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Abstract

Deepfakes, particularly in the auditory domain,
have become a significant threat, necessitat-
ing the development of robust countermea-
sures. This paper addresses the escalating
challenges posed by deepfake attacks on Auto-
matic Speaker Verification (ASV) systems. We
present a novel Urdu deepfake audio dataset for
deepfake detection, focusing on two spoofing
attacks – Tacotron and VITS TTS. The dataset
construction involves careful consideration of
phonemic cover and balance and comparison
with existing corpora like PRUS and Pronoun-
cUR. Evaluation with AASIST-L model shows
EERs of 0.495 and 0.524 for VITS TTS and
Tacotron-generated audios, respectively, with
variability across speakers. Further, this re-
search implements a detailed human evaluation,
incorporating a user study to gauge whether
people are able to discern deepfake audios from
real (bonafide) audios. The ROC curve analysis
shows an area under the curve (AUC) of 0.63,
indicating that individuals demonstrate a lim-
ited ability to detect deepfakes (approximately
1 in 3 fake audio samples are regarded as
real). Our work contributes a valuable resource
for training deepfake detection models in low-
resource languages like Urdu, addressing the
critical gap in existing datasets. The dataset is
publicly available at: https://github.com/
CSALT-LUMS/urdu-deepfake-dataset.

1 Introduction

Automatic Speaker Verification, a method for bio-
metric person recognition, has gained popularity
in recent years. However, this surge in popularity
has also given rise to new challenges in the form
of spoofing or deepfake attacks. Initially coined on
Reddit in 2017, the term ’deepfake’ (Bitesize, 2019)
denotes the application of deep learning techniques
for face swapping in videos. Presently, the term has
evolved to broadly encompass any audio or video
manipulation where key attributes are digitally al-
tered or swapped using artificial intelligence (AI)

technologies. The ASVspoof community classifies
these attacks into two main categories: logical ac-
cess, involving deepfake-generated audios, speech
synthesis, and voice conversion, and physical ac-
cess, which includes replay attacks and imperson-
ation (Wang et al., 2020b).

Deepfakes, a complex way of manipulating me-
dia, make fake content easier to generate and harder
to detect. Speech synthesis models now allow the
creation of deepfakes that are undetectable by the
human ear or even verification systems (Mirsky and
Lee, 2021). In 2019, impostors leveraged AI-driven
software to replicate the voice of a corporate exec-
utive, orchestrating a fraudulent transfer of USD
243,000 (Stupp, 2019). This incident underscores
the imperative of developing robust methods to
accurately identify deepfake audio in order to coun-
teract such fraudulent activities. In a behavioral
study, Kobis et al. (2021) revealed that people can-
not easily detect deepfakes, yet they perceive that
they can. Thus, these fake audios have the potential
to spread misinformation, create mass panic and
havoc, malign personalities, and change narratives.
Moreover, beyond this social impact, deepfakes
have the power to break through systems protected
by voice recognition through the spoofing attacks
listed above. Considering the adverse effects of
deepfake audios, it is crucial to develop systems
capable of discerning between real and deepfake
audio. The ASVspoof challenge, a community-led
initiative, promotes the development of such coun-
termeasures against deepfakes and audio spoofing
(Wu et al., 2015; Kinnunen et al., 2017; Todisco
et al., 2019; Yamagishi et al., 2021).

Countermeasures against deepfakes include de-
tection algorithms designed to identify features in
deepfake audios. The physical attributes of sound,
encompassing pitch, texture, loudness, and dura-
tion, can now be accurately replicated in artifi-
cially generated deepfake audios. To detect the
features that differentiate bonafide (actual utter-
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ances of the people) and fake audios, the model
needs to train on a large amount of data (Azeemi
et al., 2022). These differentiations are based on
spectral and temporal differences and micro fea-
tures (Delgado et al., 2021; Dhamyal et al., 2021;
Tak et al., 2020). Widely used datasets created for
this purpose include WaveFake (Frank and Schön-
herr, 2021), FakeAVCeleb (Khalid et al., 2021),
and the ASVspoof dataset (Wang et al., 2020b) it-
self. These datasets, from high-resource languages,
exemplify the large amount of data required to train
deepfake detection models. Unfortunately, in low-
resource languages, this large amount of data is
unavailable. To cater to this lack of data in Urdu,
we create and evaluate a dataset that can be used to
train against spoofing attacks.

