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Abstract

Pre-trained Language Models (PLMs) have
shown impressive results in various Natural
Language Generation (NLG) tasks, such as
powering chatbots and generating stories. How-
ever, an ethical concern arises due to their
potential to produce verbatim copies of para-
graphs from their training data. This is problem-
atic as PLMs are trained on corpora constructed
by human authors. As such, there is a pressing
need for research to promote the generation of
original content by these models. In this study,
we introduce a unique “self-plagiarism” con-
trastive decoding strategy, aimed at boosting
the originality of text produced by PLMs. Our
method entails modifying prompts in LLMs to
develop an amateur model and a professional
model. Specifically, the amateur model is urged
to plagiarize using three plagiarism templates
we have designed, while the professional model
maintains its standard language model status.
This strategy employs prompts to stimulate the
model’s capacity to identify non-original can-
didate token combinations and subsequently
impose penalties. The application of this strat-
egy is integrated prior to the model’s final layer,
ensuring smooth integration with most exist-
ing PLMs (T5, GPT, LLaMA) without necessi-
tating further adjustments. Implementing our
strategy, we observe a significant decline in
non-original sequences comprised of more than
three words in the academic AASC dataset and
the story-based ROCStories dataset.

1 Introduction

Pre-trained language models (PLMs) have gained
widespread recognition for their unparalleled per-
formance in numerous downstream natural lan-
guage processing (NLP) tasks (Clinchant et al.,
2019; Li et al., 2022; Fang et al., 2023a,b,c; Zhang
et al., 2023; Pang et al., 2024), especially in text
generation (Hua and Wang, 2020; Zhang et al.,
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2020; Guan et al., 2021; Wang et al., 2024). With
the emergence of advanced PLMs, there is an in-
tensifying debate over the distinctiveness of texts
produced by these models as opposed to those writ-
ten by humans, a sentiment highlighted by (Mc-
Coy et al., 2023). Within this landscape, gener-
ative PLMs primarily fall into two architectural
paradigms. On the one hand, BART (Lewis et al.,
2020), T5 (Raffel et al., 2020), and other such pre-
trained language models (Song et al., 2019) serve
as quintessential representatives of the encoder-
decoder approach. On the other hand, OpenAI’s
GPT (Generative pre-trained Transformer) series
(Radford et al., 2019; Brown et al., 2020; Ouyang
et al., 2022) and Meta AI’s LLaMA series pre-
trained language models (Touvron et al., 2023a,b),
leveraging a decoder-only design, has carved out
a unique niche for itself. Both these architectural
categories of pre-trained language models have ex-
hibited impressive capabilities in natural language
understanding (Ebrahimi et al., 2022), and natu-
ral language generation (Rothe et al., 2021; Jiao
et al., 2023), solidifying their reputation as premier
commercial offerings. Because of their efficiency
and adaptability (Zhan et al., 2024), these models
have been widely adopted across diverse sectors,
including writing, and academic research. Nonethe-
less, the sophistication these models showcase in
text generation has ignited concerns regarding aca-
demic integrity, prompting many educational es-
tablishments to restrict their utilization in scholarly
activities.

We believe that the aforementioned issues
mainly occur because the content generated by lan-
guage models often lacks originality, as their out-
puts heavily rely on their training data. This might
lead the models to replicate or mimic the informa-
tion or patterns they encountered during training.
In areas where originality is highly valued, such as
academic writing or story generation, the outputs
from these models can sometimes be seen as pla-
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GPT2 output:

They are of the following form: [MATH] the distribution over all possible 
state sequences. The parameter vector [MATH] is trained

Input:

discriminatively to maximize the conditional log likelihood of the training 
data [MATH]

LLaMA2 output:

"Events" are extracted along with their event participants, e.g., "who did what 
to whom when and where? "

Input:

Events can have different properties such as the type of event, the time and 
place of the event and the participants. In order to represent the properties of 
the event, the Event…

Figure 1: Samples of academic writing generated by the
fine-tuned LLaMA2 and GPT2 PLMs using the AASC
dataset. Upon plagiarism analysis with Turnitin, both
models’ outputs showed significant overlaps (in Red),
implying a conspicuous absence of originality. [MATH]
indicates a masked math formula.

giaristic. In fact, earlier research has already high-
lighted the potential risks of intentional or uninten-
tional leakage of sensitive information within the
training sets of language models (Zanella-Béguelin
et al., 2020; Carlini et al., 2021; Brown et al., 2022).
This concern persists even during the fine-tuning
phases, as evidenced by Mireshghallah et al. (2022).
To further investigate the potential lack of original-
ity in PLMs outputs, we conduct fine-tuning on two
prominent generative PLMs, LLaMA2 and GPT2
pre-trained language models, using an academic
paper AASC1 dataset from the NLP domain. Test-
ing their outputs with Turnitin2 revealed significant
instances where the models reproduced segments
from the training set, as illustrated in Figure 1.

