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Abstract

As Machine Learning (ML) models grow in
size and demand higher-quality training data,
the expenses associated with re-training and
fine-tuning these models are escalating rapidly.
Inspired by recent impressive achievements of
Large Language Models (LLMs) in different
fields, this paper delves into the question: can
LLMs efficiently improve an ML’s performance
at a minimal cost? We show that, through our
proposed training-free framework LLMCORR,
an LLM can work as a post-hoc corrector to
propose corrections for the predictions of an
arbitrary ML model. In particular, we form a
contextual knowledge database by incorporat-
ing the dataset’s label information and the ML
model’s predictions on the validation dataset.
Leveraging the in-context learning capability
of LLMs, we ask the LLM to summarise the
instances in which the ML model makes mis-
takes and the correlation between primary pre-
dictions and true labels. Following this, the
LLM can transfer its acquired knowledge to
suggest corrections for the ML model’s predic-
tions. Our experimental results on text analysis
and the challenging molecular predictions show
that LLMCORR improves the performance of a
number of models by up to 39% 1.

1 Introduction

In recent decades, Machine Learning (ML) mod-
els have become increasingly prevalent in various
real-world applications (Dixon et al., 2020; Zhong
et al., 2023). As ML models grow in size and de-
mand higher-quality training data, the expenses
associated with pre-training and fine-tuning these
models to achieve superior performances are esca-
lating rapidly (Devlin et al., 2018; He et al., 2021).
Hence, there is an urgent need to develop effec-
tive, lightweight and practical solutions for users
to improve their ML model’s predictions.

1The code and models are available at https://github.
com/zhiqiangzhongddu/LLMCorr.
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Figure 1: Harnessing LLMs as post-hoc correctors. A
fixed LLM is leveraged to propose corrections to an
arbitrary ML model’s predictions without additional
training or the need for additional datasets.

Large Language Models (LLMs) exhibit un-
precedented capabilities in understanding and gen-
erating human-like text, making them invaluable
across a wide range of Natural Language Pro-
cessing (NLP) tasks, including machine transla-
tion (Hendy et al., 2023), commonsense reason-
ing (Krishna et al., 2023) and coding tasks (Bubeck
et al., 2023). While LLMs have showcased their
effectiveness across an array of NLP applications,
the full extent of their potential in broader fields re-
mains largely unexplored (Zhang et al., 2024). This
paper delves into the essential research question:
can LLMs effectively improve an ML’s performance
at a minimal cost?

To answer the research question, we propose
a groundbreaking framework, LLMCORR, which
extends the application scope of LLMs by posi-
tioning them as training-free post-hoc correctors
(illustrated in Figure 1). A fixed LLM is leveraged
to propose corrections to an arbitrary ML model’s
predictions without introducing additional training
or the need for additional datasets.

At its core, LLMCORR consists of three main
steps: (1) After completing the training of the ML
model, we collect the dataset’s available label infor-
mation, along with the primary predictions made
by the ML model on the validation set, to construct
a contextual knowledge database. We anticipate
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that the established database records the contextual
knowledge about the types of instances for which
the ML models produce accurate or inaccurate pre-
dictions, as well as the correlation between the
primary predictions and the true labels. A recent
breakthrough known as In-Context Learning (ICL)
(Liu et al., 2023) has enhanced the adaptability
of LLMs by enabling them to acquire contextual
knowledge during inference, eliminating the need
for extensive fine-tuning (Clark et al., 2020). (2)
Consequently, given the target data with a primary
prediction generated by the ML model, we extract
the relevant contextual knowledge from the knowl-
edge database to form a prompt. Given the input
token constraints of current LLMs, transmitting all
contextual information to one prompt for querying
becomes impractical (Touvron et al., 2023; Achiam
et al., 2023). To address this limitation, we intro-
duce an embedding-based information retrieval ap-
proach, which can efficiently locate similar data
likely to offer relevant insights with the target data.
(3) Finally, we query the LLM using the created
prompts for suggestions to refine the target data’s
primary prediction. To mitigate the knowledge hal-
lucination (Huang et al., 2023), we implement a
self-correction mechanism when the LLM demon-
strates a tendency to make substantial modifications
to the ML model’s prediction.

The training-free nature of LLMCORR carries
several natural advantages: (i) LLMCORR facili-
tates the straightforward application of LLMs, elim-
inating the necessity for expensive re-training and
fine-tuning for an arbitrary ML model. (ii) One
of the most obvious limitations of LLMs is their
reliance on unstructured text (Guo et al., 2023), but
LLMCORR can be adapted to arbitrary scenarios
by incorporating different ML models.

To validate the effectiveness of LLMCORR, we
mainly deploy it in the face of structured molecule
graph data within the domain of biology, e.g., pre-
dicting the functionality of molecules. Through
extensive experiments conducted on six real-world
benchmark datasets covering diverse subjects, we
empirically demonstrate that LLMCORR signifi-
cantly elevates the quality of predictions across di-
verse ML models, achieving notable improvements,
up to 39%. Besides, we demonstrate LLMCORR’s
effectiveness on general text analysis tasks. Fur-
thermore, we conduct comprehensive follow-up ab-
lation studies and analyses to validate the efficacy
of LLMCORR’s designs and elucidate the impact
of key factors.

2 Related Work

Large Language Models. Traditional language
models are typically trained on sequences of to-
kens, learning the likelihood of the next token de-
pendent on the previous tokens (Vaswani et al.,
2017). Recently, Brown et al. (2020) demonstrated
that increasing the size of language models and the
amount of training data can result in new capabili-
ties, such as zero-shot generalisation, where mod-
els can perform text-based tasks without specific
task-oriented training data. Consequently, Large
Language Models (LLMs) have experienced expo-
nential growth in both size and capability in recent
years (Brown et al., 2020; Touvron et al., 2023;
Achiam et al., 2023). A wide range of NLP appli-
cations have been reshaped by LLMs, including
machine translation (Hendy et al., 2023), common-
sense reasoning (Krishna et al., 2023) and coding
tasks (Bubeck et al., 2023). In this work, we in-
novatively harness LLMs as post-hoc correctors,
further extending the application scope of LLMs.