1.1 Contributions
The presented research offers the following contri-
butions:

• We present an audio deepfake dataset, contain-
ing 20,451 utterances of bonafide and 16,830
utterances of deepfake audio, to train detec-
tion models in Urdu, a low-resource language.
The dataset is hosted on a publicly accessible
repository1.

• We assess the dataset through human evalua-
tion and discover that about one out of every
three audio samples goes undetected by in-
dividuals as being fake. This finding carries
implications for the potential spread of misin-
formation.

• We evaluate the dataset qualitatively and qual-
itatively. Qualitative measures include exam-
ining the variations in the relative distribution
of deepfake-generated and real audios using
t-SNE plotting and comparing L2 norms be-
tween bonafide audios and each set of deep-
fake audios. For quantitative analysis, we cal-
culate the Equal Error Rate (EER) across vari-
ous speakers and spoofing attacks.

2 Related Works

2.1 Deepfake Detection Models
The field of audio deepfake detection has seen re-
markable growth recently, focusing on using ma-
chine learning to differentiate real speech from syn-
thetic audio (Wu et al., 2020; Wang et al., 2020a;

1Public dataset repository: https://github.com/
CSALT-LUMS/urdu-deepfake-dataset

Chen et al., 2020). This research typically follows
either a conventional pipeline method, combining
feature extraction with classification, or newer end-
to-end methodologies that process raw audio data
directly for both tasks.

A key hurdle in this domain is the extensive data
required for training advanced deep learning Text-
to-Speech (TTS) models (Ping et al., 2017; Shen
et al., 2017; Sotelo et al., 2017; Tachibana et al.,
2017; Wang et al., 2017). Research has shown
high efficacy for multi-speaker TTS models, espe-
cially when data for a specific speaker is limited
(Latorre et al., 2018; Luong et al., 2019). The study
by Luong et al. (2019) emphasized the superior-
ity of multi-speaker models using oversampling
techniques in scenarios with sparse data. While
undersampling generally showed negative impacts,
ensemble methods were noted for their ability to
improve speech naturalness, albeit at the cost of
higher computational resources (de Korte et al.,
2020).

Furthermore, the majority of research and com-
petitions in audio deepfake detection, such as
ASVspoof and ADD, are focused on English and
Chinese, reflecting a language bias due to easier
data collection (Wang et al., 2020b; Yi et al., 2022).

2.2 Deepfake Detection Datasets

The creation of robust TTS datasets is vital for the
development of effective detection models. These
datasets should be of high quality, featuring diverse
speakers, accurate transcripts, and ample audio con-
tent per speaker (Bakhturina et al., 2021). Best
practices for TTS dataset creation underscore the
necessity for error-free, clear recordings, unifor-
mity in tone and pitch, comprehensive phoneme
representation, and overall naturalness. Rigorous
quality assessments, such as examining the length
of clips and transcripts and inspecting spectrograms
for noise, are also advised to maintain dataset in-
tegrity (coq, 2023).

Recent trends in audio deepfake research in-
clude using alternative data sources to address the
lack of target data. Efforts to build TTS datasets
through community-driven or automated collection
and transcription processes have been observed
(Gutkin et al., 2016; Xu et al., 2020; Wibawa et al.,
2018). However, these methods might result in
datasets with lower recording quality and natural-
ness, which could impact the effectiveness of TTS
models when compared to traditional datasets (Guo
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Figure 1: PRUS Corpus

et al., 2022).
Recently, the focus on enhancing TTS systems

for under-resourced languages has gained traction.
Researchers are exploring how well-structured
datasets in various languages can improve TTS
for languages with scarce resources. Techniques
like cross-lingual transfer learning and multilingual
TTS are being investigated for this purpose (Az-
izah et al., 2020; Tu et al., 2019; He et al., 2021),
aiming to democratize TTS technology and extend
its reach to a wider range of languages and dialects.

2.3 Benchmark Dataset

The Phonetically Rich Urdu Speech Corpus
(PRUS) and the PronouncUR lexicon are crucial
resources for developing and benchmarking Urdu
Text-to-Speech (TTS) systems, particularly in the
context of audio deepfakes in Urdu, a low-resource
language.