Currently, a considerable portion of research is
dedicated to determining whether the outputs from
PLMs display plagiarism or retain their original-
ity (Ferrero et al., 2017; Wahle et al., 2022; Lee
et al., 2023; Wu et al., 2024). However, there is
a noticeable lack of research focused directly on
the innate originality of content generated by these
PLMs. To address this void, we introduce a novel
generation approach named the "self-plagiarism"
(SP) contrastive decoding strategy, aimed at bol-
stering the inherent originality of text generated
by PLMs. This strategy builds upon the principles
delineated by Schick et al. (2021) and Chuang et al.
(2023), yet diverges from their methodologies. Ini-
tially, our approach shifts its focus from mitigating
model bias at the token level to accentuating origi-

1https://github.com/KMCS-NII/AASC
2https://www.turnitin.com/

nality at the paragraph level. A distinctive feature
of our method lies in the strategic emphasis on the
topmost layer, enriched with high-level knowledge.
Coupled with the extension of generation length,
our methodology encompasses a broader spectrum
of content uniqueness. This proves particularly
advantageous in domains like storytelling and aca-
demic writing, where the nuances of high-level
knowledge hold significant importance.

Secondly, we achieve an amateur model and a
professional model by adjusting the prompts of
the language models. For the amateur model, we
innovatively introduce three prompts, which orig-
inate from the three most common research cat-
egories in plagiarized literature: verbatim plagia-
rism, paraphrase plagiarism, and idea plagiarism.
The purpose of these prompts is to guide the model
to replicate the training data according to specific
plagiarism standards. On the other hand, the pro-
fessional model uses conventional prompts to en-
courage the model to generate normal text. On
this basis, we subtract the probability distribution
of the last layer of the two models and impose
penalties on tokens that show a higher probability
in a regulatory factor function, ensuring a balance
between following the prompts and maintaining
originality. Finally, we use our method on various
language models, including T5, GPT-2, LLaMA1,
and LLaMA2, on the academic dataset AASC and
ROCStories dataset. The results show a significant
reduction in non-original sequences of more than
three words generated by PLMs.

Our primary contributions are as follows:

• We reconfirm that even during the fine-tuning
phase, pre-trained language models still mani-
fest tendencies of plagiarism. This propensity
for un-originality is particularly evident in the
domain of academic writing.

• We innovatively introduce “self-plagiarism”
contrastive decoding strategy by adjusting the
prompts of the language models to achieve an
amateur model and professional model, and
subsequently penalizes the plagiarized tokens.
This approach significantly reduces the plagia-
rism rate and enhances originality.

• We showcase the efficacy of our approach in
augmenting the originality of the content pro-
duced by the models on the widely-used aca-
demic writing AASC dataset and ROCStories
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The following text contains exact copies of words or 
phrases without transformation language:

(1) Verbatim plagiarism

The following text contains synonymous substitution, 
word reordering, and back translation language:

(2) Paraphrase plagiarism

The following text contains reuse of the core idea by 
shortening or summarizing the original content language:

(3) Idea plagiarism

Figure 2: Prompts used for Self-plagiarizing.

dataset, providing valuable guidelines for sub-
sequent text generation endeavors.

2 Methodology

2.1 Definition of Language Modeling

Pre-trained autoregressive language model pθ(y|x)
is usually built based on the Transformer frame-
work and parametrized by θ. The pre-trained model
computes hi as a function of zi and the past activa-
tions in its left context:

hi = PLMθ(zi), (1)

where hi is the last layer which is used to compute
the distribution for the next token:

pθ(zi+1|h≤i) = Softmax(Wθhi), (2)

where Wθ is the pre-trained parameters matrix.
During the finetuning stage, we use the pre-

trained parameters θ to initialize the model where
pθ is a trainable language model distribution. The
finetuning performs gradient updates on the log-
likelihood objective:

arg
θ

max p(y|x; θ) =
∑

log pθ(zi|h<i), (3)

2.2 Plagiarism and Self-plagiarism Prompts

In the academic domain, plagiarism involves us-
ing someone else’s work, ideas, or expressions
and presenting them as one’s own without proper
acknowledgment. However, our work focuses
on addressing plagiarism in the context of large
models—specifically, reducing the straightforward
replication of training data by these models. We
refer to this as enhancing model’s originality.

Inspired by Lee et al. (2023), they introduce
three most commonly studied categories in pla-
giarism literature: Verbatim, Paraphrase, and Idea
plagiarism. They evaluate both pre-trained and
fine-tuned models’ plagiarism tendencies in these
categories. Their findings suggest language models
do not just mimic training samples but can also
rephrase or borrow ideas from original texts. In-
formed by their insights, we craft Self-plagiarizing
prompts, tailor to guide the model in replicating
training data based on the designated plagiarism
criteria. Figure 2 illustrates our specific prompt
templates.

