and JCSQA, but modified to
allow for unified processing to support multiple
languages.

3.1 Extract Sub-Graphs from ConceptNet

ConceptNet is a graph knowledge base defined as
a tuple, G = (C,R, T ), where C denotes a set of
concept entities, R denotes a set of relations and T
denotes a set of triples. Each triple is represented
as (s, r, t) ∈ T , where s and t ∈ C are the source
and target concept entities, respectively, and r ∈ R
is the relation, and carry commonsense knowledge
such as “(student, CapableOf, forget to do home-
work)”.
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Figure 2: Creation process of mCSQA

We extract subgraphs from ConceptNet, as per
Figure 2-(a), that have three distinct concept enti-
ties derived from queries of concept entities and
relations for each language. CSQA uses only for-
ward queries (s, r, ?), but, similar to JCSQA, we
also utilize backward queries (?, r, t). We name
this subgraph as Question Sets (QSs). After extrac-
tion, we filter the QSs like CSQA and JCSQA, and
applies unified filtering in mCSQA as follows:

1. Similar to CSQA, we retain only QSs that
contain any types of the 22 relations2.

2. We filter out QSs where any of the concept
entities consist of more than four words or
only a single character3.

3. We remove QSs where any pair of concept en-
tities is connected by a ‘Synonym’ relation in
ConceptNet, or where entities are substrings
of each other.

After filtering with the above settings, we randomly
selected 6,000 QSs for each language4.

3.2 Create Questions with LMs
We employ the generative multilingual language
model GPT-3.55 (Ouyang et al., 2022) to generate
questions automatically to eliminate the human
labor as done in CSQA and JCSQA.

2Antonym, AtLocation, CapableOf, Causes, CausesDe-
sire, DefinedAs, DerivedFrom, Desires, DistinctFrom, Ety-
mologicallyDerivedFrom, HasA, HasFirstSubevent, HasLast-
Subevent, HasPrerequisite, HasProperty, InstanceOf, MadeOf,
MotivatedByGoal, NotDesires, PartOf, SymbolOf, UsedFor

3Unsegmented languages, like Japanese, are segmented by
morphology in ConceptNet, so we can apply similar filtering.

4For French and Russian, the number of QSs did not reach
6,000, so we used all available QSs, totaling 4,125 and 3,901,
respectively.

5We used gpt-3.5-turbo-1106.

step temperature top_p seed

Creating question sentences 0.0 0.0 0
Refining question sentences 0.7 0.5 0
Adding additional distractors 1.2 0.7 0

Table 3: The hyper-parameters for each step

Our construction process comprises three steps
of ‘question generation’, ‘question refinement’ and
‘distractor augmentation’ as shown in Figure 2-(b).
Our step differs from CSQA in the refinement step
since we need to improve the question generation
from LM.

We designed prompts and tuned optimized hyper-
parameters for each step for LMs. The details of
the prompts are described in Appendix D, and the
hyper-parameters are shown in Table 3.

Creating question sentences For each QS, we
generated question sentences by LMs where, for
each of the three target concept entities, only one
serves as the answer. The prompt for LMs was in-
spired by the JCSQA filtering process for question
creation in which systematic filtering uses textual
information. The key instructions are as follows:

• Avoid including words of the target entities in
the question sentence.

• Avoid using superficial information such as
character count.

• End the sentence with a question mark (?).

• Be an objective question sentence.

• Consists of only one sentence.

After generating questions with LMs, we re-
moved any question sentences that do not follow
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en ja zh de pt nl fr ru

Total 14,722 15,695 17,254 16,542 16,679 15,992 10,770 10,215
Refined 3,654 12,007 6,534 765 585 7,927 3,109 6,734

pct. (%) 24.82 76.50 37.87 4.63 3.51 49.57 28.87 65.92

Table 4: The percentage of sentences refined

these instructions or contain inappropriate expres-
sions through pattern matching6.

Refining question sentences LMs do not always
generate appropriate outputs resulting in unnatu-
ral expressions or degeneration (Liu et al., 2022c;
Honovich et al., 2023; Raunak et al., 2023; Lin
et al., 2020; Madaan et al., 2023). Hence, inspired
by the idea of output refinement (Liu et al., 2022c;
Raunak et al., 2023; Madaan et al., 2023), we refine
unnatural generated question sentences into natural
ones using the LM again and remove inappropriate
questions as done in the previous step. Table 4
shows the percentage of sentence refinement.

Adding additional distractors We added addi-
tional incorrect choices to make the task more diffi-
cult as done in CSQA and JCSQA, but we leverage
LM, not crowd workers, to formulate distractors
that seemed plausible or related to the questions.
Here, we asked LM to generate two plausible dis-
tractors given the three choices of a question with-
out question itself in order to separate the ques-
tion generation and answering capabilities of LMs.
There is a risk of generating duplicated choices or
adding correct choices since question sentence it-
self is not fed in this process. Hence, we remove
such questions through manual verification in Sec-
tion 3.3.

3.3 Question Quality Verification by LMs and
Humans

In CSQA and JCSQA, every question is manually
verified to remove low-quality questions, such as
those with multiple correct answers or without cor-
rect answers in the choices. However, due to the
large number of questions, manually verifying ev-
ery question is not practical. Thus, we leverage
simple active learning methodologies for annota-
tion (Liu et al., 2022a; Bartolo et al., 2022; Li et al.,
2023; Kratzwald et al., 2020). As shown in Fig-
ure 2-(c), initially, the LM verifies whether the
questions can be answered or not, and only those

6We detected inappropriate expressions using https://
platform.openai.com/docs/guides/moderation.

Train Dev Test

Total Easy Hard Total Easy Hard Total

English 10,910 1,071 292 1,363 1,071 292 1,363
Japanese 11,696 1,117 344 1,461 1,117 344 1,461
Chinese 12,159 972 546 1,518 972 546 1,518
German 12,504 1,279 283 1,562 1,279 283 1,562
Portuguese 12,659 1,234 348 1,582 1,234 348 1,582
Dutch 12,215 1,255 271 1,526 1,255 271 1,526
French 8,047 786 219 1,005 786 219 1,005
Russian 6,623 445 382 827 445 382 827

Table 5: The statistics of mCSQA

questions that the LM cannot answer are manually
verified.

Verification by LMs The original questions can
be categorized into three types: those questions 1)
which are correctly answerable by LMs, 2) which
are wrongly answered by LMs, but humans can
choose the correct one, 3) which are not answer-
able either by LMs or humans due to flaws in the
question. Therefore, first, we identify the set of
questions LMs can answer, and then manually ver-
ify the questions that LMs could not answer cor-
rectly to remove flawed questions.

Verification by Humans We hired two crowd
workers per language via Amazon Mechanical Turk
(MTurk)7. The crowd workers were presented with
the question sentence, choices, and answer, and
they were asked to verify if the answer could be
concluded from the question and choices. We re-
tained only those questions on which all crowd
workers agreed.

3.4 Data Splitting and Statistics

Similar to CSQA and JCSQA, we randomly split
the data for each language into training, develop-
ment, and test sets with an 80/10/10 split. The
mCSQA is evaluated by accuracy following the
standard practice in CSQA and JCSQA. Addition-
ally, in Section 3.3, questions that LMs could an-
swer correctly are categorized as Easy, and those
answerable by human judgment are categorized as
Hard for development and test sets.