PRUS, consisting of 70 minutes of transcribed
read speech, with its comprehensive phonetic cov-
erage, including 62 out of 67 total phonemes in
Urdu and a wide array of tri-phonemes, offers a
detailed representation of Urdu’s phonetic diversity.
This corpus, balancing high-frequency word focus
with practical dataset size, serves as an ideal bench-
mark for phonetic diversity and quality assessment
in TTS systems. Figure 1 shows a snippet of PRUS
corpus and its phoneme counts (PC).

PronouncUR’s lexicon, encompassing approxi-
mately 46,000 words and covering 64 out of 67
phonemes, provides a broad spectrum of Urdu
sounds. Its phoneme frequency distribution and
expert tagging make it invaluable for evaluating

TTS system comprehensiveness and phonetic accu-
racy.

The availability of PRUS and PronouncUR open
up the opportunity to develop benchmark datasets
for audio deepfakes in languages like Urdu. These
resources are not only vital for TTS system devel-
opment but also offer a framework for detecting
and authenticating audio deepfakes, addressing a
significant challenge in digital communication in
low-resource languages.

3 Methodology

To create the text corpus for the dataset, we ran-
domly select sentences from reputable Urdu news
sources. We then analyze the phonemic structure
of the text corpus, ensuring its alignment with natu-
ral language patterns. Statistical measures confirm
the dataset’s phonemic cover and balance. For the
spoofing attacks, advanced text-to-speech models
Tacotron and VITS TTS are utilized to generate
deepfake audios. Figure 2 highlights the steps taken
in dataset construction.

3.1 Phonemic Analysis of the Datasets

The text corpus (referred to as the news corpus
here onwards) for our dataset has been curated by
randomly selecting 495 sentences from reputable
Urdu news sources, with permission. Given the
rich phonemic inventory inherent in the Urdu lan-
guage (Raza et al., 2009), it is imperative to ensure
that our dataset possesses a comprehensive phone-
mic cover and balance. To achieve this, we conduct
a careful analysis to ascertain the presence of all
possible phonemes within the text and to verify
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Figure 2: Step-by-step summary of dataset construction.

whether their frequencies aligned with those ob-
served in natural language (Zia et al., 2018).

To establish the phonemic fidelity of our dataset,
we conduct a comparative analysis with established
Urdu corpora known for their adherence to Urdu’s
phonemic distribution patterns. Notably, we em-
ploy the Phonetically Rich Urdu Corpus (PRUS)
(Raza et al., 2009) and PronouncUR (Zia et al.,
2018) as references.

In our linguistic research, we conducted a com-
parative analysis of phoneme ranks across two dif-
ferent corpora: the PRUS Corpus and the Pronoun-
cUR Corpus, each compared against the News Cor-
pus. We formulate the null hypothesis stating no
significant correlation between the phoneme distri-
butions of the two datasets. The visual data from
the line graphs illustrate a striking similarity in
phoneme distribution in both comparisons. Figure
4 shows the phoneme rank comparison between
PRUS Corpus and the News Corpus, while Figure
5 shows the phoneme rank comparison between
PronouncUR training lexicon and the News Corpus.
This visual correlation is statistically substantiated
by Spearman’s Rank Correlation Coefficient. It
can be understood as ranging from no association
(coefficient = 0) to a perfectly monotonic relation-
ship (coefficient = –1 or +1). We observe values of
0.977 for the PRUS Corpus comparison and 0.958
for the PronouncUR comparison, both suggesting
exceptionally strong positive monotonic correla-
tions. These high coefficients are coupled with

near-zero p-values, confirming that these correla-
tions are statistically significant and not products
of chance. Spearman’s metric was particularly apt
for these analyses as it adeptly captures monotonic
relationships without the need for data normality,
and it remains robust in the presence of outliers.

Metric PRUS vs PronounceUR P-Value
Spearman’s Rank Correlation 0.956 < 2.2e-16
Kendall’s Tau Coefficient 0.845 5.67e-40
Average Rank Difference 3.34 -

Table 1: Phoneme Rank Evaluation Metrics for PRUS
vs PronounceUR

Metric PRUS vs News Corpus P-Value
Spearman’s Rank Correlation 0.977 < 2.2e-16
Kendall’s Tau Coefficient 0.888 5.67e-40
Average Rank Difference 2.66 -

Table 2: Phoneme Rank Evaluation Metrics for PRUS
vs News Corpus

Metric PronouncUR vs News Corpus P-Value
Spearman’s Rank Correlation 0.958 < 2.2e-16
Kendall’s Tau Coefficient 0.841 1.60e-22
Average Rank Difference 4.04 -

Table 3: Phoneme Rank Evaluation Metrics for Pro-
nouncUR vs News Corpus

Figure 3: Phoneme Rank Comparison between PRUS
Corpus and PronounceUR Corpus.