Formally, let the input text be represented as
X . Our self-plagiarizing templates encompass text
components denoted by P , which can manifest in
one or more of the ways listed below:

• Exact copies of words or phrases without
transformation.

• Synonymous substitution, word reordering,
and back translation.

• Reuse of the core idea by shortening or sum-
marizing the original content.

2.3 Amateur LM and Expert LM
Upon finalizing the design of the plagiarism
prompting template, our primary objective is to con-
struct a robustly flawed amateur model, alongside
a proficient expert model. In particular, we denote
p(Y |X) as the original predictive probability distri-
bution of the input X, and p(Y |sp(X,P )) signifies
the probability of the subsequent word given input
X in self-plagiarizing prompt templates. This self-
plagiarizing input urges the language model to man-
ifest plagiarized behavior, laying the foundation for
both the amateur and expert models we have devel-
oped. The amateur model is established based on
p(Y |X), and it emulates self-plagiarizing behav-
ior to formulate a predictive probability distribu-
tion pAMA(Y |sp(X,P )) for input X. Conversely,
we provide default system prompts for the expert
model, or no prompt at all for models that do not
support system prompts. The expert model draws
insights from the original predictive probability
distribution pEXP (Y |X) to deliver more precise
predictions on input X.

2.4 Contrastive Decoding
Figure 3 displays the detailed framework of our
methodology. The created amateur model tends
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Figure 3: PLMs are prompted to function as both an expert LM and an amateur LM by utilizing SP prompts and
default output. The optimized prediction probability is then obtained through contrastive decoding.

to produce plagiarized words or fragments more
than the expert model. When both the expert model
and the amateur model assign a higher probability
score to a "repeating token", the expert model is
more likely to also assign high scores to other good
tokens with low repetitiveness (Li et al., 2023).
However, the amateur plagiarism model does not
behave this way, which means that it is more prone
to be influenced by plagiarism prompts.

To make the text generated more original, it is
necessary to resist the occurrence of plagiarism.
Therefore, we propose a contrastive objective func-
tion:

∆(Y,X, P ) = pEXP (Y |X)−pAMA(Y |sp(X,P )),
(4)

In cases of multiple prompts used simultaneously,
we keep the largest difference.

∆(Y,X, P ) = min
P

∆(Y,X, P ), (5)

A plagiarized sentence is more likely to receive a
higher probability from pAMA(Y |sp(X,P )) than
pEXP (Y |X). Hence, for those exact copies of
words or phrases, ∆(Y,X, P ) will be lower than
zero. For those original expressions, ∆(Y,X, P )
will be greater than zero.

However, it’s not necessary to dismiss all results
produced by amateur models. To address this, we
follow Schick et al. (2021) to design a regulatory

factor, denoted as α, a scale function is used to
scale those differences to a number between 0 to 1.

α(x) =

{
1, x > 0

eλ·x, otherwise
(6)

where λ is a hyperparameter, x is contrastive objec-
tive. For those original expressions (∆(Y,X, P ) >
0), their probability will be kept the same, while for
those exact copies of words or phrases , eλ·∆(Y,X,P )

will be lower than 1.
The result will be used to adjust the original pre-

dict the probability distribution p(Y |X). Finally,
model will generate output based on p̃(Y |X):

p̃(Y |X) ∝ α(∆(Y,X, P )) · p(Y |X). (7)

3 Experiments

Considering the vast amount of training data used
for pre-trained models and the lack of transparency
regarding the specific datasets utilized, it is chal-
lenging to detect plagiarize on models that are ei-
ther not fine-tuned or proprietary. To effectively
address the issue, we opt to fine-tune open-source
models on publicly available datasets and subse-
quently assess their plagiarism on these fine-tuned
datasets. This strategy allows us to rigorously val-
idate our method and its efficacy in detecting and
mitigating plagiarism in PLMs.

3.1 Dataset
We utilize the ROCStories training dataset
(Mostafazadeh et al., 2016) and the ACL Anthology
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Dataset Train Eval Test

ROCStories 98,161 1572 1,871
AASC 282,332 2812 2,874

Table 1: Summary of the Experimental Datasets

Sentence Corpus (AASC)3 during the fine-tuning
phase of the language models. For the ROCStories
dataset, we strictly follow the partition outlined in
(Mostafazadeh et al., 2016), dividing it into train-
ing, testing, and development sets. The AASC
dataset constitutes a curated compilation of text ex-
cerpts extracted from scientific papers in the field
of natural language processing. Drawn from PDF-
format papers published within the ACL Anthology
between 2000 and 2018, each paper is segmented
into individual sentences, categorized according to
their respective originating sections. To construct
our training set, we chose sections including Ab-
stract, Introduction, Background, Method, Result,
and Discussion. For evaluation and testing, a cho-
sen 1% of sentences were randomly extracted from
the corpus. A detailed data statistics can be found
in Table 1.