Table 5 shows the number of questions per lan-
guage and split, and Figure 3 shows the percentage
filtered at each step. The total cost per question is
0.002 dollars for mCSQA compared to 0.33 dol-
lars for CSQA, reducing the cost to less than one

7There are workers for each language on MTurk (Pavlick
et al., 2014). We hired workers who have an approval rate
greater than 90% with at least 50 approved HITs.
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Figure 3: The percentage of sentences processed at each
step. Easy and Hard were adopted for the dataset, while
others were removed during the generation process.
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Figure 4: The cost details for each language and step.

hundredth. Figure 4 shows the detailed costs.
Appendix B discusses more detailed statistics,

and Figure 11 shows examples of mCSQA.

4 Evaluation for mCSQA

We verify that the mCSQA dataset is meaningful
for evaluating the common sense reasoning capa-
bility of LMs by using various multilingual LMs.

4.1 Experimental Setup

Settings for LMs We used mBERT (Devlin et al.,
2019), XLM-100 (Conneau and Lample, 2019),
XLM-R (Conneau et al., 2020), and mDeBERTa-
v3 (He et al., 2023) as encoder-based multilingual
LMs, Llama2-70B (Touvron et al., 2023), GPT-
3.5 (Ouyang et al., 2022), and GPT-4 (OpenAI
et al., 2024) as decoder-based multilingual LMs for
the experiments. Decoder-based LMs inferred with
0-shot and 3-shot settings. For detailed experimen-
tal settings, please refer to the Appendix A.

Settings for human baseline We followed the
CSQA setting and randomly selected 100 questions
each from the validation and test data for every

language to measure the human baseline. We hired
five new crowd-workers per language on MTurk.
The answers were decided by a majority vote for
each question.

4.2 Evaluation Results

Table 6 shows the main results. Focusing on the
performance of zero-shot setting of GPT-3.5, which
was used for dataset creation, we find that its per-
formance is equivalent to or worse than that of En-
coder models like XLM-RLARGE and mDeBERTa-
v3 except for German and Russian. When compar-
ing the results of GPT-3.5 with GPT-4, the perfor-
mance of GPT-3.5 is inferior for most languages
to that of GPT-4. This indicates that the questions
GPT-3.5 failed to answer correctly are those that
cannot be answered by the knowledge of GPT-3.5,
and it implies that the root cause is a lack of knowl-
edge or reasoning capability of GPT-3.5. Further-
more, focusing on Decoder-based models, the re-
sults are better in the 3-shot setting than in the
0-shot in most cases. This trend was observed even
with the GPT-3.5 used for question creation.

The results show that the prompting technique
is effective for mCSQA in exploiting the reason-
ing capabilities of decoder-based LMs. The trend
is similar to other commonsense reasoning tasks
like CSQA (Qin et al., 2023; Chowdhery et al.,
2023; Wei et al., 2022c; Brown et al., 2020; Dou
and Peng, 2022), indicating that mCSQA can be
equally effective as a dataset for commonsense rea-
soning tasks. Finally, when compared to the human
baseline, there is a significant gap in the results of
all LMs. Thus, it can be said that even when using
LMs for question creation, it is possible to create a
dataset with sufficient quality and difficulty for the
LMs themselves.

5 Discussion

5.1 Comparison of Easy vs. Hard

We compare the accuracy of Easy and Hard sets
for more fine-grained analysis. Figure 5 shows the
results in the test split. GPT-3.5 and GPT-4 could
choose the answer correctly in most cases for the
Easy sets, but the accuracy is lower in the Hard sets
with a significant gap when compared with human
results; note that GPT-3.5 cannot answer there sets
during the dataset creation. The other LMs also
show a gap in evaluation accuracy with results for
Hard sets being lower than those for Easy ones.

These results, specifically the trend observed
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English Japanese Chinese German Portuguese Dutch French Russian

dev test dev test dev test dev test dev test dev test dev test dev test

Human (Rand. 100 sent.) 87.0 93.0 89.0 95.0 91.0 87.0 96.0 96.0 93.0 93.0 98.0 97.0 96.0 92.0 87.0 94.0

mBERT-cased 60.6 61.3 66.0 63.5 65.9 63.5 58.6 57.9 65.2 61.5 54.8 57.8 46.3 47.3 32.2 31.3
mBERT-uncased 63.4 65.2 61.3 58.9 64.0 62.0 59.3 60.3 67.6 63.9 57.3 56.9 51.1 52.4 32.5 34.0
XLM-100 57.2 59.0 60.2 58.8 60.0 61.5 54.4 54.7 62.7 59.5 52.2 52.0 35.3 35.0 23.2 26.0
XLM-RBASE 68.0 69.1 68.5 66.2 69.8 68.3 63.9 62.8 69.5 67.3 62.0 64.0 47.6 45.5 36.9 37.0
XLM-RLARGE 77.2 77.5 75.7 72.6 75.0 74.1 76.2 75.4 79.0 76.4 73.0 74.7 62.0 62.3 48.9 49.5
mDeBERTa-v3 76.6 79.2 77.2 74.1 74.6 72.0 75.7 77.5 78.3 78.2 72.7 74.9 62.1 62.4 51.3 49.9

Llama2-70B (0-shot) 48.1 47.7 25.6 24.8 26.5 25.9 32.5 32.7 38.7 37.6 40.9 39.4 42.3 44.1 23.5 22.9
Llama2-70B (3-shot) 57.1 55.5 47.4 46.6 33.3 30.2 63.1 62.9 65.0 63.7 60.8 62.3 57.8 56.7 30.8 32.3
GPT-3.5 (0-shot) 76.7 77.0 76.3 76.7 64.0 63.6 81.3 81.4 77.9 77.7 82.1 81.5 78.6 77.1 53.3 53.0
GPT-3.5 (3-shot) 77.2 78.4 77.5 77.0 65.3 64.3 83.2 81.4 78.5 78.0 81.8 80.5 78.4 76.5 54.1 50.1
GPT-4 (0-shot) 80.9 80.9 78.4 77.2 66.0 65.6 81.0 81.0 78.6 77.6 83.4 81.5 78.8 77.0 49.9 47.8
GPT-4 (3-shot) 80.5 81.0 78.5 77.5 67.2 66.9 82.6 81.6 80.5 78.8 83.3 81.6 79.0 77.4 50.1 48.9

Table 6: The results on mCSQA (acc. %)
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Figure 5: Comparison of the evaluation accuracy between Easy and Hard sets.

with GPT-3.5, show that even if LMs can create
questions, it does not necessarily mean that they
can answer them, and it entails that the question
creation and answering are totally different capa-
bilities. Therefore, we conclude that LMs can sub-
stitute for humans in parts of dataset creation pro-
cesses from structured data and common sense rea-
soning task creations.

5.2 Evaluation of Multilingual LMs’
Cross-Lingual Transfer Capabilities

The cross-lingual transfer performance of multi-
lingual LMs is often evaluated from English to
other language directions due to linguistic resource
reasons. The X-CSQA dataset (Lin et al., 2021),
which consists solely of machine-translated ques-
tions from CSQA’s development and test splits,
captures only the one-way cross-lingual transfer

performance of LMs that were trained in English to
evaluate their performance in other languages. In
contrast, mCSQA supports the evaluation of cross-
lingual language transfer performance in any direc-
tions among multilingual LMs that were trained in
each of the eight languages.