In-Context Learning. While the impressive per-
formance and generalisation capabilities of lan-
guage models have rendered them highly effec-
tive across various tasks (Wei et al., 2022a), they
have also resulted in larger model parameters and
increased computational costs for additional fine-
tuning on new downstream tasks (Hu et al., 2021a).
To address this challenge, recent research has intro-
duced In-Context Learning (ICL), enabling LLMs
to excel at new tasks by incorporating a few task
samples directly into the prompt (Liu et al., 2023).
Despite the success of these methods in improving
LLM performance, their potential for correcting
predictions made by ML models has not been thor-
oughly explored. This work investigates the utility
of LLMs as post-hoc correctors to rectify incorrect
predictions by leveraging their ICL abilities.

Post-hoc Corrector for Machine Learning Mod-
els. Driven by the increasing prevalence of ML
models in diverse real-world applications (Butler
et al., 2018; Dixon et al., 2020; Zhong et al., 2023),
academia and industry have invested significant
efforts in enhancing ML effectiveness. However,
the majority of existing research focuses on refin-
ing the design of the ML module. Meanwhile,
as ML models grow in size and demand higher-
quality training data, the expenses associated with
re-training and fine-tuning these models are esca-
lating rapidly (Devlin et al., 2018; He et al., 2021).
Hence, there is an urgent need to develop effec-
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tive, lightweight and practical solutions for users to
improve their ML model’s predictions adaptively.
While some studies (Huang et al., 2021; Zhong
et al., 2022) propose post-processing techniques to
adjust ML model predictions on node-wise tasks
of graph-structured data, their solutions often lack
scalability across different types of data. This work
introduces a novel and versatile post-hoc corrector
framework applicable to an arbitrary ML model.

3 Preliminary and Problem

This paper aims to leverage LLMs as post-hoc cor-
rectors to enhance predictions made by an arbi-
trary ML model. Specifically, we showcase our
framework on challenging prediction tasks on struc-
tured molecule graph data in biology. We further
demonstrate the generality of our framework on
sentiment analysis and text classification in Sec-
tion in the Appendix. For instance, consider the su-
pervised molecule property prediction task, where
molecules can be represented using various formats
such as SMILES string (Weininger, 1988) and ge-
ometry structures (Zhang et al., 2024) (as shown
in Figure 8). However, a notable limitation of ex-
isting LLMs is their reliance on unstructured text,
rendering them unable to incorporate essential ge-
ometry structures as input (Li et al., 2023; Guo
et al., 2023). To overcome this limitation, Fatemi
et al. (2023) propose encoding the graph structure
into text descriptions. In this paper, as depicted in
Figure 8, we extend this concept by encoding both
the molecule’s atom features and graph structure
into textual descriptions.

Notion. Given a molecule, we formally represent
it as a graph G = (S,G,D), where S, G and D
denote the SMILES string, geometry structures and
generated atom feature and graph structure descrip-
tions of G. y ∈ Y stands for the label for G.

Problem Setup. Given a set of molecules M =
{G1,G2, . . . ,Gm}, where MT ⊂ M contains
molecules with known labels yv for all Gv ∈ MT .
Our objective is to predict the unknown labels yu
for all Gu ∈ Mtest, where Mtest = M\MT . In
addition, MT is split into two subsets: Mtrain and
Mval, where Mtrain is the training set and Mval

works as the validation set.

ML Models. The conventional approach to tackle
molecule property prediction tasks is employing
ML models. Take the supervised molecule property
prediction task as an example. The goal is to learn a
mapping function fML : M → Ŷ , by minimising

loss function value minΘ
∑n

i=1 L(Ŷ i
train,Y i

train),
where Θ represents the set of trainable parameters
of fML. Subsequently, fML can be employed on
test dataset Mtest to generate predictions Ŷtest.

Leveraging LLMs as Post-hoc Correctors. In
recent decades, significant efforts have been de-
voted to enhancing the effectiveness, robustness,
and generalisation of advanced ML models (fML).
However, the potential for improving the quality of
ML model predictions after completing the train-
ing process remains largely unexplored. With the
trend of ML models increasing in size and requiring
higher-quality training data, the costs associated
with re-training and fine-tuning ML models are
rapidly escalating. This paper intends to explore
the possibility of positioning LLMs (fLLM ) as post-
hoc correctors to refine predictions of an arbitrary
fML. Compared with re-training and fine-tuning
a model, this work has outstanding advantages in
terms of cost and versatility.

4 Methodology

In this section, we outline the workflow of LLM-
CORR, designed as a post-hoc corrector to refine
predictions generated by any ML model. As illus-
trated in Figure 2, the key idea is to leverage the
LLM’s ICL ability to summarise the types of data
in which the ML model makes mistakes and the
correlation between primary predictions and true
labels, thereby refining the ML’s prediction on the
test dataset. To achieve this goal, LLMCORR com-
prises three main steps: (1) Contextual knowledge
database construction; (2) Contextual knowledge
retrieval; (3) Prompt engineering and query.

4.1 Contextual Knowledge Database
Construction

After completing the training of the ML model
(fML) on the training set Mtrain, we collect data
from both the training set Mtrain and the valida-
tion set Mval, along with the primary predictions
Ŷval made by fML on the validation set. Sub-
sequently, we construct a contextual knowledge
database D based on the collected data. Notably,
the knowledge database D not only contains in-
formation regarding the original training and vali-
dation datasets but also provides insights into the
types of molecules for which the ML models gener-
ate accurate or inaccurate predictions. Additionally,
it captures the relationship between the initial pre-
diction Ŷval and the true label Yval. We anticipate
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…
The SMILES string of molecule-2 is {}. Molecule-2 
can be presented as a graph…. ML model 
predicts it… In fact, molecule-1 cannot…
…
The SMILES string of molecule-3 is {}. Molecule-3 
can be presented as a graph…. ML model 
predicts it… Predict if molecule-2 can…

Self-correction

ML Model Training

Figure 2: A high-level overview of LLMCORR, harnessing Large Language Models (LLMs) as post-hoc correctors
to refine predictions made by an arbitrary Machine Learning (ML) model.

that this essential contextual knowledge will em-
power the LLM (fLLM ) to refine the predictions
Ŷtest made by fML on the test dataset Mtest.