3.2 Model and Training

With due consideration for performance optimiza-
tion and the judicious allocation of computational
resources, our methodological framework revolves
around the utilization of LLaMA-7b series pre-
trained language models (Touvron et al., 2023a,b),
GPT-2 large (Radford et al., 2019) and T5 large
(Raffel et al., 2020) as baseline models. Our train-
ing process leverages the computational power of
four A100 or V100 GPUs. Both GPT-2 and T5
models undergo fine-tuning over a span of five
epochs, employing two distinct datasets. Because
of limitation of computing resource, LLaMA series
are fine-tuned over 3 epochs with Alpaca-LoRA.4

The foundational pre-trained models and training
scripts are sourced from the Huggingface reposi-
tory.5 Appendix A presents a detailed account of
the hyper-parameters used in the training process.

3.3 Evaluation

We employ three distinct evaluation ways: Genera-
tion Originality Test (GOT) (Brooks and Youssef,
2021), Turnitin , and human evaluation. GOT is

3https://github.com/KMCS-NII/AASC
4https://github.com/tloen/alpaca-lora
5https://github.com/huggingface/transformers

an n-gram automated test for assessing originality.
It constructs an original set by extracting unique
n-gram fragments from the training set and subse-
quently examines whether the fragments generated
in the test output are contained within this orig-
inal set (see Appendix B). We apply GOT to all
models on both datasets. To further evaluate if
our approach effectively mitigates plagiarism in
academic writing and enhances the model’s origi-
nality, we utilize Turnitin, a widely used academic
plagiarism detection software, specifically on the
AASC academic dataset. For human evaluation,
we enlist the feedback of two volunteers to assess
the impact of our method on the coherence (the
logical connection and content association between
sentences) and fluency (grammar error, naturalness,
and writing style) of the model’s output. Appendix
C presents a detailed definition of coherence and
fluency, as well as evaluation template and exam-
ples.

4 Results

4.1 Evaluation on GOT

Figures 4 illustrate the comparative analysis of
output dissimilarity between the four pivotal mod-
els, evaluated using the GOT metric. Appendix
D presents illustrative instances of input and out-
put. In terms of overarching trends, a discernible
pattern emerges: the resemblance between model-
generated texts diminishes in opposite proportion
to the length of the identified segments. The occur-
rence of text displaying similarity, spanning more
than seven consecutive words, becomes exceed-
ingly rare. Moreover, the similarity reduction due
to the SP contrastive decoding strategy decreases
with increasing segment length. All of the four
models show a lower similarity rate on AASC than
on ROCStories. We think the reason lies on ROC-
Stories has a more common used vocabulary, while
the inherent limitations of the SP contrastive de-
coding strategy inadvertently constrain the range of
potential candidates for model predictions, prompt-
ing a selection bias towards words that are more
prone to detection by the GOT algorithm.

Within the context of the dataset evaluated
through ROCStories analysis, LLaMA series show
an overall lower similarity, indicates a better orig-
inality of large model. GPT-2 large consistently
exhibits a reduction of over one percent in simi-
larity across all segment lengths up to five words.
In contrast, T5 large deviates from this trajectory,
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Fluency-1

ൈᬿ 3 4 5 6 7 8

default 9.26% 4.65% 1.36% 0.36% 0.09% 0.03%

Our Method 9.00% 3.64% 0.94% 0.26% 0.06% 0.01%
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11.0%

3 4 5 6 7
0.06%0.26%

0.94%

3.64%

9%

0.09%0.36%
1.36%

4.65%

9.26%

Default Our Method

(a) GPT-2 large on AASC Dataset

Fluency-1-1

ൈᬿ 3 4 5 6 7 8

default 16.72% 10.11% 4.92% 2.16% 0.89% 0.03%

Our Method 15.61% 8.85% 3.77% 1.51% 0.59% 0.01%
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(b) GPT-2 large on ROCStories Dataset
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(c) T5 large on AASC Dataset
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(d) T5 large on ROCStories Dataset

Fluency-1-3

ൈᬿ

default

Our Method

ൈᬿ

Si
m

ila
ri

ty

0.0%

3.7%

7.3%

11.0%

3 4 5 6 7

0.09%0.29%
1.14%

4.18%

9.31%

0.39%0.67%

1.88%

5.45%

9.82%

(e) LLaMA1 on AASC Dataset
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(h) LLaMA2 on ROCStories Dataset

�1

Figure 4: Evaluation results of the fine-tuned GPT-2 large, T5 large, LLaMA1 and LLaMA2 PLMs on the
ROCStories and AASC datasets using GOT Metric. Our proposed method exhibits reduced plagiarism across
various fragments lengths compared to the default, highlighting its enhanced originality.

exhibiting less similarity decreases when fragment
length is higher than five, but maitain a lower simi-
larity rate at the same time, which means T5 takes
an advantage on similarity when generating a long
sentence, also makes a discount on the performance
of SP contrastive decoding strategy.