Figure 6 shows the results of the multilingual
LM, XLM-RLARGE, which was fine-tuned in each
of the eight languages separately and then evaluated
across all eight languages on mCSQA, using the
same settings as in Table 10. The results from Fig-
ure 6 show that, regardless of the language in which
they were trained, cross-lingual transfer abilities
are observed in most cases for any languages given
the relative lower drop of performance when com-
pared with the monolingual performance. More-
over, in the Easy sets, the drop is within 10% for
most language pairs, while in the Hard sets, it ex-
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Figure 6: The language transfer performance of
XLM-RLARGE. The y-axis indicates the languages in
which the model was fine-tuned, while the x-axis indi-
cates the languages used for evaluation. It shows the
percentage of performance achieved when compared
with the model trained and evaluated in the same lan-
guage.

ceeds 20%. This indicates that questions that are
relatively easy to judge (Easy sets) facilitate the lan-
guage transfer capability, but questions requiring
deep background knowledge (Hard sets) necessi-
tate language-specific training and the development
of LMs.

5.3 Which is Better: Monolingual Fine-tuning
or Multilingual Fine-tuning?

Some studies (Tran and Bisazza, 2019; Dhamecha
et al., 2021; Trotta et al., 2021; Barbieri et al., 2022;
Portelli et al., 2023) reported that multilingual fine-
tuning could improve a part of NLU task perfor-
mance more than monolingual tuning alone. On
the other hand, several studies (Tsai et al., 2019;
Kondratyuk, 2019; Rønningstad, 2023; Kondratyuk
and Straka, 2019) reported that it did not always
improve performance in some tasks. We analyzed
whether multilingual fine-tuning is effective for
commonsense reasoning tasks through mCSQA.
We used the whole shuffled training split data in all
languages and fine-tuned XLM-RLARGE with the
same setting as in Table 10. Table 7 compares the
accuracy between monolingual fine-tuning, where
tuning and evaluation are in the same language, and
multilingual fine-tuning, where tuning is performed
for all languages, evaluated for each language’s
accuracy score. These results show that most lan-
guages observed improvements, especially in all
cases in Easy sets. However, in Hard sets, some
cases observed a decline in performance compared
to the monolingual setting. Therefore, while train-
ing in a multilingual setting generally promotes

Test (%)

en ja zh de pt nl fr ru

Total

Mono. 77.5 72.6 74.1 75.4 76.4 74.7 62.3 49.5
Multi. 81.4 74.6 74.2 77.8 79.9 77.0 65.7 54.2
∆ 3.9 2.0 0.1 2.4 3.5 2.3 2.4 4.7

Unseen 80.0 71.8 71.3 76.6 76.0 76.6 64.9 51.8

Easy

Mono. 82.8 81.9 85.3 81.2 83.8 82.5 68.4 60.0
Multi. 86.5 83.4 85.7 84.4 86.6 84.9 73.2 70.1
∆ 3.7 2.5 0.4 3.2 2.8 2.4 4.8 10.1

Unseen 85.4 81.2 84.1 83.4 83.1 84.1 71.8 68.8

Hard

Mono. 58.6 42.4 54.6 49.1 50.6 37.6 39.7 35.1
Multi. 62.7 45.9 53.7 47.7 56.0 40.2 38.8 35.6
∆ 4.1 3.5 -0.9 -1.4 5.4 3.6 -0.9 0.5

Unseen 60.3 41.0 48.7 45.9 51.2 39.1 38.6 31.7

Table 7: The performance comparison of XLM-RLARGE
on test data for each language when trained on mono-
lingual training data versus multilingual data. ∆ means
the differences in performance between the two settings.
Unseen means the accuracy when trained on all training
data except for the evaluation language.

accuracy improvement, multilingual training might
lead to the loss of language-specific commonsense
information for questions requiring more human
commonsense. This analysis complements the pre-
vious reports (Dhamecha et al., 2021; Zhang et al.,
2023a; Hu et al., 2021; Mueller et al., 2020) on the
successes and failures of multilingual training.

Furthermore, Table 7 shows the evaluation re-
sults of cross-lingual performance in the unseen
setting, where the model was not trained on the lan-
guage for evaluation data. While some languages
outperform the monolingual setting, overall results
indicate that training with target language data con-
sistently yields better outcomes. This suggests that
target language data acts as the secret sauce for en-
hancing NLU performance. Therefore, it suggests
that for language-specific deep knowledge and cul-
tural understanding, language-transfer capability
alone is insufficient, and training with datasets fo-
cused on language-specific knowledge is necessary.

5.4 Case Study for Improvement through
Few-Shot Learning

As shown in Figure 5, GPT-3.5 correctly answers
most questions in the Easy setting of mCSQA, but
in the Hard setting, it fails to answer most questions
in the 0-shot setting. This is because GPT-3.5 is
used for quality filtering of mCSQA in Section 3.3,
making it inherently unable to answer the questions
in the Hard setting in the 0-shot setting. However,
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Question Answer 0-shot 3-shot

Which types of aquatic animals are commonly found in the open sea? e a e(a) marine life, (b) earth, (c) waves, (d) coastline, (e) oceanic fish

What is the purpose of using hand gestures while driving?
b c b(a) determine what caused noise, (b) giving signal to, (c) checking for any potential dangers,

(d) warning, (e) investigating the source of the noise

Table 8: Examples of GPT-3.5 correctly answering in a 3-shot setting. In the top example, a 0-shot setting would
choose “marine life”, but considering the phrase “in the open sea” in the question, the answer should be narrowed
down to “oceanic fish”. On the other hand, in the bottom example, it chooses “checking for any potential dangers”,
but “hand gestures while driving” can include broader, non-dangerous signals such as thank-you gestures. Therefore,
the broader “giving signal to” is correct. In this way, the 3-shot setting tended to allow for appropriately granular
answers that matched the intent of the question.

in the 3-shot setting, it shows improvement for
some questions. Table 8 shows examples of ques-
tions correctly answered in the 3-shot setting. Both
examples in Table 8 are mainly due to the granu-
larity of the answers. The 3-shot setting promotes
answers at an appropriate granularity for questions
that are difficult to judge due to inclusive relation-
ships.

In the top example in Table 8, careful reading
of the questions narrows down the answer choices.
On the other hand, in the bottom example, consider-
ing various common knowledge in daily life helps
to choose the most appropriate answer. Similar
characteristics were observed for other languages
as well. For more details, qualitative analyses of
the mCSQA dataset are described in Appendix B.

6 Conclusion and Future Directions

We proposed an efficient and low-cost method for
creating NLU datasets from structured data by
utilizing generative LMs as an alternative to tra-
ditional human annotation, often crowdsourced.
Inspired by CSQA and JCSQA, we created the
multilingual commonsense reasoning task dataset,
mCSQA, using GPT-3.5 from the structured mul-
tilingual knowledge base ConceptNet. We demon-
strated that mCSQA is useful for evaluating the
commonsense reasoning capabilities of LMs. We
also analyzed the language-transfer capability be-
yond English with mCSQA and examined the
language-specific learning from two aspects: ques-
tion difficulty and language information. More-
over, our study has shown that the use of multilin-
gual LMs enables the construction of multilingual
datasets. Therefore, our method can significantly
reduce human labor and financial costs.

In this study, we used a single multilingual LM,
but since each step is independent, it is possible to

replace the LM used in each step with another one.
Furthermore, each step can be applied modularly
to other methods, making it possible to use this
method for creating multilingual datasets, such as
those expanded through translation and manual re-
finement (Yanaka and Mineshima, 2022; Seo et al.,
2022). We aim to extend this method to other types
of commonsense reasoning tasks and NLU tasks,
to efficiently create multilingual data and conduct
a more comprehensive analysis of transfer capabil-
ities across a broader range of tasks and languages.