In addition to comparing the News Corpus with
established Urdu corpora, we conducted a detailed
phonemic analysis comparing the PRUS Corpus
and the PronounceUR Corpus. The results of this
comparison are visualized in Figure 3 showing the
rank correlation of phonemes between the two cor-
pora.

The Spearman’s Rank Correlation coefficient of
0.956 and Kendall’s Tau coefficient of 0.845 both
indicate a strong positive correlation between the
phoneme ranks in the PRUS and PronounceUR
corpora. The Average Rank Difference of 3.34
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Figure 4: Phoneme Rank Comparison between PRUS
Corpus and News Corpus.

Figure 5: Phoneme Rank Comparison between Pronoun-
cUR and News Corpus.

suggests a close similarity in the rank order of
phonemes between the two datasets. These results
further confirm the consistency and reliability of
phoneme usage patterns across different linguistic
resources.

Our investigation extended to lexical distribution
via Zipf’s Law, which posits an inverse relationship
between word frequency and its rank in a corpus.
Analyzing our dataset against this law, we observed
a distribution pattern closely aligning with Zipfian
expectations. The linear regression analysis of the
log-log plot, as illustrated in Figure 6, yielded a
slope of -0.8676, close to the ideal Zipfian slope
of -1, and an R-squared value of 0.9595. These re-
sults underscore a strong adherence to Zipf’s Law,
indicating a natural linguistic patterning within the
Urdu news corpus. This adherence not only high-
lights the corpus’s linguistic representativeness but
also validates its utility for computational linguis-
tics research. The close alignment with Zipfian ex-
pectations reinforces the dataset’s suitability for ex-
ploring language models and comprehension stud-
ies, affirming its value in linguistic and phonemic
research endeavors.

Figure 6: Log-Log plot of word frequencies in Urdu
news corpus exhibiting a Zipfian distribution

Furthermore, the strength of these relationships
is reinforced by Kendall’s Tau Coefficient. It can
again be understood as ranging from no association
(coefficient = 0) to a perfectly monotonic relation-
ship (coefficient = –1 or +1). We observe values
of 0.888 for the PRUS comparison and 0.841 for
the PronouncUR comparison. These coefficients
mirror the strong positive correlations indicated by
Spearman’s, and their very low p-values support
the notion of a significant, non-random association
between the phoneme ranks in the respective cor-
pora. The conservative nature of Kendall’s Tau
makes it a suitable choice for the datasets, espe-
cially considering that it is less influenced by small
sample sizes and the non-parametric nature of the
data.

Additionally, the Average Rank Difference met-
ric complements these findings, showing minimal
discrepancies in phoneme rankings between the
PRUS Corpus and the News Corpus at approxi-
mately 2.66, and a slightly larger yet modest vari-
ation of approximately 4.04 when comparing the
PronouncUR Corpus to the News Corpus. Despite
the slight differences indicated by this metric, the
strong Spearman’s and Kendall’s correlations con-
firm a general consistency in phoneme rank order
across the examined linguistic resources. The co-
efficients and p-values from both hypothesis tests
indicate a significant correlation, thereby rejecting
the null hypothesis.

The integration of Spearman’s Rank Correla-
tion, Kendall’s Tau, and Average Rank Difference
in these analyses provides a robust, multifaceted
validation of the initial graphical observations. It
collectively supports the conclusion that there is
a substantial overlap in phoneme usage patterns
within the compared linguistic resources. While
the PronouncUR Corpus exhibits a slightly greater
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Figure 7: Distribution and splits of the dataset

variability in phoneme rank compared to the PRUS
Corpus, both corpora maintain a significant par-
allelism with the News Corpus, underscoring the
reliability of phoneme usage patterns across differ-
ent linguistic datasets. Table 1 and 2 summarize
the results of the phonemic analysis.