4.2 Evaluation by Turnitin Check on AASC
test set

We collate the output texts generated by LLaMA2,
GPT-2 and T5 on the AASC dataset. Subsequently,
these generated texts are systematically uploaded
onto the Turnitin platform to undergo rigorous orig-
inality assessments. Finally, we analyze the out-
comes of these Turnitin evaluations. Table 2 show-
cases the assessment outcomes rendered by Tur-
nitin. For all of the three fine-tuned pre-trained
models, our proposed method yields a at least 3%

Model LLaMA2 GPT2 large T5 large

Default 12% 5% 6%
Our Method 4% 2% 3%

Table 2: Turnitin Similarity Check on the AASC dataset.
Our method consistently achieves a minimum 3% re-
duction in the similarity of the model’s output text.

decrease in similarity rates. This empirical valida-
tion through Turnitin lends robust support to the
practical efficacy of our proposed SP contrastive de-
coding strategy, confirming its effectiveness within
real-world applications.

4.3 Human Evaluation

We average the scores of the two volunteers for the
model evaluation. The results, outlined in Table
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Coherence Fluency

default SPCD default SPCD

A_T5 83.5% 88.5% 87.3% 87.2%
A_LLaMA2 86.5% 88.0% 82.0% 83.0%
R_GPT2 76.8% 76.8% 74.5% 75.3%
R_LLaMA2 92.3% 87.5% 87.5% 85.3%

Table 3: Human evaluation of coherence and fluency
on LLaMA2, GPT2-Large and T5-Large. The nota-
tion “A_model” refers to the fine-tuned model using the
AASC dataset, while “R_model” denotes the fine-tuned
model using the ROCStories dataset, SPCD means SP
contrastive decoding strategy.

3, demonstrate that, in the majority of cases, our
method yields comparable results in coherence and
fluency. Notably, it even exhibits higher coherence
on the AASC dataset. We attribute this to the ro-
bustness of pre-trained language models (PLMs),
which can generate coherent and fluent text even
when certain tokens are penalized. This suggests
that our method has minimal negative effects on
the coherence and fluency of the model’s output,
successfully preserving the natural flow and under-
standability of the generated content.

5 Ablation study

5.1 Impact of Self-plagiarism Prompts
To independently verify the impact of self-
plagiarizing prompts, we design ablation experi-
ments using LLaMA2 with both default system
prompts and self-plagiarizing prompts, specifi-
cally:

• The following text contains exact copies of
words or phrases without transformation of
language:

We then compare the similarity of the output results.
The findings, depicted in Figure 5, indicate that
the similarity of the outputs generated with self-
plagiarizing prompts is higher across all fragment
lengths compared to those generated with default
prompts. This demonstrates the effectiveness of
the contrastive decoding strategy.

5.2 Impact of Varying Prompt Numbers
To comprehensively comprehend the influence of
prompt quantity on the SP contrastive decoding
strategy’s efficacy, we conduct a meticulous evalu-
ation using GPT-2 large PLM on the ROCStories
dataset, modulating the number of prompts as the
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Figure 5: Impact of Self-plagiarism Prompts. When
adding only self-plagiarism prompt, the similarity score
consistently increase.
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Figure 6: Impact of Varying Prompt Numbers. When
adding three prompts, the similarity score reaches its
lowest point.

independent variable. As depicted in Figure 6, our
findings reveal a consistent trend: the incorporation
of the SP contrastive decoding strategy invariably
leads to a reduction in the similarity of the gener-
ated texts across all test instances. This demon-
strates that our approach enhances the originality
of content produced by PLMs.

Upon augmenting the prompts to three, a slight
augmentation in performance arrives. This en-
hancement emerges when the fragment length ex-
ceeds three words. This empirical observation
underscores the pivotal role that sufficiently com-
prehensive prompts play in adeptly guiding the
model’s generation process. This nexus between
prompt comprehensiveness and algorithmic effi-
cacy underscores that the SP contrastive decoding
strategy can achieve heightened performance lev-
els with a more elaborate array of prompts. This
augmentation manifests as a reduction in similarity
across an array of test cases, reinforcing the inte-
gral role of robust and all-encompassing prompts in
enhancing the overall efficacy of the SP contrastive
decoding strategy.