We focused on language-specific commonsense,
but languages are shared across various regions.
For example, English is spoken in the United States,
the United Kingdom, India, Australia, and many
other regions each of which is geographically dis-
tant and diverse in terms of climate, food, and
culture. Therefore, it will be necessary to create
more detailed commonsense tasks that consider
cultural differences rather than just language such
as Kabra et al. (2023); Khanuja et al. (2024); Kim
et al. (2024); Cao et al. (2024); Fung et al. (2024);
Lee et al. (2024); Shwartz (2022); Hovy and Yang
(2021); Yin et al. (2022); Shi et al. (2024). Our
dataset construction method can be useful in creat-
ing various commonsense reasoning datasets that
outgrow language limits.

7 Limitations

Data Resources The number of multilingual re-
sources is significantly smaller than that of mono-
lingual resources. Additionally, quality is not con-
sistent, and there are imbalances in data volume
across languages in these multilingual resources.
In this study, we used ConceptNET, a multilingual
knowledge base, and encountered these issues as
well. For example, despite Spanish having a signif-
icantly higher entity count, it obtained fewer QSs
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due to its inability to meet the required conditions
because of ConceptNet’s sparsity issue, and thus it
was excluded from the language selection for mC-
SQA. We believe these problems can be addressed
through the automatic generation of knowledge
bases (Zhang et al., 2020b,a; West et al., 2022; Ide
et al., 2023; Nguyen et al., 2023) and data augmen-
tation techniques for knowledge bases (Malaviya
et al., 2020; Ju et al., 2022; Wu et al., 2023; Shen
et al., 2023), supported by their pre-trained knowl-
edge (Sakai et al., 2023).

Dataset Quality In this study, we used GPT-3.5
and simple prompts for data creation. Therefore,
there is room for improvement in the selection of
LMs and the refinement of prompts. In a pilot
study, we tried using GPT-4 and recognized that
it is more capable of creating datasets. However,
due to budgetary constraints, we have used GPT-
3.5 in this study. Thus, it may become possible to
create higher quality datasets at a lower cost when
the API prices decrease or by switching to other
strong LMs such as Gemini (Team et al., 2023),
Mixtral (Jiang et al., 2024), Llama (Touvron et al.,
2023), phi (Abdin et al., 2024) or Qwen (Bai et al.,
2023). Additionally, employing prompt strategies
that leverage the capabilities of LMs, such as Chain
of Thought (CoT) (Wei et al., 2022c), Tree of
Thought (ToT) (Yao et al., 2023a) and ReAct (Yao
et al., 2023b), could potentially lead to the produc-
tion of higher quality datasets.

Verification of dataset quality by humans The
human baselines decreased the evaluation result un-
der the Hard sets compared to Easy sets in Figure 5.
Therefore, there exists a risk that the Hard sets in-
clude flawed questions, even after manual quality
verification. The JCSQA has pointed out that such
low-quality questions are included in CSQA, and
we have confirmed that they are similarly present
in JCSQA. Thus, it is extremely difficult to com-
pletely eliminate such low-quality questions. Com-
paring the percentage of data removed in quality
verification, CSQA is 25% (3995/16242), and JC-
SQA is 19% (2643/13906), whereas for mCSQA,
it is 27% (604/2226) and 23% (599/2510) respec-
tively, according to Figure 3 and referenced in their
respective papers. This indicates that the filtering
ratios are almost comparable when compared to
those, showing that this is not a problem unique
to mCSQA. Therefore, reinforcing quality verifica-
tion to filter out low-quality questions is a challenge
in our future studies. However, as Figure 4 shows,

since more than half of the costs are already spent
on manual quality verification, simply hiring more
crowd workers would not be a better choice. Hence,
exploring more efficient methods of quality verifi-
cation as an alternative or to assist crowd workers
in the future is necessary.

Human baseline The experimental results in-
clude human baselines using small sets of samples.
However, Tedeschi et al. (2023) argue that human
baselines may lack reliability due to factors such
as the payment issues for crowd workers and the
impact of random samples. Therefore, it should
be noted that the human baselines in this study are
merely reference values.

8 Ethical Considerations

License The mCSQA dataset was created en-
tirely from the outputs of GPT-3.5 and is therefore
subject to OpenAI’s license terms8. OpenAI as-
signs to us all rights, title, and interest in and to
the output. As a result, we are retaining the owner-
ship rights. There are no restrictions on distributing
the datasets, but using OpenAI’s model output to
develop models that compete with OpenAI is pro-
hibited. However, it’s possible that these terms
may change, and there may be a need to impose
distribution restrictions depending on the terms.

Moderation We eliminated potentially harmful
questions such as violence, sexual content, and hate
speech by screening through OpenAI moderation
APIs9. However, in the commonsense reasoning
dataset, it cannot be guaranteed that it does not
include questions that contain societal biases as
collective knowledge. This issue has also been
pointed out in existing datasets such as CSQA, JC-
SQA, and other commonsense reasoning datasets,
and it is challenging to determine what is consid-
ered commonsense constitutes bias (Rajani et al.,
2019; Sap et al., 2020; Bauer et al., 2023; An et al.,
2023). If you encounter any harmful questions that
contain such biases, please report them.

Translation Tool We used DeepL Pro10 to trans-
late the example sentence, especially Table 1, to
avoid arbitrary translation. The copyright of the
translation sentences belongs to us11.

8https://openai.com/policies/terms-of-use
9https://platform.openai.com/docs/guides/

moderation
10https://www.deepl.com/translator
11https://www.deepl.com/pro-license
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ble. For Llama2-70B, output was generated greedy,
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B Qualitative Analysis of mCSQA

Table 11 shows examples of mCSQAs for each
language. The examples in Table 11 are accom-
panied by English translations using DeepL13 to
avoid arbitrary translation.

B.1 Can Multilingual LMs Take into Account
Language-specific Knowledge?

Case study When we examine some cases in Ta-
ble 11, such as the examples from the Dutch Hard
set and the Russian Hard set, we find that the En-
glish translations contain duplications among the
question choices. However, these duplications arise
not from differences in tense or conjugation, but
from semantic differences unique to each language,
which a native speaker, equipped with language-
specific knowledge and common sense, could eas-
ily distinguish. Furthermore, in the case of the Ger-
man Easy sets, knowledge of Germany’s unique
education system is required, which might be chal-
lenging for those unfamiliar with it. Yet, for Ger-
man speakers, it is common knowledge that such

12In the 3-shot setting, the examples were selected randomly
from the training data and included both Easy and Hard sets.

13We are using DeepL Pro (https://www.deepl.com/
translator), therefore, the copyright of the translations be-
longs to us. (https://www.deepl.com/pro-license)

Type Model Name HuggingFace / OpenAI API

Encoder

mBERT-cased bert-base-multilingual-cased
mBERT-uncased bert-base-multilingual-uncased
XLM-100 xlm-mlm-100-1280
XLM-RBASE xlm-roberta-base
XLM-RLARGE xlm-roberta-large
mDeBERTa-v3 microsoft/mdeberta-v3-base

Decoder
Llama2-70B meta-llama/Llama-2-70b-chat-hf
GPT-3.5 gpt-3.5-turbo-1106
GPT-4 gpt-4-1106-preview

Table 9: Details of the LMs for the experiments.