3.2 Spoofing Attacks

We create a dataset consisting of a combination of
bonafide and deepfake audios. In order to achieve
this, we choose two advanced text-to-speech (TTS)
models, Tacotron (Wang et al., 2017) and VITS
TTS (Kim et al., 2021), to generate the deepfake
audio. This selection is based on their demon-
strated effectiveness in processing the Urdu lan-
guage, essential due to its complex phonetic struc-
ture, and the popularity of these models in deep-
fake generation. Additionally, these models repre-
sent the cutting edge in TTS technology, providing
high-quality, realistic audio outputs. The choice
of two distinct models, one based on a sequence-
to-sequence model with attention (Tacotron) and
the other on a Conditional Variational Autoencoder
with Adversarial Learning (VITS TTS), allowed
for a comprehensive exploration of audio deepfake
generation methodologies. The models have been
fine tuned to work on Urdu datasets.

3.2.1 Spoofing Attack 1: Tacotron
Tacotron serves as an end-to-end text-to-speech
(TTS) model based on the sequence-to-sequence
(seq2seq) paradigm with an attention mechanism.
In our study, we train and utilize a Tacotron model
to generate deepfake audios. This model incor-
porates PronouncUR (Zia et al., 2018) as a pro-
nunciation lexicon, functioning as a grapheme-to-
phoneme (G2P) converter. During the training pro-
cess, sentences from the PRUS corpus (Raza et al.,
2009) are initially passed to PronouncUR to con-
vert them into a string of phonemes, which are then

fed into the pre-trained Tacotron model.

3.2.2 Spoofing Attack 2: VITS TTS

VITS (Conditional Variational Autoencoder with
Adversarial Learning for End-to-End Text-to-
Speech) stands as an end-to-end text-to-speech
model that combines an encoder and vocoder. In
our study, VITS TTS serves as the second attack
method. This attack analyzes input text using nat-
ural language processing (NLP) techniques to ex-
tract linguistic features, including phonemes, stress
patterns, and intonation. To train the VITS TTS
model, we use the list of sentences from the PRUS
Corpus (Raza et al., 2009), along with their corre-
sponding audios.

We train the Tacotron and VITS TTS models
on the voice of 17 individuals separately. We then
generate the deepfake audios through the trained
models. These audios were then compared with the
bonafide audios.

3.3 Training Data Collection

We train Tacotron and VITS TTS on the PRUS cor-
pus audios. To achieve this, we select a sample of
20 student volunteers who record the 708 sentences
from the PRUS corpus. Each speaker receives a
set of pre-recorded audios, articulating every sen-
tence of the PRUS corpus. Participants attentively
listen to each audio before reproducing the sen-
tence in their own voice. We also document the
laptop make, model, and headphones used by each
speaker during recording, and they are instructed to
record in a quiet, closed environment. Upon com-
pleting the recording stage, we carefully choose
a sample of 17 speakers (7 female, 10 male) with
high-quality complete audio recordings to advance
to the next phase of the experiment, and get written
consent for the public sharing of their recordings
(and derivatives) for research.
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Bonafide Part 1 Bonafide Part 2 Tacotron VITS TTS
Total Duration (mins) 1,302.66 1,271.65 1,061.96 1,340.79
Maximum Sample Length (mins) 112.42 120.75 80.34 111.01
Minimum Sample Length (mins) 61.73 56.45 44.64 65.53
Average Sample Length (mins) 76.63 74.80 62.47 78.87
Audio files for each speaker 708 495 495 495

Table 4: Summary details of the audios in each dataset split.

3.4 Generation of Deepfake Audios

We assign a unique speaker ID to each speaker
based on their training order. This ensures dis-
tinct identification while preserving anonymity for
the public dataset release. We generate deepfake
audios using the final checkpoint of each model,
using the 495 sentences of the News Corpus for
both attacks. The speakers also record the bonafide
audios of the News Corpus. This process yields
PRUS and News Corpus recordings as bonafide
audios and two sets of deepfake audios (one for
each attack) for each speaker. In Figure 7, the dis-
tribution of bonafide and deepfake utterances in the
final dataset is depicted. The duration and lengths
of audios for each split are shown in Table 4. The
dataset is segmented across 8, 4, and 5 speakers for
training, development, and evaluation, respectively.

3.5 Evaluation of the Dataset

Figure 8: Visualization of Audio Sample Distribu-
tion using t-SNE. The graph illustrates the separa-
tion of bonafide and deepfake audio samples in a two-
dimensional space. Real audio samples are represented
by green dots. Yellow dots indicate audio samples gener-
ated by VITS TTS model and blue dots represent audio
samples synthesized by the Tacotron model.