4.2 Contextual Knowledge Retrieval

The effectiveness of the LLMCORR heavily re-
lies on the richness and relevance of the informa-
tion received by the LLM, as it determines the
task-specific contextual knowledge available to
the LLM. However, due to the input token con-
straints of existing LLMs, transmitting all contex-
tual knowledge into the LLM is impractical (Tou-
vron et al., 2023; Achiam et al., 2023). After con-
structing the contextual knowledge database D, the
next challenge is to retrieve relevant contextual
knowledge for a given query data Qu = (Gu, ŷu)
from either the validation set Mval or the test set
Mtest. To address this limitation, we propose an
Embedding-based Information Retrieval (EIR) ap-
proach. The EIR technique comprises two primary
steps: (1) Utilising a text encoder (fEmb) on avail-
able textual descriptions of molecule Gu, we gener-
ate embedding vectors fEmb : (S,D) → Z for
molecules from the knowledge database D and
the query data Qu. (2) Calculating the similar-
ity between the query data Zu and molecules in
the knowledge database based on the obtained em-
beddings Zv,∀Gv ∈ D. Different selection strate-
gies can be employed to retrieve various contextual
knowledge based on the ranking. In this study,
we retrieve the top-k similar data as the contextual

knowledge. We delve into the influence of different
retrieval selection strategies in Section 5.2.
Addressing Data Leakage Concerns. It is im-
portant to recognise that when the query data Qu

comes from the validation dataset Mval, precau-
tions are taken to prevent retrieving information
about Qu to avoid data leakage. Then, LLMCORR’s
performance on Mval can be assessed in a man-
ner consistent with traditional ML pipeline, e.g.,
hyper-parameters selection.

4.3 LLMCORR Prompt Engineering
The goal in prompt engineering is to find the correct
way to formulate a question Q in such a way that an
LLM (fLLM ) will return the corresponding answer
A essentially represented as A = fLLM (Q). In
this work, our goal is to provide the LLM with help-
ful and comprehensive contextual knowledge re-
garding molecules and the ML model’s behaviours
on the validation set so that it can make precise
corrections to the ML model’s predictions on the
test dataset. A variety of approaches exist for mod-
ifying the fLLM so that it could better perform
downstream tasks such as fine-tuning (Clark et al.,
2020) and LoRA (Hu et al., 2021a). However, these
methods typically require access to the internals of
the model and heavy computation capability, which
can limit their applicability in many real-world sce-
narios. In this work, we are instead interested in the
case where fLLM and its parameters are fixed, and
the system is available only for users in a black box
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Figure 3: LLMCORR prompt template. Multiple con-
textual knowledge from training and validation datasets
can be included by expanding the template.

setup where fLLM only consumes and produces
text. We believe this setting to be particularly valu-
able as the number of proprietary models available
and their hardware demands increase.
LLMCORR Prompting. To this end, we propose
a novel prompt that serves to position LLMs as
post-hoc correctors, refining predictions made by
an arbitrary ML model. Different from existing
prompts that often work as predictors (Fatemi et al.,
2023) or explainers (He et al., 2023), leveraging
LLMs as correctors combining the strengths of
LLMs’ in context-based question answering with
the ML model’s proficiency in learning from spe-
cific datasets. Specifically, the proposed LLM-
CORR prompt template is illustrated in Figure 3,
which mainly consists of following components:

1. Instruction: Provides general guidance to the
LLM, clarifying its role in the conversation.

2. Contextual knowledge from the training dataset:
Includes SMILES string and molecule label in-

formation of the training dataset.

3. Contextual knowledge from the validation
dataset: Includes SMILES string, molecule la-
bel information and the ML model’s predictions
of the validation dataset. This equips the LLM
with insights into the ML model’s error patterns,
enhancing its ability to refine predictions on the
test dataset.

4. Question: Tasks the LLM to refine the ML
model’s predictions for the query data, draw-
ing on the provided contextual knowledge.

It’s worth noting that by expanding the template’s
sections on contextual knowledge from the training
and validation datasets, multiple instances of con-
textual knowledge from the knowledge database
D can be included. Subsequently, we query the
LLM with generated prompts to obtain an initial
response concerning the refined prediction of the
query data, along with probability values and ex-
planations, offering significant interpretability.

Figure 4: Self-correction prompt template.

Self-correction Prompting. An inherent limita-
tion of existing LLMs is their tendency to gener-
ate hallucinations producing content that deviates
from real-world facts or user inputs (Ganguli et al.,
2023; Huang et al., 2023). One promising solu-
tion is known as self-correction, where the LLM is
prompted or guided to rectify errors in its own out-
put (Pan et al., 2023). In this work, after obtaining
corrected prediction ỹu from the LLM, we intro-
duce a self-correction mechanism (prompt template
is shown in Figure 4) if the LLM makes significant
modifications on the primary prediction generated
by the ML (for classification tasks - reversing the
prediction label; for regression tasks - modifying
the prediction value range by more than 20%). As
demonstrated empirically in our experiments (see
Section 5.2), this approach can prevent LLM from
hallucinating incorrect corrections in many cases.
Extensibility. LLMCORR is designed as a post-
hoc corrector framework that leverages the ICL
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capability of LLMs. As illustrated in Figure 2,
LLMCORR is adaptable to an arbitrary ML model,
showcasing its remarkable extensibility. With the
trend of ML models increasing in size and requiring
higher-quality training data, the costs associated
with enhancing ML models by re-training and fine-
tuning are rapidly escalating. LLMCORR emerges
as a promising, general-purpose practical solution
in the LLM era. LLMCORR is summarised in Al-
gorithm 1 in Appendix C.

5 Are LLMs Post-hoc Correctors?

In this section, we evaluate the effectiveness of
LLMs as post-hoc correctors. Our experimental
analysis mainly focuses on the challenging struc-
tured molecular graph property prediction tasks.
The additional experiments on general text analysis
tasks are presented in Appendix G.

Dataset. We consider six widely used
molecule datasets from the OGB benchmark
(Hu et al., 2021b), including ogbg-molbace,
ogbg-molbbbp, ogbg-molhiv, ogbg-molesol,
ogbg-molfreesolv and ogbg-mollipo. Detailed
descriptions are summarised in Appendix D.