Hyper-parameter Value

Batch Size 64
Learning Rate 2e-5, 3e-5, 5e-5
Seed 42
Early Stopping 3
Warmup Ratio 0.1
Max Sequence Length 128

Table 10: The hyper-parameters used in the experiment,
and others, were set to default settings. The implemen-
tation used Transformers (Wolf et al., 2020).

education systems, such as the Abitur14 related to
the Gymnasium15, making it answerable for those
knowledgeable in German. This demonstrates that
multilingual LMs are capable of generating ques-
tions that include the kind of language-specific
knowledge and common sense that a native speaker
would possess.

The effectiveness of the CSQA style QA When
examining the Japanese Hard set in Table 10, all
the choices translate into the names of seafood in
English, which does not match the context of a fe-
male singer mentioned in the question. Japanese
native speakers would normally recognize them as
seafood names too, making it seem at first glance
that there is no correct answer. However, the cor-
rect choice, ‘あゆ’ (ayu), when pronounced in
Japanese, is read as ’ayu’. This pronunciation is
widely known across Japan as the nickname for the
famous singer ‘浜崎あゆみ’ (Ayumi Hamasaki)16,
making it a plausible choice even though it’s not
strictly correct. It allows for a satisfactory selection
by Japanese native speakers with language-specific
knowledge, common sense, and cultural awareness,
and is not answerable by English translation only.
In Japan, nicknames are often derived from abbre-

14https://en.wikipedia.org/wiki/Abitur
15https://en.wikipedia.org/wiki/Gymnasium_

(school)
16https://en.wikipedia.org/wiki/Ayumi_Hamasaki
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viations of their names or can suggest the names of
objects. The distractor ‘Wakame’ is known as the
name of a character from the long-running, famous
anime ‘Sazae-san’17 but not as a singer, thus serv-
ing its purpose as a distractor in this question ef-
fectively. Similarly, if there were a choice like ‘い
くら’ (common meaning: red caviar; pronounced:
ikura), the plausibility of choice in this question
might have been divided. Recently, ‘ikura’18 has
become a popular name, associated with a member
of ‘Yoasobi’19, a popular artist group among young
people. Adding such a choice would confuse the
choice of the correct answer because both choices
are plausible, so it would not serve effectively as
a distractor. This case shows that the choices can
define the scope of common sense, thus making
the question effective in evaluating common sense
accurately.

B.2 The Relationship between Knowledge,
Culture, Commonsense, and Social Bias

B.2.1 What is the Commonsense?
As can be seen from Table 11 and the discussions
in section B.1, language-specific common sense is
closely related to knowledge and culture. The Con-
ceptNet used in this study does not limit the scope
of common sense and deals with a wide range of
common sense, enabling the inclusion of questions
from various backgrounds into mCSQA, following
the same trend as CSQA and JCSQA.

Generally, commonsense not based on the spe-
cific culture or knowledge of a language is likely
to be a common understanding across all lan-
guages, making such problems potentially answer-
able through the language-transfer ability of mul-
tilingual LMs. However, as shown in Table 1, the
granularity of actions, events, and behaviors differs
by language, which can be considered to be influ-
enced by the cultural background of the language
area.

This study focuses on language-specific com-
mon sense that cannot be addressed by translations
of datasets from other languages, and the culture
and knowledge included in them are shared among
native speakers. Therefore, answering questions
that require language-specific backgrounds neces-
sitates a certain level of knowledge and culture
specific to each language. However, content that

17https://en.wikipedia.org/wiki/Sazae-san
18https://en.wikipedia.org/wiki/Lilas_Ikuta
19https://en.wikipedia.org/wiki/Yoasobi

is too specialized falls outside the scope of com-
mon sense, and common sense and backgrounds
vary among individuals. Therefore, we emphasize
the precision of coverage in the manual question
quality verification steps and employ a majority
vote baseline to avoid overly relying on specific
knowledge or culture.

In this way, questions were created that have
language-specific common sense which is general
for native speakers but not too specialized. If there
was a need to create questions asking for knowl-
edge specialized in specific fields, other knowl-
edge bases such as ATOMIC (Sap et al., 2019a),
and CCSK (Nguyen et al., 2023) could be used.
However, this study focused on multilingual perfor-
mance, deeming ConceptNet appropriate for mC-
SQA.

B.2.2 Is Commonsense Social Bias?

Since commonsense includes implicit cognition, it
may contain social and cultural biases, and some
methods for the removal of explicit and implicit
social biases have been proposed (Sap et al., 2020;
Field and Tsvetkov, 2020; Huang et al., 2021; Lent
and Søgaard, 2021; Emelin et al., 2021; Bauer et al.,
2023).

Social Chemistry 101 (Forbes et al., 2020),
BBQ (Parrish et al., 2022), and SODAPOP (An
et al., 2023) have been proposed for identifying
biases within models or for bias detection using
LMs. However, it remains challenging to address
situations where biased thinking may only emerge
when considering multiple-choice QA, where bias
does not occur in isolation.

The definition of bias and common sense
changes over time and varies from society to so-
ciety, and what is considered common sense can
shift to bias (Lee et al., 2023). Therefore, regular
updates to the commonsense reasoning datasets are
necessary. Our method for generating common-
sense reasoning task datasets using LMs allows
for low-cost update operations, making it possible
to adapt to the changing boundaries between com-
mon sense and bias over time. However, this does
not fundamentally address the inclusion of bias
in datasets. Moreover, such issues require a deep
chain of semantic thinking for resolution, making
filtering based on textual information inappropriate.
Therefore, it is necessary to develop methods to
remove potential biases in commonsense reasoning
task datasets in future work.
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C Discoveries about the LMs Capabilities

C.1 Can LMs Create Questions including
Commonsense?

Generation capability CommonGen (Lin et al.,
2020) is one of the commonsense reasoning
datasets that evaluates whether it is possible to cre-
ate commonsense sentences from a given set of
keywords. According to the leaderboard of Com-
monGen20, the performance of GPT-3.5 used in
our dataset creation demonstrates a capability for
generating commonsense sentences comparable to
those written by humans. However, there is still
room for improvement in aspects such as word
order. Therefore, we introduced refinement steps
to encourage corrections in word order and other
errors. Since language models have high perfor-
mance in Grammar Error Correction (GEC) (Loem
et al., 2023; Sottana et al., 2023; Fang et al., 2023;
Coyne et al., 2023; Kaneko and Okazaki, 2023;
Kwon et al., 2023), combining sentence genera-
tion from keywords with GEC capabilities in a
pipeline helps to compensate for the weaknesses
of language models. We believe that the quality of
mCSQA questions is at least not inferior to those
created by crowd-workers. The capability of mul-
tilingual LMs to create commonsense sentences
from given keywords has also been demonstrated
in the Korean CommonGen (Seo et al., 2022), indi-
cating that it is possible to generate commonsense
sentences multilingually.

