
Findings of the Association for Computational Linguistics ACL 2024, pages 14379–14391
August 11-16, 2024 ©2024 Association for Computational Linguistics

Unsupervised Real-Time Hallucination Detection based on the Internal
States of Large Language Models

Weihang Su*1, Changyue Wang†1, Qingyao Ai‡1, Yiran Hu1, Zhijing Wu2, Yujia Zhou3

Yiqun Liu1

1Department of Computer Science and Technology, Tsinghua University
2School of Computer Science and Technology, Beijing Institute of Technology

3School of Information, Renmin University of China

Abstract

Hallucinations in large language models
(LLMs) refer to the phenomenon of LLMs pro-
ducing responses that are coherent yet factually
inaccurate. This issue undermines the effective-
ness of LLMs in practical applications, neces-
sitating research into detecting and mitigating
hallucinations of LLMs. Previous studies have
mainly concentrated on post-processing tech-
niques for hallucination detection, which tend
to be computationally intensive and limited
in effectiveness due to their separation from
the LLM’s inference process. To overcome
these limitations, we introduce MIND, an un-
supervised training framework that leverages
the internal states of LLMs for real-time hal-
lucination detection without requiring manual
annotations. Additionally, we present HELM,
a new benchmark for evaluating hallucination
detection across multiple LLMs, featuring di-
verse LLM outputs and the internal states of
LLMs during their inference process. Our ex-
periments demonstrate that MIND outperforms
existing state-of-the-art methods in hallucina-
tion detection1.

1 Introduction

In recent years, Large Language Models (LLMs)
have demonstrated remarkable performance in a va-
riety of natural language processing (NLP) applica-
tions (Brown et al., 2020; Chowdhery et al., 2022;
Touvron et al., 2023a; Scao et al., 2022; Zhang
et al., 2022). However, the widespread adoption of
LLMs has highlighted a critical problem, i.e., hal-
lucination. Hallucination refers to the cases where
LLMs generate responses that are logically coher-
ent but factually incorrect or misleading (Maynez
et al., 2020; Zhou et al., 2020; Liu et al., 2021;

*swh22@mails.tsinghua.edu.cn
†contributed equally
‡Corresponding Author: aiqy@tsinghua.edu.cn
1We have open-sourced all the code, data, and models in

GitHub: https://github.com/oneal2000/MIND/tree/main.

Ji et al., 2023). Such flaw hurts the effectiveness
and robustness of LLMs in real-world NLP ap-
plications, underlining the pressing necessity for
research on detecting and mitigating hallucinations
in LLMs.

Existing studies on hallucination detection for
LLM mainly focus on how to identify possible fact-
related errors in LLM’s outputs (Lin et al., 2021;
Li et al., 2023d; Manakul et al., 2023). For ex-
ample, WikiBio GPT3 (Manakul et al., 2023), a
well-known benchmark for hallucination detection,
hired human annotators to annotate a couple of true
and false response. Hallucination detection meth-
ods are then evaluated based on their accuracy in
predicting the truthfulness of the answers. Based
on this paradigm, considerable hallucination de-
tection methods have been proposed with the goal
of taking a piece of text as input and predicting
whether there are hallucinations in the inputs (Man-
akul et al., 2023; Zhang et al., 2023b; Azaria and
Mitchell, 2023). Since they detect hallucinations
after LLMs finish the inference process, we refer
to these hallucination detection methods as post-
processing methods.

Unfortunately, the post-processing methods
widely used in existing studies are suboptimal for
the applications of hallucination detection mod-
els for LLMs in practice. First, existing post-
processing methods often suffer from extreme com-
putation costs and high latency. In order to iden-
tify hallucinations in input text without ground
truth references (otherwise the task would down-
grade to a simple fact verification task), halluci-
nation detection models need to be powerful and
knowledgeable on their own. SOTA detection meth-
ods are often implemented with LLMs (e.g., chat-
GPT, LLaMA, OPT) directly (Manakul et al., 2023;
Azaria and Mitchell, 2023; Zhang et al., 2023b),
which makes the cost of hallucination detection
on par or even larger than the inference process
of many LLMs. Second, post-processing methods

14379

are intrinsically limited in model capacities. As
post-processing methods detect hallucinations in-
dependently with the inference process of LLMs,
they can’t analyze how hallucinations are gener-
ated from scratches in each LLM. Some studies
tried to bypass this issue through the construction
of proxy models (Azaria and Mitchell, 2023). How-
ever, such proxy models must be trained with exten-
sive human annotations, otherwise they cannot cap-
ture the unique characteristics of each LLM. Such
manual annotation data are expensive to collect and
not preferable considering the rapid developments
of LLM techniques.

To address these limitations, we propose a novel
reference-free, unsupervised training framework
MIND, i.e., unsupervised Modeling of INternal
states for hallucination Detection of Large Lan-
guage Models. We highlight MIND with the fol-
lowing advantages: (1) Unsupervised. In con-
trast to previous works, MIND is an unsupervised
framework that directly extracts pseudo-training
data from Wikipedia. It doesn’t require any man-
ual annotation for the training of the hallucination
detector. (2) Real-time. Compared with the ex-
isting post-processing methods, MIND is a real-
time hallucination detection framework designed
to reduce computational overhead and detection la-
tency. With a simple multi-layer perceptron model
built upon the contextual embeddings of each token
in LLM’s inference process, MIND can conduct
the hallucination detection in a real-time process.
(3) Compatibility. MIND is a lightweight frame-
work that can be incorporated into any existing
Transformer-based LLMs.

Further, to facilitate future research and to im-
prove the reproducibility of this paper, we intro-
duce a new benchmark for LLM hallucination
detection named HELM: Hallucination detection
Evaluation for multiple LLMs. In contrast to
previous benchmarks that only provide the text
generated based on hand-crafted heuristics (Liu
et al., 2021; Azaria and Mitchell, 2023) or a sin-
gle LLM (Manakul et al., 2023; Li et al., 2023d),
HELM provides not only the texts produced by six
different LLMs (together with human-annotated
hallucination labels) but also the contextualized
embeddings, self-attentions and hidden-layer acti-
vations recorded in the inference process of each
LLM, which could serve as the snapshots of each
LLM’s internal states during their inference pro-
cess.

In summary, the contributions of our paper are

as follows:
• We propose MIND, an unsupervised training

framework for real-time hallucination detection
based on the internal states of LLM.

• We introduce HELM, a hallucination detection
benchmark featuring text from six LLMs and
contains the internal states of each LLM during
the text generation process.