5.3 Impact of Prompt Template
We evaluate the performance of LLaMA2 on the
AASC dataset using various prompts, as depicted in
Figure 7. In the "Name Only" template, we stream-
line the detailed definitions of the three types of
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Figure 7: Impact of Prompt Template. A more spe-
cific prompt, along with a higher quantity of prompts,
contributes to a more significant improvement in perfor-
mance.

plagiarism to include only their names, while the
"Detail Definition" template retains the same for-
mat as in the previous experiment. Importantly, the
multi-prompt condition, which includes both tem-
plates, outperformes other control groups. These
findings highlight that a more specific prompt and
a higher quantity of prompts contribute to a more
substantial improvement in performance.

6 Related Work

6.1 Plagiarism and Memorization in PLMs

Numerous studies have consistently shown that
pre-trained language models have a tendency to
memorize and plagiarize content from their train-
ing data. The study by Brown et al. (2022) under-
scores the potential risk of intentional or uninten-
tional disclosure of sensitive information from a
model’s training set. Pioneering research, such as
that by Zanella-Béguelin et al. (2020) and Carlini
et al. (2021), has revealed the extensive ability of
large-scale models to internalize training samples
during pre-training, making them especially suscep-
tible to membership inference and data extraction
attacks. Importantly, a significant portion of the
training datasets used for language model training
are culled from the Internet, often without obtain-
ing clear consent from the original content creators
Brown et al. (2022). Lee et al. (2023) evidence that
PLMs do reproduce content from training samples,
encompassing all three classifications of plagia-
rism. More recently, McCoy et al. (2023) explore
the novelty of machine-produced texts and con-
clude that neural language models have the knack
for weaving familiar components into fresh con-
tent, rather than merely echoing training samples.
Collectively, these studies illuminate the undeni-
able fact that the outputs of PLMs do draw heavily
from their training samples. This sheds light on the
deep reliance of pre-trained language models on

their training data, underscoring their limitations in
terms of innovation and originality.

6.2 Plagiarism Detection for LMs

Plagiarism detection in language models refers
to determining whether the model’s output repli-
cates content from its training data. To identify
if machine-generated texts directly “plagiarize"
from its training set, researchers have developed
a multitude of detection techniques. For instance,
Bensalem et al. (2014) introduce an innovative,
language-agnostic plagiarism detection approach,
dubbed the n-gram class method, which relies on
a novel text representation. Küppers and Conrad
(2012) gauge the Dice coefficient for 250-character
blocks between passage pairs, while Shrestha and
Solorio (2013) employ n-grams to compute the
Jaccard similarity. Relying on Convolutional Neu-
ral Networks, Agarwal et al. (2018) extract re-
gional information from n-grams and use Recurrent
Neural Networks to grasp long-term dependencies.
Alzahrani (2015) identify candidate documents by
searching for exact duplicated sequences and ana-
lyze the similarity of overlapping 8-grams. In the
context of generation tasks lacking standard auto-
matic measures, Brooks and Youssef (2021) pro-
pose an automated originality testing method. Re-
cently, Lee et al. (2023) embrace a combination of
traditional similarity metrics and cutting-edge mod-
els, aiming to enhance the efficacy of plagiarism
detection. While these studies focus on pinpointing
models’ plagiaristic behaviors, the question of how
to amplify the originality of the generated content
has remained unexplored.

6.3 Contrastive Decoding

Li et al. (2023) use an amateur language model
(LM) to aid an expert LM in generating coherent
text. The work of O’Brien and Lewis (2023) ad-
ditionally supports the efficacy of contrastive de-
coding in text generation. In our approach, we
integrate their concept into downstream tasks. We
use prompts to encourage model plagiarism. This
allows us to utilize a single PLM, comparing its
predictions when conditioned by opposing prompts,
thereby discerning and refining the model’s re-
sponses. In a related vein, Chuang et al. (2023)
propose a contrastive decoding approach, empha-
sizing the disparity in logits between a higher layer
and a lower layer to derive the output probability
over the next word. Additionally, Dai et al. (2022)
discover the presence of “knowledge neurons” dis-
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tributed predominantly in the topmost layers of
pre-trained BERT models. Building upon these
insights, our work adopts a similar idea, but just
leveraging knowledge from the topmost layer to
penalize plagiarized tokens. This will contribute to
the improving of originality of model’s generation.