Ensuring the quality of questions In this study,
we have created commonsense reasoning dataset
questions using keywords extracted from Concept-
Net. Therefore, the language-specific knowledge
and commonsense for each language are guaran-
teed by ConceptNet. Moreover, the LM creates
questions following the given instructions through
its emergent capabilities from each keyword. To
enhance the language-specific performance of the
multilingual LM for each language, we have cre-
ated prompts for each language in this study. As
can be seen from the discussion in section B.1
and Table 11, it has become possible to gener-
ate questions that possess language-specific knowl-
edge. One of the reasons for the capability to create
questions with language-specific knowledge may
be attributed to the training data of the LM. For ex-
ample, Wikipedia, one of the common training data
for LMs, has each language which contains descrip-

20https://github.com/allenai/CommonGen-Eval

tions of knowledge unique to that language, so by
posing questions in each language, it is thought that
knowledge specific to each language is invoked, en-
abling the generation of questions based on the
knowledge of each language. However, this is a
hypothesis, and further analysis will be necessary
for verification in future work. Moreover, we have
added distractors in addition to the keywords used
for generating the question, which means that even
if a question can be generated, it may not neces-
sarily be answerable. Furthermore, questions that
cannot be answered have been removed, thus en-
suring the difficulty and answerability of the QA.

C.2 Multilingual Capabilities

Is polyglot template effective? We translated
the prompt to use question generation for each lan-
guage and tuned it to convey the same meaning in
each language in Section D aimed to emergence
the language-specific knowledge. However, it is
known that current generative LMs have mainly
trained on English, which is better performance
for queries made in English. However, several
studies (Ahn et al., 2022; Shi et al., 2023; Wei
et al., 2022b; Awasthi et al., 2023; Kasai et al.,
2023; Jin et al., 2023) show enough performance
even if multilingual queries. Note that the reported
performance focuses on the ability to answer spe-
cific tasks on benchmarks and does not evaluate
the emergent multilingual ability, especially ques-
tion generation. Nevertheless, Whitehouse et al.
(2023) shows that the text generation capability be-
yond English. As shown in Table 10, we were able
to generate questions containing language-specific
knowledge from the given keywords as intended
by using prompts translated into each language.
We were able to generate questions that require
deep reasoning, including cultural backgrounds
and language-specific pronunciation information
as shown in Section B.1. Therefore, we conclude
that using prompts tailored for each language is
effective.

Is GPT-3.5 Multilingual LM? Yes, some stud-
ies (Lai et al., 2023; Armengol-Estapé et al., 2022;
Zhang et al., 2023b) have indeed examined mul-
tilingual performance, and the training data also
includes multilingually21. Therefore, the multilin-
gual capabilities of GPT-3.5, GPT-4, and Llama
used in our experiment have also been evalu-

21https://github.com/openai/gpt-3/tree/master/
dataset_statistics
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ated (Ahuja et al., 2023; Schott et al., 2023; Chen
et al., 2024), leading us to consider these as mul-
tilingual LMs. However, they still rely predomi-
nantly on information from Western norms (Cao
et al., 2023; Arora et al., 2023; Havaldar et al.,
2023), making this issue an ongoing challenge to
be addressed in the future.

Exhortation to multilingual instruction-tuning
dataset. Instruction-tuning (Wei et al., 2022a;
Longpre et al., 2023; Chung et al., 2022; Wang
et al., 2023) can enhance the quality of LMs,
e.g. ability to follow instructions and NLU per-
formance. However, in Section 2, the current multi-
lingual datasets include those created through trans-
lation, which means that instruction-tuning using
such data may not lead to the acquisition of data
bias or language-specific knowledge. Given these
considerations, the multilingual instruction-tuning
data (Kew et al., 2023; Singh et al., 2024) proposed
recently often utilize datasets created through trans-
lation, leading to the occurrence of the aforemen-
tioned issues to a considerable extent. Conse-
quently, the effectiveness of such instruction-tuning
may be diminished. For commonsense reasoning
tasks in multilingual instruction-tuning datasets,
they sometimes use X-CSQA (Lin et al., 2021).
However, since it cannot handle language-specific
knowledge or commonsense effectively, it is prefer-
able to use data created from scratch, like mCSQA.
Currently, due to data resource issues, reliance on
translated data is inevitable, but we hope that in
the future, it will be replaced by language-specific
data.

C.3 Hard Sets are Truly Hard?

The Hard sets consist of questions that the LM
used for question creation could not answer, thus
reflecting the characteristics of that LM. However,
despite the influence of specific LM’s character,
a performance decline in the Hard sets compared
to the Easy sets was observed across all models.
Therefore, while the strict division of sets depends
on the model, it has become clear that there is
a similar trend across LMs as a whole. For this
reason, scoring is conducted without distinguishing
between Easy and Hard, using a total score for
the entire set, which allows for the absorption of
differences due to the models.

C.4 Generation Bias and Annotation Artifacts
It has been pointed out that datasets created by LMs
contain generation bias (Omura et al., 2020; Zellers
et al., 2019; Tamborrino et al., 2020), and those cre-
ated by crowd-workers include specific patterns
(Annotation Artifacts) (Gururangan et al., 2018;
Chen et al., 2019; Omura et al., 2020). Annotation
artifacts, in particular, have been noted in natural
language inference tasks such as MNLI (Williams
et al., 2018) and SNLI (Bowman et al., 2015),
where choices can be easily distinguished by super-
ficial words like “not”.

However, Tamborrino et al. (2020) show that the
impact of Annotation Artifacts is not present in the
CSQA task. Similarly, in this study, we have sep-
arated question generation ability and answering
ability during the question generation process and
shuffled the options, so there are no clues included
in the dataset. Moreover, we create Hard sets, even
if such biased questions existed, the evaluation is
conducted without these biases, allowing for an
evaluation that removes these biases.

D Prompts for Creating mCSQA

The prompts used for creating mCSQA are pre-
sented as follows: English in Table 12, Japanese in
Table 13, Chinese in Table 14, German in Table 15,
Portuguese in Table 16, Dutch in Table 17, French
in Table 18 and Russian in Table 19.

In each prompt template, the words within
the curly brackets are replaced with data-specific
terms22 before input to the LM.

Furthermore, as discussed in Section C.2, each
template was translated exactly to elicit language-
specific knowledge of each language. The trans-
lations were carried out using both GPT-3.5 and
DeepL to ensure there were no semantic differ-
ences, with manual fixing applied as needed. We
use the OpenAI API’s JSON mode23 has facilitated
the retrieval of generation results.

Our findings as a tip, when inputting structured
data such as keywords, doing so in a format similar
to a programming code like list type, allows us
to obtain results that more following the prompt
instructions. This improvement can be attributed
to the LM’s learning to enhance coding abilities,
which is believed to have improved its recognition
capabilities.

22https://peps.python.org/pep-0498/
23https://platform.openai.com/docs/guides/

text-generation/json-mode
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Lang. Question Choices
Correct Distractors Additional Distractors

EN Easy If a cat is feeling irritated, what might it do? scratch if annoy look out window fish with paw chase a toy nap in the sun

Hard Which animal is known for its playful behavior and
agile movements?

monkey jellyfish lemur orangutan gorilla

JA Easy 音を聞き分けるためには何をしますか？ 耳を澄ます 学習する 書き取る 実践する 経験する
(What do you do to listen to the sounds?) (Listen carefully) (Learn) (Write) (Practice) (Experience)

Hard 日本の女性歌手で、自身の楽曲の作詞・作曲
も手がける人気アーティストは誰ですか？

あゆ どじょう わかめ うなぎ さけ

(Which popular Japanese female singer also writes
lyrics and composes her own songs?)

(Sweetfish) (Loach) (Wakame) (Eel) (Salmon)

ZH Easy 你在考试前应该做什么？ 回家温习 聊天 作弊 健身 看电影
(What should you do before your exam?) (Go home and

study)
(Chatting) (Cheat) (Work out) (Watch films)

Hard 在感情关系中，最令人痛苦的事情是什么？ 被甩 花大钱 心碎 找到真爱 实现梦想
(What’s the most excruciating thing about being in
a relationship?)