• We evaluate MIND and existing hallucintion de-
tection baselines with human annotations. The
experimental results show that MIND outper-
forms existing hallucination detection methods.

2 Problem Formulation

Hallucination Detection can be defined as a binary
classification problem. The objective is to judge
whether the given output from an LLM is a hal-
lucination (false or misleading information) or a
non-hallucination (accurate and relevant informa-
tion). This diverges from traditional fact verifica-
tion tasks. In contrast to traditional fact verification
tasks that mainly assess the factual accuracy of text,
hallucination detection in LLMs goes beyond sim-
ply evaluating the truthfulness of the information.
It focuses more on the comprehensive analysis of
the characteristics intrinsic to the generative mod-
els. Examples of hallucination detection methods
include the consistency of multi-responses to the
same question (Manakul et al., 2023), the LLMs’
confidence in its generated content (Zhang et al.,
2023b), the internal states of LLMs during the text
generation process (Azaria and Mitchell, 2023),
etc.

3 Methodology

In this section, we introduce the details of
our proposed framework MIND, i.e., unsuper-
vised Modeling of INternal-states for hallucination
Detection of Large Language Models. The MIND
framework consist of two steps: automatic training
data generation and hallucination classifier train-
ing.

3.1 Unsupervised Training Data Generation

Our proposed Unsupervised Training Data Gener-
ation involves automatically annotating hallucina-
tions in content produced by a chosen LLM. Let
a specific LLM be Li, then our method aims to
create customized training data for training a Hal-
lucination Detection Model for Li. Figure 1 il-
lustrates our proposed automatic data generation

14380

Wikipedia Content

Random Select an Entity After the First Sentence

Alan Turing was born in Maida Vale,
London. In 1941, Turing proposed marriage
to Hut 8 colleague Joan Clarke, a fellow
mathematician and cryptanalyst, but their
engagement was short-lived.

Alan Turing was born in Maida Vale,
London. In 1941, Turing proposed
marriage to Hut 8 colleague I

I , Joan Clarke, who was also a
mathematician and cryptanalyst.

Joan Clarke

Wikipedia Content

Random Select an Entity After the First Sentence

Einstein was born in the German Empire,
and moved to Switzerland in 1895, forsaking
his German citizenship the following year. In
1903, he secured a permanent position at
the Swiss Patent Office in Bern.

I University of Zurich. In 1914,
he moved to Berlin to……

Swiss Patent Office

Hallucination

LLM Continue Generation
based on the Context

······

······

······

The text preceding the selected entity
is used as input context for LLM.

…… forsaking his German citizenship
the following year. In 1903, he secured
a permanent position at the I

······

······

······

Contextualized
Embeddings

Non-Hallucination
Matched

LLM Continue Generation
based on the Context

Not Matched

Contextualized
Embeddings

Hallucination

Classifier

Input

Predict

Hallucination

Classifier

Input

Predict

Figure 1: An illustration of the automatic training data generation process of our proposed framework: MIND.

process. The process starts by selecting a subset of
high-quality Wikipedia articles, denoted as W (for
example, WikiText-103 (Merity et al., 2016)). This
subset is represented as W = {w1, w2, ..., wn},
where each wi (1 ≤ i ≤ n) is an individual arti-
cle. Following that, each article wi is truncated at a
randomly selected entity (except those that appear
at the beginning of a sentence) occurring after the
first sentence of the article. The selected entity is
denoted as ei. The truncated article is denoted as
w

′
i = truncate(wi, ei). Subsequently, each trun-

cated article w
′
i is inputted into the LLM Li. Li

is then tasked with a in free-form text generation
based on w

′
i. The continuation text produced by

the LLM for w
′
i is marked as Gi which is truncated

at the end of the first sentence. During the gen-
eration of Gi, the internal states of the LLM are
recorded, denoted as Si. Each Gi is then compared
to the original article wi to assess if the LLM can
accurately continue writing about the original en-
tity ei. The key criterion for this comparison is
whether the beginning of Gi contains the correct
entity ei as it appears in the original article. If
Gi starts with the correct entity ei, it is labeled
as non-hallucination and represented as Hi = 0.
Conversely, if Gi does not start with the correct
entity ei, and ei does not appear in Gi, it is labeled
as hallucination and represented as Hi = 1. For
each article, a data tuple is created, represented
as Di = (Li, wi, Gi, Si, Hi), encompassing the
selected LLM Li, the original Wiki article wi, gen-
erated text Gi, the internal states Si, and the hallu-
cination label Hi.

3.2 Hallucination Classifier Training

3.2.1 Feature Selection
In Transformer-based models, the generation of
each token is directly based on its contextualized
embedding vectors (also named hidden states),
which represents the LLM’s comprehension and

semantic representation of the previously gener-
ated tokens. These contextualized embeddings also
manifest the behavior of the LLM in making next
token predictions, encompassing elements of uncer-
tainty. Thus, contextualized embedding can serve
as an important reference for judging LLMs’ Hal-
lucinations. In this section, we investigate a simple
research question: Can we detect hallucinations in
LLMs using contextualized embeddings?

To verify this, we select the contextualized em-
beddings of different tokens in various Transformer
layers and use a multilayer perceptron (MLP) to
classify the embedding during hallucinations from
those during non-hallucinations. If it is possible to
classify these vectors using a simple MLP, it indi-
cates distinctions between the token embeddings of
LLMs during hallucination and non-hallucination
states. We train this MLP on 5k samples generated
by LLaMA2-13B-Chat via the automatic data gen-
eration process described in the previous section,
and test the prediction accuracy on 5k samples. The
classification accuracy based on the contextualized
embedding vectors at various positions of LLM
and their combinations are as follows:

Layer Embedding Formula Acc

All All 1
N

∑N
j=1

1
n

∑n
i=1 Hi

j 0.7054
First & Last All 1

2
(
∑n

i=1 Hi
1 +

∑n
i=1 Hi

N) 0.6929
Last All 1

n

∑n
i=1 Hi

N 0.6986
First All 1

n

∑n
i=1 Hi

1 0.6529
Last Last Hn

N 0.7123
All Last 1

N

∑N
j=1 Hn

j 0.6986
Last All & Last 1

2
(1
n

∑n
i=1 Hi

N + Hn
N) 0.7191

In the table above, N represents the total number of
Transformer layers in this LLM, and n is the length
of the input token sequence, "H i

j" represents the
contextualized embedding vector of the ith token in
the jth Transformer layer of the LLM. The experi-
mental results demonstrate that we can indeed clas-
sify these vectors using a simple MLP. This finding

14381

Transformer based LLM

[BOS] [Tok1] [Tok2] [Tok3] ······ [Tokn][Tokn-1] [EOS]