Conclusion

In this study, we emphasize once again the sus-
ceptibility of fine-tuned PLMs to display plagia-
rism tendencies and replicate content from their
training sets. This observation applies to both
encoder-decoder and decoder-only architectures.
These findings highlight the potential risks linked
to the utilization of PLMs in sensitive domains like
academic writing and storytelling. To tackle the
problem of model plagiarism and boost its orig-
inality, we introduce an approach involving the
introduction of three plagiarism prompts. These
prompts guide the model to initially replicate train-
ing data in accordance with plagiarism prompts,
effectively functioning as an amateur model. Si-
multaneously, penalties are applied to tokens that
show increased probabilities in a designated func-
tion, thereby enhancing the overall originality of
the generated text. Implementing the proposed
approach results in a significant reduction in the
generation of non-original sequences, particularly
those with over three-word fragments, across both
the AASC and ROCStories datasets using PLMs.
The alignment of these outcomes offers a robust
evaluation of our proposed SP contrastive decoding
strategy’s ability to ensure the originality of gener-
ated text. Furthermore, human evaluation suggests
that our method has minimal adverse effects on
the coherence and fluency of the output from large
pre-trained models. This comprehensive validation
highlights the strength and practical utility of our
proposed approach in addressing plagiarism risks
in NLP tasks.

Limitations

Due to computational limitations, we can not test
SP contrastive decoding strategy on larger pre-
trained models like GPT-3 (Brown et al., 2020).
This will be a focus of our future work. Given the
opacity of the training data and the high complexity
of the GOT algorithm, we opt not to validate our
method on base models without fine-tuning. This
is an area we plan to address and improve upon
in future work. The primary constraint inherent

to our approach lies in its theoretical inability to
entirely eradicate plagiarism. Furthermore, given
its prompt-based nature, the efficacy of the SP con-
trastive decoding strategy is contingent upon the
model’s inherent comprehension capacity. This
dependence implies that its performance might be
less optimal when applied to models outside the
realm of PLMs. Another potential concern with
the SP contrastive decoding strategy is its inherent
need to prompt the model to generate predictions
contrary to the intended outcome. This complicates
the algorithm’s use for purposes other than counter-
plagiarism unless a consistently opposing directive
is employed.
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A Hyper-parameters for training

As shown in table 5, in the fine-tuning process of
both LLaMA1 and LLaMA2 using both the AASC
and ROCStories datasets, specific hyperparameters
were employed. These include a learning rate of
1e-4, a batch size of 4, a LORA-R of 8, a LORA-
Alpha of 16, and a LORA-Dropout of 0.05. For
the fine-tuning of GPT-2 with the AASC dataset,
a learning rate of 5e-4 is adopted. The block size
is configured at 128, and a batch size of 16 per de-
vice is instituted, further compounded by a gradient
accumulation step count of 2. Conversely, for the
fine-tuning of GPT-2 using the ROCStories dataset,
default learning rate settings are maintained. The
block size is established at 60, with a batch size of
128 per device and a gradient accumulation step
count of 2. As for the T5 model, the batch size is
set to 24 per device. During the fine-tuning phase
on the AASC dataset, a learning rate of 0.001 is em-
ployed, coupled with a gradient accumulation step
count of 4. Correspondingly, for the ROCStories
dataset, the learning rate is maintained at 1e-4, and
the gradient accumulation step count is retained at
2.

B GOT Algorithm

Table 4 provides the pseudo code of the Generation
Originality Test (GOT) algorithm. We utilized this
as the basis for implementing the Python script
of the GOT algorithm for conducting similarity
testing.

GOT Algorithm: Detect similar fragments

Input: Input Sentences X , List of the sentences S,
Original set O
Result: Similar fragments R

1 Initialize R as empty list
2 foreach sentence in X do
3 Get length of sentence as sl

// Define a sliding window of length wl
4 for wl = 2 to sl do

// Move the window, and extract fragments
5 for i = 0 to sl - wl +1 do
6 Extract fragment from sentence
7 if fragment in O then
8 Add fragment to R
9 return R

Table 4: GOT Algorithm.

C Human Evaluation

C.1 Evaluation Metric
In this section, we provide definitions for coher-
ence and fluency, breaking them down into specific
components:

Coherence:

• Content Association: Indicates whether the
output sentence is related to the content of the
source sentence.

• Logical Coherence: Rates the natural degree
of logical connection between the output sen-
tence and the source sentence.

Fluency:

• Grammar Errors: Indicates whether the output
sentence contains grammar errors.

• Naturalness and Vividness: Assesses whether
the language of the output sentence is natural
and vivid, as opposed to being stiff or verbose.

• Writing Style: Examines whether the output
sentence aligns with the style of academic
papers or narrative storytelling.

C.2 Template of Human Evaluation
Figure 8 illustrates the template utilized for manual
evaluation alongside four concrete examples. It
is pertinent to note that due to the recruitment of
two volunteer assessors who are native Chinese-
speaking doctoral candidates, certain rule explana-
tions are presented in Chinese. The test sentences
were randomly sampled from model outputs. Addi-
tionally, the identities of the three models have been
concealed to uphold the integrity and fairness of the
evaluation process. This methodology ensures an
unbiased assessment of model performance, safe-
guarding against potential predispositions or biases
associated with prior knowledge of specific model
identities.