(Getting
dumped)

(Spending a
lot of money)

(Getting your
heart broken)

(Finding true love) (Realising your
dreams)

DE Easy Welche Art von weiterführender Schule bereitet
Schüler auf das Abitur vor?

gymnasium gesamtschule fachoberschule berufsschule realschule

(What type of secondary school prepares students
for the Abitur?)

(grammar school) (comprehensive
school)

(technical seco-
ndary school)

(vocational school) (secondary school)

Hard Was ist die richtige Bezeichnung für das langsame
Abwärtsbewegen auf einer schiefen Ebene?

hinabgleiten hinabfliegen dahinab hinabtauchen hinabschweben

(What is the correct term for moving slowly down-
wards on an inclined plane?)

(slide down) (fly down) (descend) (dive down) (float down)

PT Easy Como demonstrar afeto a um animal de estimação? fazer carinho alegrar a vida pentelhar abraçar dar um presente
(How do you show affection to a pet?) (cuddle) (combing) (brighten up life) (cuddle) (give a gift)

Hard Qual a ação que um coelho pode fazer para se mover
rapidamente?

pular orientando segurar esperar correr

(What action can a rabbit do to move quickly?) (jump) (guiding) (hold) (wait) (run)

NL Easy Kunt u mij vertellen wat gokken is? kansspel gelijkspel steekspel vuurspel wedstrijd
(Can you tell me what gambling is?) (game of chance) (draw) (joust) (match) (fire game)

Hard Kunt u uitleggen wat een veelvoorkomend begrip is
dat verwijst naar iets wat algemeen geaccepteerd of
verspreid is in een samenleving?

gemeengoed gemeenschap gemeenplaats gezamenlijk gebruikelijk

(Can you explain what is a common term that refers
to something commonly accepted or widespread in
a society?)

(common) (community) (commonplace) (common) (common)

FR Easy Quelle unité de temps correspond à une période de
vingt-quatre heures ?

jour décade siècle année mois

(What unit of time corresponds to a twenty-four
hour period?)

(day) (decade) (century) (year) (month)

Hard Quelle partie du corps utilise-t-on pour saisir des
objets de petite taille ?

doigt annulaire auriculaire majeur index

(What part of the body is used to pick up small
objects?)

(finger) (ring finger) (little finger) (middle finger) (index finger)

RU Easy Какое время года обычно связывается с
праздниками Нового года и Рождества?

зима весна осень летний сезон лето

(What time of year is usually associated with the
holidays of New Year’s Eve and Christmas?)

(winter) (spring) (fall) (summer season) (summer)

Hard Какой звук издает довольный кот? урчание заурчать проурчать мурлыкать громко урчать
(What sound does a contented cat make?) (purr) (rumble) (purr) (purr) (purr)

Table 11: The examples of mCSQA. The English translations are all machine-translated by DeepL. The translated
results sometimes are aggregated into one English word due to ignoring source language-specific subtle meaning
differences caused by machine translation. This aggregation has also been observed in X-CSQA, which was created
using machine translation of CSQA. Hence, X-CSQA could not evaluate fine-grained, language-specific knowledge
for each language, but mCSQA can evaluate it because it is created from scratch for each language.
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Steps Prompt (English)

Create
question
sentences

Please create a multiple-choice question with the following conditions:

(a) The only correct answer is ["{correct}"].
(b) The incorrect answers are ["{distractor1}", "{distractor2}"].
(c) Do not use the words ["{correct}", "{distractor1}", "{distractor2}"] in the question.
(d) Avoid using superficial information, such as character count.
(e) The question ends with a question mark (?).
(f) It should be an objective question that can be sufficiently answered with common sense knowledge alone.
(g) The question must be a simple and short sentence consisting of only one sentence.

Question:

Refine
question
sentences

If the original sentence is semantically and grammatically correct, repeat it;
if it is unnatural, please rewrite it into a correct and fluent sentence.

{question}

Add
additional
distractors

Please only add two plausible and natural choices and save them in {’additional_choice’:[]}.

["{choice1}", "{chioce2}", "{choice3}"]

Verify
Qualities

Please select only one alphabet as the answer from the Answer Choices
and save it in the format: {’answer’: selected_answer}.

Q: {question}
Answer Choices: (A) {choice_a} (B) {choice_b} (C) {choice_c} (D) {choice_d} (E) {choice_e}

Table 12: The prompt templates used to create the mCSQA in the English version.

Steps Prompt (Japanese)

Create
question
sentences

以下の条件を満たす選択肢付きのクイズ問題を作成してください。

(a)正解は["{correct}"]のみです。
(b)不正解は["{distractor1}", "{distractor2}"]です。
(c)問題文に["{correct}", "{distractor1}", "{distractor2}"]という単語を使わないでください。
(d)文字数などの表面的な情報の使用を避けてください。
(e)問題文は疑問符（？）で終わります。
(f)一般常識だけで十分に答えられる客観的な問題である必要があります。
(g)問題文は一文のみから成る単純で短い文でなければなりません。

問題：

Refine
question
sentences

元の文が意味的・文法的に正しい場合は繰り返す、
不自然な場合は正しい流暢な文へ書き換えてください。

{question}

Add
additional
distractors

もっともらしい自然な選択肢を2つだけ追加し、
それらを{’additional_choice’:[]}に保存してください。

["{choice1}", "{chioce2}", "{choice3}"]

Verify
Qualities

Answer Choicesから解答となるアルファベットを１つだけ選び、
次の形式で保存してください：{’answer’: selected_answer}。

Q: {question}
Answer Choices: (A) {choice_a} (B) {choice_b} (C) {choice_c} (D) {choice_d} (E) {choice_e}

Table 13: The prompt templates used to create the mCSQA in the Japanese version.
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Steps Prompt (Chinese)

Create
question
sentences

请根据以下条件创建一个多项选择题：

(a)唯一正确答案是["{correct}"]。
(b)错误答案是["{distractor1}", "{distractor2}"]。
(c)问题中不得使用["{correct}", "{distractor1}", "{distractor2}"]这些词。
(d)避免使用表面信息，如字符数。
(e)问题以问号(?)结束。
(f)它应该是一个客观的问题，仅凭常识就能充分回答。
(g)问题必须是一个简单且短的句子，仅由一句话组成。

问题：

Refine
question
sentences

如果原句在语义和语法上正确，请重复它；如果不自然，请将其改写为正确流畅的句子。

{question}

Add
additional
distractors

请只添加两个合理且自然的选择，并将它们保存在 {’additional_choice’:[]}中。

["{choice1}", "{chioce2}", "{choice3}"]

Verify
Qualities

请从Answer Choices中仅选择一个字母作为答案，并以以下格式保存：{’answer’: selected_answer}。

Q: {question}
Answer Choices: (A) {choice_a} (B) {choice_b} (C) {choice_c} (D) {choice_d} (E) {choice_e}

Table 14: The prompt templates used to create the mCSQA in the Chinese version.