ML Models. To investigate whether LLMCORR

can effectively improve predictions across various
types of ML models. We consider ML models
of three different categories: (1) Language Model
(LM) that only takes text information as inputs, i.e.,
DeBERTa (He et al., 2021). (2) Graph Neural Net-
works (GNNs) that capture the molecule’s geome-
try structure information. We consider two classic
GNN variants, i.e., GCN (Kipf and Welling, 2017)
and GIN (Xu et al., 2019), and two SOTA GNN
variants collected from the OGB leaderboards (Hu
et al., 2021b), i.e., HIG and PAS (Wei et al., 2021).
(3) And we consider one recently released hybrid
framework, TAPE (He et al., 2023), in our experi-
ments. TAPE leverages LM and LLMs to capture
textual information as features, which can be used
to boost GNN performance. The implementation
details are discussed in Appendix E.

LLMs. In this work, we are interested in where
the LLM’s parameters are fixed, and the system
is available for users in a black box setup where
the LLM only consumes and produces text. We be-
lieve this setting to be particularly valuable as most
users would practically have access to LLMs. In
this case, we consider GPT-3.5 and GPT-4 (Achiam
et al., 2023) as LLMs in this work, and GPT-3.5
is the major LLM for most experiments. Besides,

open-source LLMs are also of great interest since
they are easier to deploy privately, so we adopt
Llama2 (Touvron et al., 2023) as another LLM. Be-
cause the generated descriptions following (Fatemi
et al., 2023) have tons of tokens, easily over the
LLM’s input token constraints, hence we do not
include descriptions in the LLMCORR prompt in
this study. Including the description information is
a promising future work to explore with LLMs of
more input tokens.

5.1 Main Results

Observation 1: LLMCORR is a potent post-hoc
corrector. Examining the molecule graph prop-
erty prediction performance across six datasets in
Table 1, it’s evident that LLMCORR consistently
delivers substantial enhancements over various ML
models, with improvements reaching up to 39% in
terms of RMSE. This consistent and notable per-
formance underscores the effectiveness of LLMs
within our framework LLMCORR, serving as pro-
ficient post-hoc correctors to refine the primary
predictions generated by ML models.

Observation 2: The significance of geometric
structure. Table 1 underscores the superiority of
models incorporating geometric structure over oth-
ers. This highlights the crucial role of geometric
structure in accurately predicting a molecule’s prop-
erty. However, LLMCORR currently cannot directly
incorporate geometric structure in the prompt due
to limitations in the token count of generated de-
scriptions over the LLM’s constraints. Addressing
this limitation is identified as a promising avenue
for future exploration.

Observation 3: Enhanced assistance for lower-
performing ML models. Furthermore, we observe
that LLMCORR provides more substantial assis-
tance when the performance of ML models is lower.
This trend is noticeable across various datasets; for
instance, LLMCORR boosts LM performance from
0.6163 to 0.6915 with a 12.2% improvement on
the test dataset of ogbg-molbace. Even though the
ultimate performance still falls short compared to
GNN models, the magnitude of improvement is
most significant.

Observation 4: GPT-4 and Llama2 underper-
form compared to GPT-3.5. Table 2 displays the
molecule graph property prediction performance
and execution time for three datasets, comparing
Llama2, GPT-3.5 and GPT-4. Llama2 has fewer pa-
rameters than GPT-3.5 and GPT-4, but Llama2 can
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Table 1: Molecule graph property prediction performance for the ogbg-molbace, ogbg-molbbbp, ogbg-molhiv,
ogbg-molesol, ogbg-molfreesolv and ogbg-mollipo datasets. Classification tasks are evaluated on ROC-AUC
(↑: higher is better), and regression tasks are evaluated on RMSE (↓: lower is better). The improvements of
LLMCORR over the ML predictive models are reported below LLMCORR’s performance.

ogbg-molbace ogbg-molbbbp ogbg-molhiv ogbg-molesol ogbg-molfreesolv ogbg-mollipo
ROC-AUC ↑ RMSE ↓

Valid Test Valid Test Valid Test Valid Test Valid Test Valid Test
LM 0.5584 0.6163 0.9307 0.6727 0.5024 0.5037 2.1139 2.2549 6.6189 4.4532 1.2095 1.1066

LMLLMCORR 0.6110
+9.4%

0.6915
+12.2%

0.9481
+1.9%

0.6897
+2.5%

0.6253
+24.5%

0.6154
+22.2%

1.4113
-33.2%

1.3747
-39.0%

5.7195
-13.6%

3.5595
-20.1%

1.0210
-15.6%

0.9468
-14.4%

GCN 0.7879 0.7147 0.9582 0.6707 0.8461 0.7376 0.8538 1.0567 2.8275 2.5096 0.6985 0.7201

GCNLLMCORR 0.8203
+4.1%

0.7718
+8.0%

0.9595
+0.0%

0.7045
+5.0%

0.8540
+0.9%

0.7529
+2.1%

0.7744
-9.3%

0.9108
-13.8%

2.0325
-28.1%

2.2102
-11.9%

0.6874
-1.6%

0.7043
-2.2%

GIN 0.8042 0.7833 0.9611 0.6821 0.8406 0.7601 0.7685 0.9836 2.4141 2.2435 0.6503 0.7100

GINLLMCORR 0.8336
+3.7%

0.8214
+4.9%

0.9710
+1.0%

0.6982
+2.4%

0.8523
+1.4%

0.7822
+2.9%

0.7418
-3.5%

0.9137
-7.1%

2.1790
-9.7%

1.9219
-14.3%

0.6219
-4.4%

0.6995
-1.5%

TAPE 0.7824 0.7410 0.9421 0.6994 0.8364 0.7514 0.8351 0.9872 2.8453 2.2134 0.6839 0.7168

TAPELLMCORR 0.8074
+3.2%

0.7788
+5.1%

0.9653
+2.5%

0.6996
+0.0%

0.8406
+0.5%

0.7693
+2.4%

0.7966
-4.6%

0.9605
-2.7%

2.6184
-8.0%

2.0470
–7.5%

0.6751
-1.3%

0.7074
-1.3%

HIG 0.8213 0.8094 0.9730 0.6974 0.8400 0.8393 0.7756 0.9504 2.3590 2.2546 0.6130 0.7036

HIGLLMCORR 0.8294
+1.0%

0.8135
+0.5%

0.9748
+0.2%

0.7074
+1.4%

0.8489
+1.1%

0.8447
+0.6%

0.7536
-2.8%

0.9322
-1.9%

2.3556
-0.1%

1.8799
-16.6%

0.6040
-1.5%

0.6920
-1.6%

PAS 0.8199 0.7473 0.9403 0.6618 0.8273 0.8402 0.8791 1.0348 2.3500 2.3546 0.6715 0.7088

PASLLMCORR 0.8230
+0.4%

0.7920
+6.0%

0.9671
+2.9%

0.6842
+3.4%

0.8422
+1.8%

0.8490
+1.0%

0.8251
-6.1%

0.9859
-4.7%

2.1130
-10.1%

1.9320
-17.9%

0.6342
-5.6%

0.6897
-2.7%

Table 2: Molecule graph property prediction performance and execution time for the ogbg-molbace, ogbg-molesol
and ogbg-molfreesolv datasets, with different LLMs. Classification tasks are evaluated on ROC-AUC (↑: higher
is better), and regression tasks are evaluated on RMSE (↓: lower is better).