D Example outputs

Table 6 and 7 elucidates a collection of exemplars
encompassing input texts and corresponding out-
puts, both with and without the integration of the
SP contrastive decoding strategy, derived from both
fine-tuned LLaMA2, GPT-2 large and T5 large
pre-trained models across the two distinct datasets
(ROCStories and AASC datasets). Evidently, all
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Config. LLaMA1 & LLaMA2 GPT-2 Large T5 Large

Dataset AASC & ROCStories AASC ROCStories AASC ROCStories
GPU A100 * 4 V100 * 4 V100 * 4 V100 * 4 V100 * 4
Learning Rate 1e-4 5e-4 1e-5 1e-3 1e-4
Batch Size 4 16 128 24 24
Epochs 3 5 5 5 5
Block Size - 128 60 - -
Gradient Accu. - 2 2 4 2
LORA-R 8 - - - -
LORA-Alpha 16 - - - -
LORA-Dropout 0.05 - - - -

Table 5: Hyper-parameters for training LLaMA1, LLaMA2, GPT-2 Large and T5 Large models. Gradient Accu.
means gradient accumulation steps. - means not applicable or default setting.

Figure 8: Template and examples of human evaluation.

instances of SP contrastive decoding strategy gen-
erated outputs aptly maintain logical coherence
and textual fluency while effectively circumventing
plagiarism. This substantiates the inherent com-
patibility of the SP contrastive decoding strategy
with models underpinning disparate architectures,
as well as its efficacy within divergent text genera-
tion domains. This robustness further underscores
the algorithm’s commendable generalization poten-
tial. However, it is imperative to acknowledge a
potential drawback: the proposed SP contrastive
decoding strategy’s direct influence on altering the
content and conceptual structure of the output text.
Consequently, the algorithm may exhibit subopti-
mal performance within certain generation contexts
where the content or conceptual direction is explic-

itly specified or mandated.

14445



LLaMA2

Input
I was sick of being unemployed. I decided it was time to get a job. I
scoured listings on the internet and sent out resumes. Finally, a company
asked me to come in for an interview.

Default Output
I was so happy. When I got there, the receptionist gave me a clipboard
with a bunch of paperwork on it and said I had to fill it out

SPCD Output
I was thrilled. I prepared for the meeting. I made sure to have my hair
and clothes looking great. I had to look my best to get the job.

GPT-2

Input
Thomas lost his job three weeks ago. He had no idea how he was going
to pay his rent. His friend told him about a website that paid five dollars
per blog. Thomas didn’t think he could raise five hundred dollars there.

Default Output
He asked his friends what they thought would happen. They told him
that they were going to hire him.

SPCD Output
He got five hundred dollars together and started the website. He now
has a website and is paid to write about things he knows!

T5

Input
Tim was fishing on the bank. He felt a bit on his line. He yanked up real
hard. The fish on his line flew out of the water.

Default Output
Tim let go of his hook. He was happy he was finally able to reel in his
fish.

SPCD Output He yanked it again, this time a lot harder. The line snapped in half.

Table 6: Example outputs from fine-tuned LLaMA2, GPT-2 large and T5 large PLMs on ROCStories. Text segments
in red indicate plagiarism fragments identified by GOT metric. Results suggest that our proposed SP contrastive
decoding strategy enhances the originality of text generated by PLMs, effectively mitigating plagiarism.
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LLaMA2

Input
This paper deals with predictions which extend to the next several words
in the text.

Default Output
The model is based on an artificial neural network with a hidden layer
of sigmoidal units. The network has two outputs, one of which predicts
the next character and...

SPCD Output
Predictive text is the technology behind the texting feature in many
cellphones and other smartphones.

GPT-2

Input
If the classified user tweets achieved an accuracy above a threshold (0.7),
the user model was applied on the authored

Default Output
users in the test set with equal weight. To assess the generalization
capability of our method we performed additional experiments in which
we used a single group

SPCD Output
user tweets. The user tweets classified with greater accuracy were then
sent to the corresponding authored user tweets

T5

Input
First we computed baseline scores using the approaches described in
Section 3.2. All resulting scores are listed in Table 2.

Default Output
We also included baselines computed using the same approach as in the
English subtask. We also included the results obtained when using the
baselines

SPCD Output
The first row of Table 2 shows the baseline scores obtained using the
naive approach (Naive).

Table 7: Example outputs from fine-tuned LLaMA2, GPT-2 large and T5 large PLMs on AASC. Text segments
in red indicate plagiarism fragments identified by GOT metric. Results suggest that our proposed SP contrastive
decoding strategy enhances the originality of text generated by PLMs, effectively mitigating plagiarism.
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