Steps Prompt (German)

Create
question
sentences

Bitte erstellen Sie eine Multiple-Choice-Frage mit folgenden Bedingungen:

(a) Die einzig richtige Antwort ist ["{correct}"].
(b) Die falschen Antworten sind ["{distractor1}", "{distractor2}"].
(c) Verwenden Sie in der Frage nicht die Wörter ["{correct}", "{distractor1}", "{distractor2}"].
(d) Vermeiden Sie oberflächliche Informationen, wie z.B. die Zeichenanzahl.
(e) Die Frage endet mit einem Fragezeichen (?).
(f) Es sollte eine objektive Frage sein, die allein mit Allgemeinwissen ausreichend beantwortet werden kann.
(g) Die Frage muss ein einfacher und kurzer Satz bestehend aus nur einem Satz sein.

Frage:

Refine
question
sentences

Wenn der Originalsatz semantisch und grammatikalisch korrekt ist, wiederholen Sie ihn;
wenn er unnatürlich ist, schreiben Sie ihn bitte in einen korrekten und flüssigen Satz um.

{question}

Add
additional
distractors

Bitte fügen Sie nur zwei plausible und natürliche Optionen hinzu
und speichern Sie diese in {’additional_choice’:[]}.

["{choice1}", "{chioce2}", "{choice3}"]

Verify
Qualities

Bitte wählen Sie nur einen Buchstaben als Antwort aus den Answer Choices aus
und speichern Sie ihn im Format: {’answer’: selected_answer}.

Q: {question}
Answer Choices: (A) {choice_a} (B) {choice_b} (C) {choice_c} (D) {choice_d} (E) {choice_e}

Table 15: The prompt templates used to create the mCSQA in the German version.
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Steps Prompt (Portuguese)

Create
question
sentences

Por favor, crie uma pergunta de múltipla escolha com as seguintes condições:

(a) A única resposta correta é ["{correct}"].
(b) As respostas incorretas são ["{distractor1}", "{distractor2}"].
(c) Não use as palavras ["{correct}", "{distractor1}", "{distractor2}"] na pergunta.
(d) Evite usar informações superficiais, como a contagem de caracteres.
(e) A pergunta termina com um ponto de interrogação (?).
(f) Deve ser uma pergunta objetiva que pode ser suficientemente
respondida apenas com conhecimento de senso comum.
(g) A pergunta deve ser uma frase simples e curta, consistindo de apenas uma frase.

Pergunta:

Refine
question
sentences

Se a frase original estiver semanticamente e gramaticalmente correta, repita-a;
se for pouco natural, por favor, reescreva-a em uma frase correta e fluente.

{question}

Add
additional
distractors

Por favor, adicione apenas duas escolhas plausíveis e naturais e salve-as em {’additional_choice’:[]}.

["{choice1}", "{chioce2}", "{choice3}"]

Verify
Qualities

Por favor, selecione apenas uma letra como resposta das Answer Choices
e salve no formato: {’answer’: selected_answer}.

Q: {question}
Answer Choices: (A) {choice_a} (B) {choice_b} (C) {choice_c} (D) {choice_d} (E) {choice_e}

Table 16: The prompt templates used to create the mCSQA in the Portuguese version.

Steps Prompt (Dutch)

Create
question
sentences

Maak alstublieft een meerkeuzevraag met de volgende voorwaarden:

(a) Het enige juiste antwoord is ["{correct}"].
(b) De onjuiste antwoorden zijn ["{distractor1}", "{distractor2}"].
(c) Gebruik de woorden ["{correct}", "{distractor1}", "{distractor2}"] niet in de vraag.
(d) Vermijd het gebruik van oppervlakkige informatie, zoals het aantal tekens.
(e) De vraag eindigt met een vraagteken (?).
(f) Het moet een objectieve vraag zijn die alleen met algemene kennis voldoende beantwoord kan worden.
(g) De vraag moet een eenvoudige en korte zin zijn die uit slechts één zin bestaat.

Vraag:

Refine
question
sentences

Als de originele zin semantisch en grammaticaal correct is, herhaal deze dan;
als het onnatuurlijk is, herschrijf het dan naar een correcte en vloeiende zin.

{question}

Add
additional
distractors

Voeg alstublieft slechts twee aannemelijke en natuurlijke keuzes toe en sla ze op in {’additional_choice’:[]}.

["{choice1}", "{chioce2}", "{choice3}"]

Verify
Qualities

Selecteer alstublieft slechts één letter als antwoord uit de Answer Choices
en sla het op in het formaat: {’answer’: selected_answer}.

Q: {question}
Answer Choices: (A) {choice_a} (B) {choice_b} (C) {choice_c} (D) {choice_d} (E) {choice_e}

Table 17: The prompt templates used to create the mCSQA in the Dutch version.
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Steps Prompt (French)

Create
question
sentences

Veuillez créer une question à choix multiples avec les conditions suivantes :

(a) La seule bonne réponse est ["{correct}"].
(b) Les réponses incorrectes sont ["{distractor1}", "{distractor2}"].
(c) Ne pas utiliser les mots ["{correct}", "{distractor1}", "{distractor2}"] dans la question.
(d) Évitez d’utiliser des informations superficielles, telles que le nombre de caractères.
(e) La question se termine par un point d’interrogation (?).
(f) Il doit s’agir d’une question objective qui peut être suffisamment répondue avec le seul sens commun.
(g) La question doit être une phrase simple et courte composée d’une seule phrase.

Question :

Refine
question
sentences

Si la phrase originale est correcte sémantiquement et grammaticalement, répétez-la ;
si elle est peu naturelle, veuillez la reformuler en une phrase correcte et fluide.

{question}

Add
additional
distractors

Veuillez ajouter seulement deux choix plausibles et naturels et les enregistrer dans {’additional_choice’:[]}.

["{choice1}", "{chioce2}", "{choice3}"]

Verify
Qualities

Veuillez sélectionner uniquement une lettre comme réponse parmi les Answer Choices
et enregistrez-la dans le format : {’answer’: selected_answer}.

Q: {question}
Answer Choices: (A) {choice_a} (B) {choice_b} (C) {choice_c} (D) {choice_d} (E) {choice_e}

Table 18: The prompt templates used to create the mCSQA in the French version.

Steps Prompt (Russian)

Create
question
sentences

Пожалуйста, создайте вопрос с несколькими вариантами ответа с учетом следующих условий:

(a) Единственный правильный ответ - ["{correct}"].
(b) Неправильные ответы - ["{distractor1}", "{distractor2}"].
(c) Не используйте слова ["{correct}", "{distractor1}", "{distractor2}"] в вопросе.
(d) Избегайте использования поверхностной информации, такой как количество символов.
(e) Вопрос заканчивается вопросительным знаком (?).
(f) Это должен быть объективный вопрос,
на который можно достаточно ответить только с помощью здравого смысла.
(g) Вопрос должен быть простым и коротким, состоящим только из одного предложения.

Вопрос:

Refine
question
sentences

Если исходное предложение семантически и грамматически правильно, повторите его;
если оно звучит ненатурально, пожалуйста,
перепишите его на корректный и свободно звучащий язык.

{question}

Add
additional
distractors

Пожалуйста, добавьте только два правдоподобных и естественных выбора
и сохраните их в {’additional_choice’:[]}.

["{choice1}", "{chioce2}", "{choice3}"]

Verify
Qualities

Пожалуйста, выберите только одну букву алфавита в качестве ответа из Answer Choices и
сохраните её в формате: {’answer’: selected_answer}.

Q: {question}
Answer Choices: (A) {choice_a} (B) {choice_b} (C) {choice_c} (D) {choice_d} (E) {choice_e}

Table 19: The prompt templates used to create the mCSQA in the Russian version.
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