ogbg-molbace ogbg-molesol ogbg-molfreesolv
ROC-AUC ↑ Execution RMSE ↓ Execution RMSE ↓ Execution

Valid Test Valid Test Valid Test
GCNLLMCORR

Llama2 0.7897 0.7425 ∼ 14.2 min 0.9217 1.3998 ∼ 16.1 min 7.2022 6.4409 ∼ 17.0 min
GCNLLMCORR

GPT3.5 0.8203 0.7718 ∼9.5 min 0.7744 0.9108 ∼11.5 min 2.0325 2.2102 ∼10.5 min
GCNLLMCORR

GPT4 0.7910 0.7713 ∼155 min 0.8953 1.0105 ∼204min 6.5331 3.5777 ∼107min
GINLLMCORR

Llama2 0.7927 0.7745 ∼ 14.5 min 1.4430 1.5921 ∼ 19.3 min 7.9854 7.8273 ∼ 15.6 min
GINLLMCORR

GPT3.5 0.8336 0.8214 ∼9.6 min 0.7418 0.9137 ∼12.1 min 2.1790 1.9219 ∼11.7 min
GINLLMCORR

GPT4 0.8022 0.7875 ∼148 min 1.1384 0.9552 ∼192min 7.4731 3.9611 ∼112min

still improve the predictions within the framework
of LLMCORR on some datasets. Interestingly, we
find that despite its larger training data and more
complex fine-tuning process, GPT-4 exhibits in-
ferior performance compared to GPT-3.5 in this
study. We hypothesise that this discrepancy may
be attributed to interventions such as reinforcement
learning through human feedback.

Observation 5: LLMs exhibit limited compet-
itiveness as predictors. Given LLMCORR’s re-
markable performance as correctors, another in-
triguing question arises: can LLM generate ac-
curate predictions directly? To investigate, we
conduct additional experiments where the LLM
is tasked with directly predicting the molecule’s
property. For detailed findings, please refer to Ap-
pendix F due to space constraints. As shown in
the results of Table 3, LLMs do not demonstrate
competitive performance as predictors. This obser-

vation reinforces the efficacy of LLMCORR, which
leverages LLMs as post-hoc correctors.

5.2 Ablation Study

Variants of contextual knowledge retrieval.
Within the EIR of LLMCORR, the selection of top-
k data from the knowledge database following sim-
ilarity calculations is a critical step. This ablation
study explores alternative approaches such as Jump
and Random. In Random, k data are randomly se-
lected from the knowledge database, disregarding
similarity rankings. On the other hand, Jump se-
lects k evenly spaced indices, ensuring diversity in
the selected data. Results from Table 4 suggest that
selecting top-k data yields optimal results, with
Jump outperforming Random. We posit that LLMs
benefit from closely relevant knowledge to generate
effective corrections.

Impact of k. In the EIR, the parameter k dictates
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Table 3: Molecule graph property prediction performance for the ogbg-molbace, ogbg-molbbbp, ogbg-molhiv,
ogbg-molesol, ogbg-molfreesolv and ogbg-mollipo datasets. Classification tasks are evaluated on ROC-AUC
(↑: higher is better), and regression tasks are evaluated on RMSE (↓: lower is better).

ogbg-molbace ogbg-molbbbp ogbg-molhiv ogbg-molesol ogbg-molfreesolv ogbg-mollipo
ROC-AUC ↑ RMSE ↓

Valid Test Valid Test Valid Test Valid Test Valid Test Valid Test
LLMIP 0.5690 0.5756 0.4606 0.5399 0.5519 0.5892 2.6221 2.0422 6.1699 4.4421 1.9836 1.8411
LLMIPD 0.4835 0.5534 0.4643 0.4664 0.4732 0.5693 3.7395 3.1721 8.1598 7.2877 2.6464 2.5046
LLMIE 0.4769 0.5220 0.4463 0.5237 0.5487 0.5419 2.1055 2.5549 5.9059 4.3097 2.1044 1.9158
LLMIED 0.5299 0.4761 0.4742 0.4091 0.5361 0.5512 3.9001 4.2289 7.4837 5.3689 2.4191 2.4219
LLMFS−1 0.4822 0.5122 0.5955 0.4954 0.5229 0.5268 1.7699 2.8762 6.4785 4.7553 1.9810 1.8432
LLMFS−2 0.4277 0.6090 0.6019 0.5075 0.5619 0.5731 1.9271 2.1020 5.5078 4.5606 1.9138 1.8118
LLMFS−3 0.5405 0.5949 0.6000 0.5388 0.5475 0.5616 1.9548 1.9963 6.3753 4.7241 1.8291 1.7923
LLMFS−10 0.4973 0.5160 0.5214 0.4740 0.6233 0.6114 1.4735 1.4661 5.9601 4.2810 1.5178 1.4493
LLMFS−30 0.6110 0.6354 0.5164 0.5245 0.6251 0.6276 2.7207 2.3669 6.7362 4.6829 1.8060 1.4808
LLMFS−50 0.5749 0.6027 0.4572 0.4682 0.5312 0.5843 2.7465 2.5133 6.3208 4.3760 1.8499 1.3644

Table 4: Ablation study of LLMCORR on
ogbg-molbace, ogbg-molesol and ogbg-mollipo
with variants of contextual knowledge retrieval.

ogbg-molbace ogbg-molesol ogbg-mollipo
ROC-AUC ↑ RMSE ↓ RMSE ↓

GINLLMCORR 0.8214 0.9137 0.6995
w/ Jump 0.7799 1.0696 0.8744
w/ Random 0.7868 1.1116 0.9027
LMLLMCORR 0.6915 1.3747 0.9468
w/ Jump 0.6759 1.9781 1.4633
w/ Random 0.6534 2.0615 1.9517

Figure 5: Ablation study of LLMCORR with a dif-
ferent number of contextual knowledge data (k) on
ogbg-molbace and ogbg-molesol datasets.

the number of knowledge instances sampled from
the database to construct LLMCORR’s prompt, thus
influencing the knowledge presented to the LLM.
It is observed (Figure 5) that larger k values corre-
late with improved performance, underscoring the
significance of comprehensive knowledge to guide
LLMs for enhanced performance.