To understand the differences in the bonafide and
deepfake audios in the dataset, it is important to
analyze the spectral composition of these subsets.
We visualize these subsets by obtaining the Mel
Frequency Cepstral Coefficients (MFCCs) of each

audio. MFCCs are a representation of the short-
term power spectrum of a sound signal. They are
commonly used in audio processing and speech
recognition. We reduce the dimensions of MFFC
features through the tree-based t-SNE algorithm —
with a perplexity value of 40 as suggested in (Wang
et al., 2020b) and plotting the reduced dimensions.
Figure 8 shows the scatter plot of the processed fea-
tures for each subset. The colors represent different
subsets of the dataset, i.e. bonafide audio (green),
VITS TTS deepfake audios (yellow), and Tacotron
deepfake audios (blue). The smaller clusters within
each subset represent individual speakers. We no-
tice differences in the position and distribution of
each attack as compared to the bonafide audios.
Both deepfake subsets exhibit considerable overlap
with the bonafide audios, especially those gener-
ated using the Tacotron model, highlighting the
spectral similarity between these subsets.

In addition to computing t-SNE of the Mel-
frequency cepstral coefficients (MFCCs) from the
audio samples, we also calculate the L2 norm of the
MFCCs to compare bonafide recordings with those
generated by the Tacotron and VITS TTS mod-
els. Figure 9 illustrates a notable trend: Tacotron-
generated audios exhibit a smaller disparity from
bonafide audios compared to VITS TTS-generated
audios.

We further evaluate the quality of the generated
audios by running it on AASIST-L and RawNet2.
AASIST-L (Jung et al., 2022) is a lightweight
end-to-end audio anti-spoofing model that can ef-
ficiently model spoofing artefacts in temporal and
spectral domains. RawNet2 (Tak et al., 2021) is
an end-to-end convolutional neural network for au-
dio anti-spoofing. We obtain an overall equal error
rate of 0.495 and 0.524 through AASIST-L for
audios generated through TTS and Tacotron re-
spectively. The EER breakdown for each speaker
through AASIST-L and RawNet2 is presented in
Table 5. The EER score for AASIST-L varies from
0.44 to 0.58 depending upon the quality of the gen-
erated audios for each speaker. This range for the
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EER score indicates that the real and fake audios
cannot be distinguished reliably.

Figure 9: L2 norm comparison between Tacotron and
bonafide audios, and VITS TTS and bonafide audios

Speaker AASIST-L RawNet 2
TTS Tacotron TTS Tacotron

Speaker 01 0.48 0.47 0.60 0.55
Speaker 02 0.50 0.47 0.61 0.63
Speaker 03 0.50 0.44 0.50 0.48
Speaker 04 0.52 0.46 0.51 0.43
Speaker 05 0.44 0.57 0.43 0.50
Speaker 06 0.44 0.48 0.49 0.49
Speaker 07 0.52 0.50 0.57 0.55
Speaker 08 0.51 0.51 0.52 0.54
Speaker 09 0.47 0.58 0.49 0.43
Speaker 10 0.54 0.47 0.49 0.54
Speaker 11 0.56 0.52 0.50 0.45
Speaker 12 0.53 0.48 0.57 0.43
Speaker 13 0.47 0.47 0.52 0.55
Speaker 14 0.48 0.50 0.57 0.48
Speaker 15 0.49 0.53 0.56 0.48
Speaker 16 0.49 0.53 0.51 0.47
Speaker 17 0.50 0.48 0.51 0.45

Table 5: EER breakdown by speaker ID for VITS TTS
and Tacotron audios evaluated through AASIST-L and
Raw Net

4 Human Evaluation

4.1 User Study

To assess the quality of our dataset, we employ a
human evaluation-based approach. Participants in
our study listen to a set of 30 random audios in a
controlled environment and classify each as either
Fake (deepfake) or Real (bonafide). We employ a
convenience sample of 100 participants between
the ages of 10 to 48, with a male-to-female ratio of
70-30, with varying tech literacy. The participants
are paid PKR 500 per evaluation (approximately
10 minutes) Each random sample of 30 audios in-
cludes 10 random bonafide audios, 10 Tacotron-
generated, and 10 VITS TTS-generated audios.