······𝑯𝑵
𝟎 𝑯𝑵

𝟏 𝑯𝑵
𝟐 𝑯𝑵

𝟑 𝑯𝑵
𝐧'𝟏 𝑯𝑵

𝐧 𝑯𝑵
𝐧(𝟏

Hallucination Classifier Hallucination
Probability

Hallucination
Label

𝓛𝑩𝑪𝑬Classification
Loss

Token Embeddings

Figure 2: An illustration of the hallucination classifier
training process. "Hi

j" represents the token embedding
of the ith token in the Kth Transformer layer.

indicates that the contextualized embedding vec-
tors of LLMs exhibit discernible differences during
hallucination and non-hallucination states. Further-
more, it is noteworthy that an effective distinction
can be achieved by merely utilizing the last token’s
contextualized embedding of the final layer. In
Section 6, we extensively explored the generality
and robustness of this method in validating exist-
ing open-source large models, and conducted more
detailed experiments.

3.2.2 Training Process
The MIND classifier is architecturally structured
as a Multilayer Perceptron (MLP) network. For
the activation functions of the MIND classifier, we
select the Rectified Linear Unit (ReLU). For the
training of the classifier, the input is a 1×n matrix,
where n represents the dimension of the LLM’s
contextualized embedding. We choose the contex-
tualized embeding of the last token of last Trans-
former layer as the input of the MIND classifier.
The output of the hallucination classifier is a binary
label, indicating whether the LLM is experiencing
a hallucination while generating a specific segment
of text. The process can be mathematically repre-
sented as follows:

P = MLP (ReLU(W ·H+ b)), (1)

where P is the hallucination label predicted by the
classifier, H is a 1 × n matrix representing the
selected hidden states, W and b are the weight
matrix and bias vector of the MLP respectively,
and MLP represents the function implemented by
the multilayer perceptron. For the loss function, we
use the Binary Cross-Entropy (BCE) Loss (De Boer
et al., 2005) to optimize the hallucination classifier,
which is defined as:

LBCE(yi, pi) = yi log(pi) + (1− yi) log(1− pi), (2)

where yi represents the actual label of the ith exam-
ple, and pi indicates the predicted probability that
the ith example belongs to the positive class.

3.3 Real-time Hallucination Detection
Upon successfully training the Hallucination Clas-
sifier as outlined in Section 3.2, the MIND frame-
work enable real-time hallucination detection in the
chosen LLM. Specifically, the Hallucination Clas-
sifier receives the contextualized embeddings of
each token during the LLM’s inference process. It
then outputs a probability indicating the probability
of hallucination in the LLM’s output.

4 The HELM Benchmark

In this section, we introduce the details of our pro-
posed new benchmark HELM: Hallucination detec-
tion Evaluation for multiple LLMs.

4.1 Data Generation
We select six widely-used, open-source LLMs
for annotation. These models range in complex-
ity, encompassing both base models and chat
models, with sizes varying from 6 billion to
40 billion parameters, including Falcon-40B (Al-
mazrouei et al., 2023), GPT-J-6B (Wang and
Komatsuzaki, 2021), LLaMA-2-Base-7B (Tou-
vron et al., 2023b), LLaMA-2-Chat-7B (Touvron
et al., 2023b), LLaMA-2-Chat-13B (Touvron et al.,
2023b), and OPT-6.7B (Zhang et al., 2022). For the
generation process, we start with randomly sam-
pling 50,000 articles from a high-quality Wikipedia
corpus: WikiText-103 (Merity et al., 2016)2. Fol-
lowing that, the selected LLMs were tasked with
prompt-based continuation writing. For base LLMs
and chat LLMs, we have designed different prompt
templates respectively which is detailed in Ap-
pendix B.

4.2 Human Annotation
Annotators are tasked with evaluating the truth-
fulness of the content generated by the LLM. We
only take factual errors into account, without con-
sidering grammatical mistakes or subjective opin-
ions3. Furthermore, annotators are instructed not
to use generative models (such as ChatGPT) for
assistance. Wikipedia is the primary source for
fact-checking, followed by Google’s search engine
when Wikipedia lacks relevant information.

The annotation process begins with annota-
tors manually dividing the passage into discrete

2The selected articles have no overlap with the training set
of MIND.

3For example, stating that "Ronald Reagan was a Presi-
dent of the United States" is a fact, whereas commenting on
"Ronald Reagan’s attractiveness" is a matter of opinion.

14382

Table 1: The statistics of the HELM dataset, where H=1
indicates that the sentence is annotated as hallucination, and
H=0 indicates non-hallucination. LLB stands for "LLaMA2-
Base", and LLC stands for "LLaMA2-Chat".

#Sentence #H=1 #H=0 #passage

Falcon-40B 521 261 260 196
GPTj-6B 572 172 400 208
LLB-7B 565 243 322 207
LLC-7B 617 308 309 204

LLC-13B 596 329 267 203
OPT-7b 566 181 385 201

Total 3582 1494 2088 1224

sentences. Annotators are then required to use
Wikipedia and Google search to verify the truthful-
ness of every sentence. If neither Wikipedia nor
the top 20 search engine results confirm the accu-
racy of a sentence, it is marked as ‘Unverifiable.’
Additionally, in instances of hallucinations, anno-
tators are required to indicate the location of the
hallucination within the sentence. Every sentence
and passage in the dataset was annotated by two
distinct annotators. Only the data with matching
annotations from both annotators was adopted.

4.3 Benchmark Analysis and Usage

The statistics of our proposed HELM dataset are
shown in Table 1. Our dataset ultimately com-
prises a total of 3342 sentences, each of which
corresponds to a label indicating whether it is a
hallucination. Additionally, it includes the com-
plete contextualized embeddings and hidden layer
activations of the LLM during the text generation
process. These 3342 sentences are derived from
1224 distinct passages. HELM provides two lev-
els of hallucination detection: Sentence Level and
Passage Level. Since every annotated sentence
originates from a passage, HELM dataset also en-
compasses a task for Passage Level Hallucination
Detection. The hallucination at the passage level
depends on its sentences. If any sentence within
a passage is identified as hallucinated, the entire
passage is classified as hallucinated.

To use our benchmark, users can either directly
use the code provided in our open-source GitHub 4

repository or download our data and implement it
themselves.