Figure 6: Ablation study of LLMCORR on six datasets
with different fEmb.

Effect of fEmb. Another ablation study concerning

the EIR process examines the influence of differ-
ent fEmb functions. Figure 6 suggests that larger
fEmb values yield superior performance on bench-
mark testing, aiding LLMCORR in achieving better
results. This is attributed to accurate semantic em-
beddings facilitating the identification of relevant
instances during the EIR process, reinforcing the
importance of selecting top-k relevant knowledge
instances.

Figure 7: Ablation study of LLMCORR on six datasets
w/ and w/o self-correction.

Impact of self-correction. Upon completion of
LLMCORR’s inference process, the LLM is tasked
with self-correction if major modifications to pri-
mary predictions are made. Figure 7 illustrates
LLMCORR’s performance on the test dataset across
six datasets, revealing instances where the self-
correction component leads to uncertain impacts.
This phenomenon is attributed to the LLM becom-
ing hesitant and cautious after the questioning. De-
signing a more effective self-correction prompt
emerges as an intriguing area for future investi-
gation.

6 Concluding Discussion

We have introduced a novel framework, LLMCORR,
a training-free, lightweight, yet effective approach,
harnessing the in-context learning capabilities of
LLMs to improve the predictions of arbitrary ML
models. Through this simple and versatile ap-
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proach, we have demonstrated significant improve-
ments over a number of ML models on different
challenging tasks. As LLMs continue to improve
in performance and in-context learning capabilities,
LLMCORR stands to directly benefit from these
advancements.

7 Limitations and Ethic Statement

Limitations. While LLMCORR demonstrates sim-
plicity and effectiveness in improving the predic-
tions of an arbitrary ML model, our verification
was mainly confined to structured molecular graph
property prediction tasks and several text analysis
tasks. Further extensive empirical investigations
across diverse domains are warranted to establish
its generalisability. Additionally, considering the
purported enhanced ICL capabilities of GPT-4 on
various benchmark tasks (OpenAI, 2023), it is note-
worthy that our findings (as discussed in Section 5.1
and illustrated in Table 2) reveal GPT-4’s underper-
formance compared to the GPT-3.5 model. This
discrepancy merits further exploration to elucidate
the underlying reasons. Moreover, while LLM-
CORR’s prompt template could accommodate the
insertion of molecule atom features and geome-
try structure descriptions, similar to prompt tem-
plates shown in Appendix F, limitations stemming
from the LLM’s input token constraints prevented
their inclusion in the prompt in this paper. We
believe that with the rapid development of LLMs,
some LLMs that allow much longer inputs will
soon be available. It would be interesting to inves-
tigate LLMCORR’s effectiveness while including
descriptions in the prompt. Lastly, while our ap-
proach incorporates contextual knowledge into the
prompt, its utility is constrained by several factors,
including limited flexibility. For example, further
leveraging different techniques, e.g., RAG (Lewis
et al., 2020) to involve more contextual knowledge
into the LLM and advanced contextual knowledge
retrieval (Zhang et al., 2022) are also fruitful di-
rections. Further enhancements in this regard are
warranted to maximise LLMCORR’s effectiveness.

Ethic Statement. Our proposed framework, LLM-
CORR, is designed as a post-hoc corrector aims at
improving the prediction of an arbitrary ML model.
However, given the emergent in-context learning
ability within LLMs, which typically consist of
billions of parameters, the accessibility of com-
putational resources may inadvertently introduce
disparities in the utilisation of these methods. Re-

search groups with limited access to computational
resources will be handicapped, while resourceful
groups will be able to investigate and advance the
future directions of this research. Throughout our
work, we did not utilise any private or sensitive
information. However, it’s essential to note that if
any private information were to be inadvertently
exposed to an LLM during internal pre-training
and fine-tuning stages, LLMCORR does not offer
any privacy filtration mechanism. Therefore, there
exists the potential for privacy concerns associated
with the underlying model to manifest through the
output provided by LLMCORR.
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A Illustration of Molecule
Representations

Molecule SMILES: OC(=O)C1=CC=CC=C1O

Description:
This molecule can be represented as a 
graph among atoms 0(O), 1(C), …. 
Atom 0 has 7 atomics, has a positive 
charge of 5, has 0 hydrogen atom…
Atom 0 is connected to Atom 1 and 
Atom …

Geometry 
Structure

Figure 8: A molecule can be represented in different
forms, e.g., SMILES string, text description and geome-
try structure.

Molecules can be represented using various for-
mats such as SMILES string (Weininger, 1988) and
geometry structures (Zhang et al., 2024) (as shown
in Figure 8). However, a notable limitation of ex-
isting LLMs is their reliance on unstructured text,
rendering them unable to incorporate essential ge-
ometry structures as input (Li et al., 2023; Guo
et al., 2023). To overcome this limitation, Fatemi
et al. (2023) propose encoding the graph structure
into text descriptions. In this paper, as depicted in
Figure 8, we extend this concept by encoding both
the molecule’s atom features and graph structure
into textual descriptions.

B LLMCORR Prompt Templates for
Regression Tasks

Due to the page space limit, we only provide LLM-
CORR prompt templates in Section 4. This sec-
tion illustrates our LLMCORR prompt templates
for regression tasks. Particularly, the proposed
LLMCORR prompt template for regression tasks is
illustrated in Figure 9, which contains similar com-
ponents as LLMCORR prompt template for clas-
sification tasks as discussed in Section 4.3. The
self-construction prompt for regression tasks is il-
lustrated in Figure 10.