We conduct the evaluation in a controlled envi-
ronment to eliminate biases stemming from vari-
ations in speaker quality. During the assessment,
we ask each participant to listen to each audio and
give the following instructions: "The audio sample
that you will listen to is audio produced by humans
or produced artificially by artificial intelligence.
Please listen to the audio sample and determine
whether the voice is artificially generated or is ut-
tered by a person, judging only on the basis of the
voice you hear. You can listen to it as many times
as you like. And then share your reasons for the
classification." Each participant categorizes each
audio in the assigned group of recordings into two
distinct groups, real or fake. We document their
reasons for classifying the audios as fake or real.
We observe that most participants base their judg-
ment on factors such as audio distortion and length.
Audios containing longer sentences with minimal
pauses for breath are often categorized as deepfake
generated.

4.2 Analyzing User Study Results

Figure 10: ROC Curve for human evaluation results

The evaluation results, illustrated by the ROC
curve in Figure 10, shed light on how well human
participants performed in distinguishing between
genuine and deepfake audio samples at various
classification thresholds. The ROC curve, plot-
ting True Positive Rate against False Positive Rate,
indicated a moderate level of discriminative perfor-
mance with an Area Under the Curve (AUC) value
of 0.63.

This AUC suggests that individuals demon-
strated a limited ability to detect deepfakes, with
approximately 1 in 3 fake audio samples being
misidentified as real. When considering the con-
sequences of such limitations in distinguishing be-
tween genuine and manipulated content, especially

14477



in contexts like political situations or audio leaks
in Pakistan, there is a heightened risk of misin-
formation spreading. This misinformation could
contribute to a climate of mistrust, political polar-
ization, and potentially erode public confidence in
state institutions.

The societal impact of these findings on democ-
racy underscores the need for more robust detection
mechanisms to mitigate the potential threats posed
by deepfakes. Developing reliable methods to dif-
ferentiate between genuine and manipulated con-
tent becomes crucial for safeguarding public trust,
political discourse, and the integrity of democratic
processes.

5 Limitations and Conclusion

In presenting our Urdu deepfake detection dataset,
we recognize limitations and suggest areas for fu-
ture improvement. The dataset currently empha-
sizes two text-to-speech (TTS) synthesis meth-
ods—Tacotron and VITS TTS. Expanding to a
broader range of TTS techniques in future iterations
will enhance deepfake detection. The dataset’s re-
liance on a convenience sample leads to a gender
imbalance in the speakers, highlighting the need
for a more diverse dataset in future work. Addi-
tionally, our dataset primarily covers logical access
scenarios; future research could include physical
access scenarios for added detection challenges. In
conclusion, our dataset lays a solid foundation for
deepfake detection research in the Urdu language.
Addressing the outlined limitations and pursuing
future research directions will further enhance the
dataset’s value and contribute to the advancement
of deepfake detection technologies in low-resource
languages.

6 Ethical Impact

Deepfakes pose risks of spreading misinformation,
causing panic, damaging reputations, and manipu-
lating narratives. While improving detection mod-
els is a key solution, it inadvertently fosters the
development of more sophisticated deepfake gen-
eration models that can evade detection. The cre-
ation of extensive deepfake audio datasets raises
ethical concerns as it may inadvertently contribute
to refining audio deepfake generation techniques.
Responsible management of such datasets is cru-
cial to address potential ethical challenges in their
deployment.
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A Reproducibility and Hyperparameters

The hyperparameters used for training and evalu-
ation of the TTS models are added below. Table
6 contains the hyperparameters for Tacotron and
Table 7 shows the hyperparameters for VITS TTS.

Table 6: Training and Evaluation Parameters for
Tacotron.

Parameter Value
Training

batch_size 32
adam_beta1 0.9
adam_beta2 0.999
initial_learning_rate 0.002
decay_learning_rate True
use_cmudict False

Evaluation
max_iters 450
griffin_lim_iters 60
power 1.5

Table 7: Training and Evaluation Parameters for VITS
TTS

Parameter Value
Training

batch_size 32
use_speaker_embedding True
epochs 1000
do_trim_silence False
learning_rate 0.0002
num_mels 80
sample_rate 16000

Evaluation
eval_batch_size 16

B Datasets and Evaluation Model

We use the PRUS Corpus available under the Cre-
ative Commons license, which allows distribution,
remixing, tweaking, and building upon the work,
as long as we credit the creators for the original cre-
ation. We use PronouncUR and AASIST-L avail-
able under the MIT License.
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