4We have publicly shared the HELM dataset
and code in this anonymous GitHub repository:
https://github.com/oneal2000/MIND/tree/main

5 Experimental Settings

5.1 Dataset and Metrics

We evaluate MIND and other baselines on our pro-
posed dataset HELM which is detailed in section
4. We use the AUC (Area Under the Curve) and the
Pearson correlation coefficient (corr) with human-
annotated relevance as evaluation metrics. We con-
ducted experiments at both the sentence-level and
the passage-level hallucination detection.

5.2 Baselines

We choose the following reference-free hallucina-
tion detection methods as baselines:

• Predictive Probability (PP) (Manakul et al.,
2023). A method for detecting LLMs’ hallucina-
tions based on the probability of tokens generated
by LLMs. PPmax, PPmin, and LN-PP (Length
Normalised PP) indicates max pooling, min pool-
ing and mean pooling methods to combine multi-
ple tokens generated by LLM respectively.

• Predictive Entropy (PE) (Kadavath et al., 2022)
PE is widely used to evaluate the uncertainty
inherent in the model’s output distribution (Kada-
vath et al., 2022). For each token ti in the LLM
output, the PE is defined as:

PE = −
∑

w̃∈W
pi(w̃) log pi(w̃), (3)

where pi(w̃) represents the likelihood of gen-
erating word w̃, and W is the vocabulary of
the LLM. PEmax, PEmin, LNPE (Malinin and
Gales, 2020) (Length Normalised PE) indicates
max pooling, min pooling and mean pooling
strategies to combine multiple tokens generated
by LLM respectively.

• SelfCheckGPT (Manakul et al., 2023) (SCG) is
a strong hallucination detection baseline that is
designed based on the principle that if an LLM
has knowledge of a given concept, sampled re-
sponses are likely to be similar and contain con-
sistent facts. SCG employs four distinct tech-
niques: SCG_BERTScore, SCG_QA, SCG_NLI,
and SCG_n-gram, each of which evaluates the
consistency of responses from the LLM.

• SAPLMA (Azaria and Mitchell, 2023) is a novel
hallucination detection training method, wherein
a classifier is trained using the activation values
derived from the hidden layers of LLMs.

14383

Table 2: The overall experimental results of MIND and other baselines on the HELM benchmark. The best results are
in bold. LLB stands for "LLaMA2-Base", SCG stands for "SelfCheckGPT", and LLC stands for "LLaMA2-Chat".
Falcon and GPT-J are Falcon-40B and GPT-J-6B, respectively.

HELM Sentence Level AUC HELM Passage Level AUC

Baselines Falcon GPT-J LLB-7B LLC-13B LLC-7B OPT-7B Falcon GPT-J LLB-7B LLC-13B LLC-7B OPT-7B
PE-max 0.6479 0.7497 0.6851 0.4439 0.4931 0.7263 0.8347 0.8875 0.8400 0.5933 0.6988 0.8851
PE-min 0.5757 0.7044 0.5878 0.3164 0.4411 0.7228 0.7115 0.7595 0.7587 0.5918 0.6409 0.8075
PP-max 0.5749 0.7074 0.5872 0.3013 0.4166 0.7302 0.7063 0.7585 0.7543 0.5344 0.6614 0.8100
PP-min 0.5546 0.7413 0.6025 0.3725 0.4479 0.7121 0.7649 0.8526 0.7969 0.5301 0.6870 0.8384
LNPP 0.5327 0.6927 0.6098 0.2673 0.3536 0.7206 0.7008 0.8039 0.7755 0.5522 0.5952 0.8374
LNPE 0.5442 0.6980 0.6175 0.3352 0.4114 0.7019 0.7145 0.8111 0.7776 0.5878 0.6704 0.8349

SCG-MQAG 0.5409 0.7873 0.6401 0.4040 0.4613 0.7593 0.7275 0.8827 0.8196 0.6672 0.7284 0.8594
SCG-NG 0.5218 0.7549 0.5365 0.2650 0.3105 0.7490 0.7124 0.8579 0.7155 0.4983 0.5771 0.8340
SCG-BS 0.6418 0.7424 0.6178 0.3026 0.3760 0.6594 0.7428 0.8165 0.7631 0.4760 0.5938 0.7597
SCG-NLI 0.6846 0.8680 0.7644 0.5834 0.6565 0.8103 0.8121 0.9384 0.8897 0.7559 0.7951 0.9096

SAPLMA 0.5128 0.6987 0.5777 0.3047 0.4066 0.6212 0.7236 0.8294 0.7823 0.5179 0.6265 0.7476
EUBHD 0.7509 0.7593 0.6479 0.4658 0.4805 0.7563 0.8659 0.8560 0.7859 0.6685 0.7126 0.8545
GPT4-HDM 0.6329 0.7843 0.6583 0.4108 0.5127 0.7972 0.8150 0.9183 0.8625 0.5900 0.7768 0.9196
MIND (ours) 0.7895 0.8774 0.7876 0.6043 0.6755 0.8835 0.8886 0.9599 0.9048 0.7175 0.8547 0.9449

HELM Sentence Level Corr HELM Passage Level Corr

Baselines Falcon GPT-J LLB-7B LLC-13B LLC-7B OPT-7B Falcon GPT-J LLB-7B LLC-13B LLC-7B OPT-7B
PE-max 0.2405 0.0839 0.2032 0.2375 0.2029 0.0573 0.3106 0.2660 0.2561 0.2258 0.1956 0.2180
PE-min 0.1204 -0.0316 0.0152 -0.0166 0.0438 0.0601 0.0855 -0.0645 0.0928 0.2382 0.0832 0.0823
PP-max 0.1193 -0.0467 0.0154 -0.0404 -0.0337 0.0732 0.0843 -0.0672 0.0837 -0.0426 0.1426 0.0943
PP-min 0.1504 0.2057 0.1842 0.1092 0.1287 0.1808 0.1815 0.2454 0.2231 0.0940 0.1668 0.1191
LNPP 0.0667 0.0773 0.1752 -0.0971 -0.0339 0.2075 0.0706 0.1601 0.2297 0.2188 0.1169 0.2417
LNPE 0.0936 0.0376 0.1461 0.0826 0.0858 0.1216 0.1020 0.1261 0.2018 0.2867 0.2258 0.1879

SCG-MQAG 0.0369 0.2306 0.1822 0.1820 0.1856 0.2151 -0.0851 0.3145 0.2278 0.2902 0.2581 0.2993
SCG-NG 0.0995 0.1770 0.0590 -0.0483 -0.1016 0.1167 0.0575 0.2222 0.0785 -0.1065 -0.1348 0.1021
SCG-BS 0.2293 0.0745 0.1268 -0.0136 -0.0378 -0.0563 0.2471 0.1288 0.1447 -0.0138 -0.0504 -0.0732
SCG-NLI 0.3789 0.4087 0.3809 0.3092 0.3835 0.3312 0.4062 0.4217 0.4389 0.4145 0.4005 0.4091