C Algorithm

We outline the process of LLMCORR in Algo-
rithm 1. Given a dataset M, an ML model fML, a
LLM fLLM . After completing the training of the
ML model (fML) on the training set Mtrain (line
1), we construct a contextual knowledge database
D by incorporating the dataset’s label information
and the ML model’s prediction on the validation
dataset Mval (line 2). Given a query data Gu, we

Figure 9: LLMCORR prompt template for regression
tasks. Multiple contextual knowledge from training and
validation datasets can be included by expanding the
template.

Figure 10: Self-correction prompt template for regres-
sion tasks.

create a prompt Pu using its primary prediction
generated by fML and relevant contextual knowl-
edge Du (line 3-6). Finally, we query the LLM
(fLLM ) to obtain the refined prediction ỹu (line 7).

D Dataset Description

We consider six benchmark molecule property pre-
diction datasets that are common within ML re-
search, which are summarised in Table 5.

1. ogbg-molbace. The ogbg-molbace dataset
provides quantitative (IC50) and qualitative (bi-
nary label) binding results for a set of inhibitors
of human b-secretase 1 (BACE-1). All data
are experimental values reported in the scien-
tific literature over the past decade, some with
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Algorithm 1: LLMCORR

Input: Dataset M = {G1,G2, . . . ,Gm},
ML model fML, LLM fLLM

Output: Refined predictions Ỹ
1 Complete training of fML : M → Ŷ by

minΘ
∑n

i=1 L(Ŷ i
train,Y i

train) ;
2 Construct a contextual knowledge database

D = {Mtrain,Mval, Ŷval} ;
3 for Gu ∈ {Mval ∪Mtest} do
4 ŷu = fML(Gu)
5 Qu = (Gu, ŷu)
6 Create a prompt Pu using Qu and

retrieved contextual knowledge
Du ⊂ D

7 Query the LLM and contain the refined
prediction ỹu = fLLM (Pu)

8 end

detailed crystal structures available. Molecu-
leNet (Wu et al., 2018) merged a collection of
1,522 compounds with their 2D structures and
binary labels, built as a classification task.

2. ogbg-molbbbp. The Blood–Brain Barrier Pen-
etration (BBBP) dataset comes from scientific
studies on the modelling and prediction of bar-
rier permeability. As a membrane separating
circulating blood and brain extracellular fluid,
the blood–brain barrier blocks most drugs, hor-
mones and neurotransmitters. Thus penetration
of the barrier forms a long-standing issue in
the development of drugs targeting the central
nervous system. This dataset includes binary
labels for over 2,039 compounds on their per-
meability properties. Scaffold splitting is also
recommended for this well-defined target.

3. ogbg-molhiv. The HIV dataset was introduced
by the Drug Therapeutics Program (DTP) AIDS
Antiviral Screen, which tested the ability to in-
hibit HIV replication for 41,127 compounds.
Screening results were evaluated and placed into
three categories: confirmed inactive (CI), con-
firmed active (CA) and confirmed moderately
active (CM). We further combine the latter two
labels, making it a classification task between in-
active (CI) and active (CA and CM). As we are
more interested in discovering new categories
of HIV inhibitors, scaffold splitting is recom-
mended for this dataset.

4. ogbg-molesol. ESOL is a small dataset con-

sisting of water solubility data for 1,128 com-
pounds. The dataset has been used to train mod-
els that estimate solubility directly from chemi-
cal structures (as encoded in SMILES strings).
Note that these structures don’t include 3D co-
ordinates, since solubility is a property of a
molecule and not of its particular conformers.

5. ogbg-molfreesolv. The Free Solvation
Database (FreeSolv) provides experimental
and calculated hydration-free energy of small
molecules in water. A subset of the compounds
in the dataset is also used in the SAMPL blind
prediction challenge. The calculated values
are derived from alchemical free energy calcu-
lations using molecular dynamics simulations.
We include the experimental values in the bench-
mark collection and use calculated values for
comparison.

6. ogbg-mollipo. Lipophilicity is an important
feature of drug molecules that affects both mem-
brane permeability and solubility. This dataset,
curated from the ChEMBL database (Mendez
et al., 2019), provides experimental results of
the octanol/water distribution coefficient (log D
at pH 7.4) of 4200 compounds.

E Implementation

Implementation. We implement ML predictive
models following their available official implemen-
tations. For instance, we adopt the available code
of variant GNN models on the OGB benchmark
leaderboards, e.g., GCN2, GIN3, HIG 4 and PAS 5.
About DeBERTa, we adopt its official implemen-
tation 6 and incorporate it within the pipeline of
TAPE 7. For the GPT-3.5 and GPT-4, we simply
call the API provided by OpenAI with default
hyper-parameter settings. For the Llama2, we
adopt the Llama-2-13b version and call their of-
ficial implementation on https://huggingface.
co. We empirically tried with some combinations
of recommended important hyper-parameters, e.g.,
temperature and top_P, yet did not observe signifi-

2https://github.com/snap-stanford/ogb/tree/
master/examples/graphproppred/mol

3https://github.com/snap-stanford/ogb/tree/
master/examples/graphproppred/mol

4https://github.com/TencentYoutuResearch/
HIG-GraphClassification

5https://github.com/LARS-research/PAS-OGB
6https://huggingface.co/microsoft/

deberta-v3-base
7https://github.com/XiaoxinHe/TAPE
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Table 5: Statistics summary of datasets used in our empirical study and splits from benchmark (Wu et al., 2018; Hu
et al., 2020).

Dataset #Graphs Avg.
#Nodes

Avg.
#Edges #Train #Valid #Test Task Type

ogbg-molbace (Wu et al., 2018) 1,513 34.1 73.7 1,210 151 152 Binary class.
ogbg-molbbbp (Wu et al., 2018) 2,039 24.1 51.9 1,631 204 204 Binary class.
ogbg-molhiv (Wu et al., 2018; Hu et al., 2020) 41,127 25.5 27.5 32,901 4,113 4,113 Binary class.
ogbg-molesol (Wu et al., 2018) 1,128 13.3 27.4 902 113 113 Regression
ogbg-molfreesolv (Wu et al., 2018) 642 8.7 16.8 513 64 65 Regression
ogbg-mollipo (Wu et al., 2018) 4,200 27.0 59.0 3,360 420 420 Regression

cant improvement. To realise the embedding-based
information retrieval for LLMCORR, we adopt two
capable embedding models (fEmb) provided by
OpenAI 8, e.g., text-embedding-3-large and text-
embedding-3-small. In this work, we mainly adopt
text-embedding-3-large for better empirical perfor-
mance. We perform careful discussions about the
influence of different variants in Section 5.2.

F Are LLMs Predictors?

Following the thorough demonstration of LLM-
CORR’s efficacy as a post-hoc corrector in Sec-
tion 5.1, a fundamental question emerged: does
LLMCORR’s remarkable performance stem from
the LLM’s ability to comprehend and rectify the
ML model’s predictions, or does it possess an in-
herent capability to predict molecule properties?
To answer this question, undertake another series
of empirical investigations. Specifically, we devise
predictor prompts that task LLMs with directly
predicting molecule properties, devoid of any infor-
mation regarding the predictions made by the ML
model. In the following sections, we will present
our designed prompts and demonstrate the experi-
mental results.

Figure 11: Zero-shot prompt templates for classification
tasks.

8https://platform.openai.com/docs/models/
embeddings

Figure 12: Zero-shot prompt templates for regression
tasks.

Figure 13: Few-shot prompt template for classification
tasks. Multiple contextual knowledge can be included
by expanding the template.

F.1 Predictor Prompt Engineering

Zero-shot Prompting. The first set of prompts
(IP, IE) simply provides the LLM with molecule
and task descriptions and asks it to generate the de-
sired output with a desired format without any prior
training or knowledge on the task, as illustrated in
Figure 11 and Figure 12. The only guidance we
provide to the LLM is instruction, which tells about
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Figure 14: Few-shot prompt template for regression
tasks. Multiple contextual knowledge can be included
by expanding the template.

a little background context. Particularly, IP only
asks the LLM to provide predictions, while IE fur-
ther asks for explanations, which may ask the LLM
to clarify the thought process in explanation gen-
eration and provide helpful evidence to help users
understand the given prediction. In addition, if we
fill out the description of IP and IE, which derives
IPD and IED prompts.

Few-shot Prompting. The second kind of prompt
(FS) that we propose provides the LLM with a
small number of examples of the task, along with
the desired outputs (Brown et al., 2020). The model
then learns from these examples to perform the task
on new inputs. This approach can be categorised as
a simple in-context learning (ICL) technique, An
example prompt template is shown in Figure 13
and Figure 14. FS-k indicates k contextual knowl-
edge instances are included in the prompt. In this
work, we do not discuss the FSD prompts since the
generated descriptions have tons of tokens, which
will easily go over the LLM’s input constraints.

We note there are also some popular recent
ICL techniques, e.g., Chain-of-thought (CoT) (Wei
et al., 2022b), Tree-of-thought (ToT) (Yao et al.,
2023), Graph-of-thought (GoT) (Besta et al., 2023)
and Retrieval Augmented Generation (RaG) (Lewis
et al., 2020), which are theoretically available to
support complicated tasks and include large knowl-
edge context. However, our initial experiments
showed that methods, e.g., CoT, ToT and GoT, per-
form much worse for molecule property prediction
tasks due to the significant difficulties in designing
proper chain thoughts without solid expertise. RaG
implementations that we tested are unstable and

slow with query, and they fall short of the relatively
simpler FS’s performance. We argue the unquali-
fied information retrieval system causes it, and we
will discuss it in the future work discussion section.

F.2 Results - LLMs work as Predictors
From the results of Table 3, we can observe that the
LLM can generate predictions about the molecule’s
property. However, LLM’s performances are not
significantly competitive compared with the ML
models’ performance. Hence, we argue existing
LLMs are not competitive predictors and employ-
ing LLMs as effective predictors is still an open
challenge.

G LLMCORR for Other NLP Tasks

In Section 5, we have illustrated the effectiveness
of LLMCORR on various challenging molecular
property prediction tasks. Our experimental results
show that LLMCORR can consistently improve the
performance of a number of models. In order to
demonstrate the usability of LLMCORR in broader
applications, we further conduct additional experi-
ments on some NLP tasks.
Dataset. Particularly, we introduce two datasets:

1. Twitter. The Twitter sentiment analysis
dataset contains 6,940 tweets obtained by query-
ing the Twitter API (Dong et al., 2014). Each
tweet was manually annotated a sentiment labels
(negative, neutral, positive). The task is to pre-
dict the tweet’s sentiment label based on its text.
We split datasets into training/validation/test
(70%, 10%, 20%) subsets for the experiments.

2. Cora. The Cora dataset contains 2,708 aca-
demic publications (He et al., 2023), which be-
long to one of seven categories (case-based, ge-
netic algorithms, neural networks, probabilis-
tic methods, reinforcement learning, rule learn-
ing, theory). The task is to predict which cat-
egory the publication belongs to based on its
title and abstract. We split datasets into train-
ing/validation/test (60%, 20%, 20%) subsets for
the experiments.

We evaluate the model performance on these two
datasets in terms of classification accuracy.
Methods. This section investigates the effective-
ness of LLMCORR on NLP tasks, so we adopt
NLP models of three categories: (1) one Language
Model (LM), i.e., DeBERTa (He et al., 2021). (2)
One Large Language Model (LLM), i.e., GPT-3.5,
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which takes IP and FS prompts similar to the one
shown in Figure 11 and Figure 13. (3) Our LLM-
CORR, that improves the predictions of DeBERTa.
LLMCORR utilises a prompt similar to the one
shown in Figure 3, by replacing {SMILES} and
{task} with corresponding information. We adopt
k = 10 for FS and LLMCORR in this experiment.
Other settings are the same as the main experi-
ments, discussed in Section 5.

Table 6: Results on classic NLP tasks.

Twitter Cora
Accuracy ↑

LM 0.7231 0.7626
LLMIP 0.5493 0.6552
LLMFS−10 0.6402 0.7123
LMLLMCORR 0.7420 0.7992

Results. Examining the experimental results on
two datasets in Table 6, it’s evident that LLMCORR

can consistently improve the LM’s performance.
It confirms the good usability of LLMCORR on
various application tasks. Meanwhile, we observe
LLM exhibit competitive performance compared
to the LM which fine-tune on the datasets. It is at-
tributed to the LLM’s qualified large-scale training
datasets, which empower the LLM with an out-
standing ability to understand different texts. Yet,
compared to LLMCORR, our proposed framework
still demonstrates significant priority over using
LLMs as predictors.
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