SAPLMA 0.0208 0.0456 -0.0015 -0.0003 0.0130 -0.1410 0.0900 0.1298 0.0271 -0.0714 0.0519 -0.1433
EUBHD 0.3161 0.1057 0.1170 0.2115 0.1043 0.1423 0.3447 0.1546 0.1693 0.3079 0.0512 0.1342
GPT4-HDM 0.1346 0.1096 0.0086 0.0769 0.1199 0.1678 0.0812 0.2539 0.1876 0.0530 0.1883 0.2372
MIND (ours) 0.5032 0.5244 0.4857 0.4273 0.4938 0.4760 0.5251 0.5296 0.4911 0.3823 0.4778 0.5636

• EUBHD (Zhang et al., 2023b). Enhanced
Uncertainty-Based Hallucination Detection is a
SOTA hallucination detection method based on
the uncertainty of LLMs’ outputs.

• GPT4-HDM (Li et al., 2023d). Through a sim-
ple prompt template, this method directly use
GPT-4 as hallucination detection model to judge
whether the text generated by other LLMs con-
tains hallucination. The prompt templates is de-
tailed in Appendix C.

5.3 Implementation Details
• NER: For the Named Entity Recognition (NER)

component of MIND, we follow the methodolo-
gies in prior studies (Liu et al., 2021; Tarcar et al.,
2019). Specifically, we utilized the Spacy li-
brary, a tool recognized for its effectiveness and
efficiency in NER as evidenced by previous re-
search (Shelar et al., 2020).

• MIND: The MIND classifiers employs a 4-layer
Multilayer Perceptron (MLP) network, featuring
a 20% dropout rate applied at the initial layer.
The architecture of this network is characterized
by a progressively decreasing hidden layer size,

with dimensions set at 256, 128, 64, and 2 for
each consecutive layer. In terms of activation
functions, the Rectified Linear Unit (ReLU) is
selected. The learning rate is set to 5e-4, the
weight decay is set to 1e-5, and the training batch
size is set to 32. For the ablation experiments of
important hyperparameters, we have discussed
in detail in Section 6.3.

• LLM Configuration: For the selected LLMs,
we directly download model parameters from
the official Hugging Face repositories for each
model, and use the code provided by Hugging
Face to conduct text generation. For the gener-
ation configuration, we use the official default
configurations provided by each model. We in-
troduce our selected models Appendix D.

6 Experimental Results

We conduct experiments to verify our our proposed
Hallucination Detection method: MIND. Specif-
ically, this section studies the following research
questions (RQ):

• RQ1: Is hallucination detection based on the in-
ternal states of Large Language Models (LLMs)

14384

broadly effective across existing LLMs?

• RQ2: How effective and efficient is MIND on
hallucination detection tasks?

• RQ3: For the training of hallucination detection
models, is it necessary to use training data gener-
ated by the model itself?

6.1 Overall Results of MIND and Baselines
In this subsection, we present a comprehensive eval-
uation of our MIND framework against baselines.
The objective is to answer Research Questions RQ1
and RQ2. Our experimental results are shown in
Table 2. The key findings are summarized as fol-
lows: (1) MIND, our proposed unsupervised in-
ternal states-based hallucination detection method,
demonstrates broad effectiveness in all six LLMs.
This result validates the hypothesis that hallucina-
tion detection based on the contextualized embed-
dings of LLMs is effective across various models.
(2) MIND outperforms existing reference-free hal-
lucination detection methods at both sentence and
passage levels. This superiority not only highlights
the robustness of MIND, but also underscores the
effectiveness of the unsupervised training frame-
work proposed in this study. (3) SCG-NLI emerged
as the second-best hallucination detection method
after MIND. Remarkably, it even surpasses MIND
in performance on certain models. However, a
critical drawback of SelfCheckGPT is its latency.
Specifically, the time taken to detect hallucination
in a response is ten times longer than generating the
response itself. This makes MIND a more viable
option for scenarios requiring real-time hallucina-
tion detection. (4) SAPLMA, though effective on
its own training dataset, exhibits suboptimal perfor-
mance when applied to the real-time hallucination
detection during the text generation process. This
could be attributed to the model’s overfitting to the
specific training data, which is not generated by the
LLM itself.

6.2 Efficiency
This section compares the efficiency of the MIND
classifier with other hallucination detection meth-
ods, focusing on LLaMA-7B-Chat. We examine
the average generation time for each question, and
the average time of these hallucination detection
methods take to detect hallucinations which are
demonstrated in Table 3. MIND is shown to be
highly efficient, taking only 3% of the LLM’s re-
sponse generation time for hallucination detection.

Table 3: Efficiency of MIND and Other Hallucination
Detection Baselines. This table presents the average
time taken to detect hallucinations in an LLM response
and the percentage of time spent on hallucination detec-
tion in the complete LLM response time.

LLaMA2-7B-Chat

Inference Time Percentage
LLM’s Response 1.52 s 100.0 %

PP & PE & EUBHD < 0.01 s 0.000 %
SCG-MQAG 27.06 s 1785 %
SCG-Ngram 15.66 s 1033 %
SCG-BertScore 27.29 s 1800 %
SCG-NLI 15.31 s 1010 %
GPT4 4.29 s 282.2 %
MIND 0.05 s 3.289 %

Table 4: Effectiveness of Training OPT-7B and
LLaMA2-Chat-7B with Training Data Generated by
Different Models. We utilized the HELM dataset and
used correlation (Corr) as evaluation metric. The best
results are in bold.

LLM Used for Generating Training Data

GPTJ MPT-7B OPT-7B LLB-7B LLC-7B

Sentence-level OPT 0.4117 0.2236 0.4760 0.4136 0.3312
Passage-level OPT 0.5001 0.2849 0.5636 0.4981 0.4349

Sentence-level LLC 0.2577 0.2696 0.2357 0.3811 0.4938
Passage-level LLC 0.3073 0.2048 0.2159 0.3429 0.4778

This makes MIND ideal for real-time applications,
unlike SelfCheckGPT, which is less efficient due to
requiring multiple LLM responses. Since the LLM
records the probability of generating each token
during response generation, methods like Predic-
tive Probability (PP) and Predictive Entropy (PE)
are easy to compute and require negligible time,
making them the least time-consuming. Nonethe-
less, when considering both efficiency and effec-
tiveness, MIND emerges as the superior reference-
free hallucination detection method.

6.3 Ablation Studies

6.3.1 Impact of Customized Training Data

This section focuses on the importance of incor-
porating model-specific training data to answer
RQ3. To be specific, we validate the impact of
customized training data by comparing the perfor-
mance of hallucination classifiers in the following
two settings. In the first setting, training data is
customized for the hallucination classifier of each
LLM. In this setting, the input to the classifier
is the internal state of the LLM during its text
generation process. In the second setting, we use

14385

Table 5: The performance of MIND at different sizes of
training data. We report the accuracy of the dev set.

#Num 1024 2048 3072 4096 5120

Accuracy 0.6929 0.7066 0.7158 0.7237 0.7192

Table 6: The performance of MIND at different depths
of the classifier. We report the accuracy of the dev set.

#Num 2 3 4 5 6

Accuracy 0.7157 0.7226 0.7291 0.7260 0.7248

existing training data that was generated by an-
other LLM. Then, this pre-existing data is input
into the target LLM. In this setting, the input to
the classifier is the internal state of the LLM
when encoding the pre-existing texts generated
by other LLMs. Table 4 presents the performance
of hallucination detection models for OPT-7B and
LLaMA-7B-Chat.

The experimental results indicate a clear trend:
customized training data significantly enhances the
performance of hallucination classifiers for both
OPT-7B and LLaMA2-Chat-7B models. This ob-
servation supports the hypothesis that training data
tailored to the specific language model can improve
its ability to identify hallucinations in generated
text. This implies that for a new model, it would
be advantageous to customize the hallucination de-
tection model using the MIND method tailored to
that specific model.

6.3.2 Impact of the Training Data Size
The training data for our proposed MIND model
is generated automatically, making it crucial to
determine the optimal amount of data to produce.
We conduct a systematic investigation into the im-
pact of training dataset size on model performance
which is detailed in Table 5. The experimental
result shows that increasing the training dataset
size from 1,024 to 4,096 labels improves accuracy,
suggesting that larger datasets enable the model to
learn more complex patterns. However, the benefit
plateaus and even slightly decreases after exceed-
ing 4,096 data points, indicating a threshold beyond
which additional data no longer improves perfor-
mance significantly.

6.3.3 Classifier Layer Depth
In this section, we explore the impact of varying
the depth of the classifier layer on the performance
of the MIND model. The depth, measured in terms

of the number of layers in the classifier, ranged
from 2 to 6 layers. The accuracy of the MIND
classifier on the development set was used as the
metric for assessing performance. The results of
this experiment are shown in Table 6. Initially, as
the number of layers increased from 2 to 4, there
was a slight improvement in accuracy. Specifically,
the model’s accuracy went from 0.7157 with two
layers to a peak of 0.7291 with four layers. How-
ever, the small difference between different num-
bers of layers indicates that the MIND classifier is
not sensitive to this hyperparameter of the number
of layers.

7 Related Work

7.1 Hallucination Detection

To tackle the issue of hallucinations in LLMs, re-
searchers have devised various methods for hallu-
cination detection. SelfCheckGPT (Manakul et al.,
2023) (SCG) is designed based on the principle
that if an LLM has knowledge of a given concept,
sampled responses are likely to be similar and con-
tain consistent facts. HaluEval (Li et al., 2023d)
represents a direct approach, where strong LLMs
like GPT4 are directly used to evaluate the output
of other LLMs. SAPLMA (Azaria and Mitchell,
2023) introduces human annotations to label hal-
lucinations ChatGPT outputs, then training a clas-
sifier that detects hallucinations in LLMs by ana-
lyzing their internal states. EU-HD (Zhang et al.,
2023b). Enhanced Uncertainty-Based Hallucina-
tion Detection is a SOTA hallucination detection
method based on the predictive probability and
LLM’s attention for each generated tokens.

7.2 Evaluation of Hallucination Detection

The purpose of the Hallucination Detection Eval-
uation (HDE) is to evaluate the effectiveness of
various Hallucination Detection Methods (HDMs).
The SelfCheckGPT dataset (Manakul et al., 2023)
utilizes GPT-3 to generate passages about individ-
uals from the WikiBio dataset, with manual anno-
tations assessing the factuality of these passages,
classifying them into major inaccurate, minor in-
accurate, and accurate categories. The True-False
dataset (Azaria and Mitchell, 2023) represents an-
other innovative approach, constructed based on
a database of instances with multiple factual at-
tributes. HaluEval (Li et al., 2023d) takes a differ-
ent approach by prompting GPT models to generate
hallucinatory texts, using prompts like, “I want you

14386

to act as a hallucination answer generator,” coupled
with human annotation. HADES (Liu et al., 2021)
employs a rule-based method to modify tokens in
Wikipedia articles to generate hallucination texts.

8 Conclusions and Future Works

In this paper, we introduce MIND, a novel unsu-
pervised approach leveraging the internal states
of Large Language Models (LLMs) for real-time
hallucination detection. Moreover, we propose
HELM, a comprehensive benchmark for halluci-
nation detection, incorporating outputs from six
diverse LLMs along with their internal states dur-
ing text generation.

9 Limitations

We acknowledge the limitations of this paper, par-
ticularly in the aspect of detecting hallucinations
using only the internal states of LLMs. While ef-
fective, this method has the potential for enhanced
accuracy. To address this, our future work will fo-
cus on integrating the internal states of LLMs with
their generated text. This combined approach aims
to improve the precision and reliability in identify-
ing and mitigating hallucinations in LLM outputs,
leading to more robust and accurate hallucination
detection methodologies.

10 Ethics Statement

In conducting this research, we have prioritized eth-
ical considerations at every stage to ensure the re-
sponsible development and application of AI tech-
nologies. In the development of MIND, our ap-
proach has been to create a reference-free, unsu-
pervised training framework that primarily utilizes
publicly available data sources, such as Wikipedia.
This methodological choice ensures that our re-
search does not rely on personally identifiable infor-
mation. We firmly believe in the principles of open
research and the scientific value of reproducibility.
To this end, we have made all models, data, and
code associated with our paper publicly available
on GitHub. This transparency not only facilitates
the verification of our findings by the community
but also encourages the application of our methods
in other contexts.

References
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-

shamsi, Alessandro Cappelli, Ruxandra Cojocaru,

Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. Falcon-40B: an open large language model
with state-of-the-art performance.

Amos Azaria and Tom Mitchell. 2023. The internal
state of an llm knows when its lying. arXiv preprint
arXiv:2304.13734.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206–2240. PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Jia Chen, Haitao Li, Weihang Su, Qingyao Ai, and
Yiqun Liu. 2023. Thuir at wsdm cup 2023 task
1: Unbiased learning to rank. arXiv preprint
arXiv:2304.12650.

Xuesong Chen, Ziyi Ye, Xiaohui Xie, Yiqun Liu, Xi-
aorong Gao, Weihang Su, Shuqi Zhu, Yike Sun, Min
Zhang, and Shaoping Ma. 2022. Web search via an
efficient and effective brain-machine interface. In
Proceedings of the Fifteenth ACM International Con-
ference on Web Search and Data Mining, pages 1569–
1572.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor,
and Reuven Y Rubinstein. 2005. A tutorial on the
cross-entropy method. Annals of operations research,
134:19–67.

Yan Fang, Jingtao Zhan, Qingyao Ai, Jiaxin Mao,
Weihang Su, Jia Chen, and Yiqun Liu. 2024.
Scaling laws for dense retrieval. arXiv preprint
arXiv:2403.18684.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

14387

Gautier Izacard and Edouard Grave. 2020. Leverag-
ing passage retrieval with generative models for
open domain question answering. arXiv preprint
arXiv:2007.01282.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1–38.

Zhengbao Jiang, Luyu Gao, Jun Araki, Haibo Ding,
Zhiruo Wang, Jamie Callan, and Graham Neubig.
2022. Retrieval as attention: End-to-end learning
of retrieval and reading within a single transformer.
arXiv preprint arXiv:2212.02027.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, et al. 2022. Language models
(mostly) know what they know. arXiv preprint
arXiv:2207.05221.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Haitao Li, Jia Chen, Weihang Su, Qingyao Ai, and
Yiqun Liu. 2023a. Towards better web search perfor-
mance: Pre-training, fine-tuning and learning to rank.
arXiv preprint arXiv:2303.04710.

Haitao Li, Weihang Su, Changyue Wang, Yueyue Wu,
Qingyao Ai, and Yiqun Liu. 2023b. Thuir@ col-
iee 2023: Incorporating structural knowledge into
pre-trained language models for legal case retrieval.
arXiv preprint arXiv:2305.06812.

Haitao Li, Changyue Wang, Weihang Su, Yueyue Wu,
Qingyao Ai, and Yiqun Liu. 2023c. Thuir@ coliee
2023: More parameters and legal knowledge for legal
case entailment. arXiv preprint arXiv:2305.06817.

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun
Nie, and Ji-Rong Wen. 2023d. Halueval: A large-
scale hallucination evaluation benchmark for large
language models. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6449–6464.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958.

Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao,
Zhifang Sui, Weizhu Chen, and Bill Dolan. 2021.
A token-level reference-free hallucination detection

benchmark for free-form text generation. arXiv
preprint arXiv:2104.08704.

Yixiao Ma, Yueyue Wu, Weihang Su, Qingyao Ai,
and Yiqun Liu. 2023. Caseencoder: A knowledge-
enhanced pre-trained model for legal case encoding.
arXiv preprint arXiv:2305.05393.

Andrey Malinin and Mark Gales. 2020. Uncertainty esti-
mation in autoregressive structured prediction. arXiv
preprint arXiv:2002.07650.

Potsawee Manakul, Adian Liusie, and Mark JF Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models. arXiv preprint arXiv:2303.08896.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. arXiv preprint
arXiv:2005.00661.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The RefinedWeb dataset
for Falcon LLM: outperforming curated corpora
with web data, and web data only. arXiv preprint
arXiv:2306.01116.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Hemlata Shelar, Gagandeep Kaur, Neha Heda, and
Poorva Agrawal. 2020. Named entity recognition ap-
proaches and their comparison for custom ner model.
Science & Technology Libraries, 39(3):324–337.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. 2023. Replug: Retrieval-
augmented black-box language models. arXiv
preprint arXiv:2301.12652.

Weihang Su, Qingyao Ai, Xiangsheng Li, Jia Chen,
Yiqun Liu, Xiaolong Wu, and Shengluan Hou. 2023a.
Wikiformer: Pre-training with structured information
of wikipedia for ad-hoc retrieval. arXiv preprint
arXiv:2312.10661.

Weihang Su, Qingyao Ai, Yueyue Wu, Yixiao Ma,
Haitao Li, and Yiqun Liu. 2023b. Caseformer:
Pre-training for legal case retrieval. arXiv preprint
arXiv:2311.00333.

Weihang Su, Xiangsheng Li, Yiqun Liu, Min Zhang,
and Shaoping Ma. 2023c. Thuir2 at ntcir-16 session
search (ss) task. arXiv preprint arXiv:2307.00250.

14388

http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116

Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu,
and Yiqun Liu. 2024. Dragin: Dynamic retrieval aug-
mented generation based on the real-time informa-
tion needs of large language models. arXiv preprint
arXiv:2403.10081.

Amogh Kamat Tarcar, Aashis Tiwari, Vineet Naique
Dhaimodker, Penjo Rebelo, Rahul Desai, and
Dattaraj Rao. 2019. Healthcare ner models us-
ing language model pretraining. arXiv preprint
arXiv:1910.11241.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Ziyi Ye, Xiaohui Xie, Qingyao Ai, Yiqun Liu, Zhihong
Wang, Weihang Su, and Min Zhang. 2024. Relevance
feedback with brain signals. ACM Transactions on
Information Systems, 42(4):1–37.

Hengran Zhang, Ruqing Zhang, Jiafeng Guo, Maarten
de Rijke, Yixing Fan, and Xueqi Cheng. 2023a.
From relevance to utility: Evidence retrieval with
feedback for fact verification. arXiv preprint
arXiv:2310.11675.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Tianhang Zhang, Lin Qiu, Qipeng Guo, Cheng Deng,
Yue Zhang, Zheng Zhang, Chenghu Zhou, Xinbing
Wang, and Luoyi Fu. 2023b. Enhancing uncertainty-
based hallucination detection with stronger focus.
arXiv preprint arXiv:2311.13230.

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona
Diab, Paco Guzman, Luke Zettlemoyer, and Marjan
Ghazvininejad. 2020. Detecting hallucinated con-
tent in conditional neural sequence generation. arXiv
preprint arXiv:2011.02593.

A Pseudocode Description of MIND

The pseudocode description of our proposed unsu-
pervised training data generation process is shown
in Algorithm 1.

B Prompt Template of the HELM Dataset

For the data generation process of our proposed
HELM dataset, the selected LLMs were tasked
with free-form generation. Specifically, the task
involved prompt-based continuation writing. For
base LLMs and chat LLMs5, we have designed
different prompt templates respectively.

For the base LLM, The prompt template is as
follows:

Prompt 1

This is a Wikipedia passage about [title].
[First sentence of that article].

For the chat LLM, The prompt template is as
follows:

Prompt 2

The following sentence is the first sentence
of a Wikipedia article titled [Title]. Please
continue writing the sentence below. [First
sentence of that article]

C Prompt Template of GPT4

Following the settings of Li et al. (Li et al., 2023d),
we directly use GPT-4 as hallucination detection
model to judge whether the text generated by other
LLMs contains hallucination through the following
prompt template:

Prompt 3

Given the following text span, your objec-
tive is to determine if the provided text con-
tains non-factual or hallucinated informa-
tion. You SHOULD give your judgment
based on the world knowledge.
Text span: [Provided Text]
Now, determine if the above text span con-
tains non-factual or hallucinated informa-
tion. The answer you give MUST be “Yes”
or “No”.

D Details of Our Selected LLMs

To validate the effectiveness of the approach utiliz-
ing the internal states of Large Language Models

5Base LLMs are language model that has been pre-trained
on a large corpus. On the other hand, the Chat LLM, be-
sides pre-training, also undergoes additional processes such
as instruction tuning to better align with conversational tasks.

14389

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

Algorithm 1 Unsupervised Training Data Generation for Hallucination Detection

1: Input: Language Model Li, Wikipedia Articles W = {w1, w2, ..., wn}
2: Output: Data Tuples D = {D1, D2, ..., Dn}
3: for each article wi ∈W do
4: Select random entity ei not at the beginning of any sentence
5: w

′
i ← truncate(wi, ei) ▷ Truncate wi at ei

6: Gi ← Li(w
′
i) ▷ Generate continuation with Li

7: Truncate Gi at the end of its first sentence
8: Record internal states Si during generation
9: if the beginning of Gi contains ei correctly then

10: Hi ← 0 ▷ Non-hallucination
11: else
12: Hi ← 1 ▷ Hallucination
13: end if
14: Di ← (Li, wi, Gi, Si, Hi) ▷ Form data tuple
15: end for

(LLMs) for hallucination detection across various
existing LLMs, we conducted experiments with as
many open-source LLMs as possible. Specifically,
this included the following 14 LLMs:

• GPT-J-6B (Wang and Komatsuzaki, 2021) is a 6
billion parameter, autoregressive text generation
model trained on The Pile corpus (Gao et al.,
2020).

• OPT-6.7B (Zhang et al., 2022). OPT is a collec-
tion of decoder-only pre-trained Transformers,
with models ranging from 125 million to 175 bil-
lion parameters. We choose OPT-6.7B from the
OPT series.

• LLaMA-2 (Touvron et al., 2023b) is a collec-
tion of pre-trained and fine-tuned LLMs ranging
in scale from 7 billion to 70 billion parameters.
This series includes fine-tuned LLMs, known as
Llama 2-Chat, specifically designed for optimal
performance in dialogue-based applications. We
choose LLaMA-2-Chat-7B, LLaMA-2-Base-
7B, LLaMA-2-Base-13B, and LLaMA-2-Chat-
13.

• Falcon (Almazrouei et al., 2023) comprises a
set of causal decoder-only models that have been
trained on a dataset of 1,000 billion tokens, which
includes data from RefinedWeb (Penedo et al.,
2023). Among the models in Falcon, we have
chosen Falcon-7B and Falcon-40B.

E Implementation Details

• NER: For the Named Entity Recognition (NER)
component of MIND, we follow the methodolo-

gies in prior studies (Liu et al., 2021; Tarcar et al.,
2019). Specifically, we utilized the Spacy li-
brary, a tool recognized for its effectiveness and
efficiency in NER as evidenced by previous re-
search (Shelar et al., 2020).

• MIND: The MIND classifiers employs a 4-layer
Multilayer Perceptron (MLP) network, featuring
a 20% dropout rate applied at the initial layer.
The architecture of this network is characterized
by a progressively decreasing hidden layer size,
with dimensions set at 256, 128, 64, and 2 for
each consecutive layer. In terms of activation
functions, the Rectified Linear Unit (ReLU) was
selected. The learning rate is set to 5e-4, the
weight decay is set to 1e-5, and the training batch
size is set to 32. For the ablation experiments of
important hyperparameters, we have discussed
in detail in Section 6.3.

• SCG: For the implementation of SelfCheckGPT
(SCG), we directly use the code and follow all
the hyperparameters from their official GitHub6.

• LLM Configuration: For the selected LLMs,
we directly download model parameters from
the official Hugging Face repositories for each
model, and use the code provided by Hugging
Face to conduct text generation. For the gener-
ation configuration, we use the official default
configurations provided by each model.

6https://github.com/potsawee/selfcheckgpt/tree/main

14390

F Discussion on Mitigating Hallucination

This paper focuses on hallucination detection and
the evaluation of hallucination detection methods.
However, in practical applications, it is indeed fea-
sible to use our proposed MIND Framework to mit-
igate hallucinations. Therefore, we briefly discuss
two potential methods to mitigate hallucinations
based on the MIND Framework, offering some
guidance for those in need.

Firstly, the MIND Classifier can be employed
as a re-ranker. The MIND Classifier outputs a
score indicating the likelihood of a hallucination
occurring in LLMs’ response. Thus, by utilizing a
sampling decoding method, an LLM can generate
multiple outputs for the same query. Subsequently,
the MIND Classifier can assess these outputs for
hallucinations, allowing the selection of the output
with the lowest probability of hallucination as the
final response.

Additionally, we can employ the dynamic
retrieval augmented generation (RAG) frame-
work (Khandelwal et al., 2019; Borgeaud et al.,
2022; Lewis et al., 2020; Guu et al., 2020; Izac-
ard and Grave, 2020; Jiang et al., 2022; Li et al.,
2023a; Shi et al., 2023; Su et al., 2023b; Chen et al.,
2023, 2022; Li et al., 2023c; Su et al., 2024; Fang
et al., 2024; Zhang et al., 2023a) to mitigate hallu-
cinations. The dynamic RAG method triggers the
retrieval module (Li et al., 2023b; Su et al., 2023a;
Ma et al., 2023; Ye et al., 2024; Su et al., 2023c)
during the inference process of an LLM, facilitat-
ing the retrieval of external knowledge. The MIND
Framework can provide guidance on when to trig-
ger the RAG. Specifically, when MIND indicates
a high probability of hallucination, the retrieval
module can be triggered and then add the retrieved
passages into the context of the LLM, allowing the
LLM to continue generating based on the retrieved
external knowledge.

14391

