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Abstract
The field of multimodal document understand-
ing has produced a suite of models that have
achieved stellar performance across several
tasks, even coming close to human perfor-
mance on certain benchmarks. Nevertheless,
the application of these models to real-world
enterprise datasets remains constrained by a
number of limitations. In this position paper,
we discuss these limitations in the context of
three key aspects of research: dataset curation,
model development, and evaluation on down-
stream tasks. By analyzing 14 datasets and 7
SotA models, we identify major gaps in their
utility in the context of a real-world scenario.
We demonstrate how each limitation impedes
the widespread use of SotA models in enter-
prise settings, and present a set of research
challenges that are motivated by these limita-
tions. Lastly, we propose a research agenda
that is aimed at driving the field towards higher
impact in enterprise applications.

1 Introduction

Multimodal document understanding, also known
as Visually rich Document Understanding (VrDU),
and the tasks that it encompasses—including visual
information extraction, visual question answering,
and image document classification—constitute a
major operational bottleneck in enterprise settings
(Paycom, 2021; McKinsey, 2022). Due to their
rich structure, length, domain-specific language,
and spatio-visual complexity, enterprise documents
such as reports, memos, invoices, forms, and con-
tracts, are often processed using human supervision.
This manual process is cumbersome and therefore
error prone, so much so that some institutions are
compelled to adopt a dual review protocol for the
task of information extraction and data entry (CBS).
This, coupled with the large volume of documents
in many enterprise settings1 has led to a substantial

1As an example, in 2024 J.P. Morgan Chase served nearly
80 consumers (Center, 2024). Considering each customer’s

and growing demand for Document Intelligence
services (ibml, 2024; Insights, 2024).

Against this backdrop, adoption of multimodal
document understanding models remains con-
strained by certain limitations in SotA models and
benchmarks. In this position paper, we discuss
these limitation in the context of three main compo-
nents of research: datasets, models, and evaluation
strategies. We will contextualize our discussion
with a common real-world example of a Document
AI task in enterprise settings.

1.1 Real-world task example: authorized
signatory identification

To demonstrate the challenges of operationalizing
SotA VrDU models in enterprise settings, through-
out this paper we will use a scenario that is inspired
by a common real-world task. Suppose Alice is
a knowledge worker at a financial institution who
is in charge of reviewing client documents. Each
institutional client provides a document with a list
of authorized signatories, their titles, contact infor-
mation, and signature samples. This list is later
used to verify whether legally-binding agreements
have been signed by authorized stakeholders. As
part of a remediation project, Alice is tasked with
reviewing 1,000 authorized signatory forms, ex-
tracting key information, and keying them into a
new database.

To make the task more manageable, Alice would
like to reduce her manual workload by 70%, either
by reviewing only 30% of the documents, or by
reviewing only 30% of each document’s contents,
and delegating the remainder of the work to an auto-
mated solution. This would require the automated
solution to perform the following tasks:

1. Process each authorized signatory document
and extract the following information: names,

records, filings, tax forms, identification documents, and other
disclosures, the volume of documentation in the retail banking
business alone could scale to hundreds of millions.
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Ideal output:
Each signatory, title, and signature
box is extracted and tagged within
the document [red, blue, and gray boxes].
Each signatory is used as an anchor
to group the metadata [black links].
Each entity (or grouping) is assigned
a confidence score [black circles].

William J. Farrel: NAME0
Executive Vice President: TITLE0
bbox{30, 10, 50, 25}: SIG0
[NAME0, TITLE0]: LINK0
John M. Beeson, Jr.: NAME1
Senior Vice President: TITLE1
bbox{30, 30, 50, 45}: SIG1
[NAME1, TITLE1]: LINK1
...

Common output:
Extractions may not be associated
with bounding boxes.
Different solutions may be needed
for text vs. handwriting.
Links may be unavailable or
only partially available.
Confidence scores are often
not available (or log-probs
are uncalibrated).

Table 1: Top row: The expected output of a VrDU model when processing an authorized signatory document.
Bottom row: The output often generated by SotA approaches. Note that due to the confidentiality of authorized
signatory forms, we have used a public example from a credit agreement (CS, 2013).

metadata (such as titles, addresses, and con-
tact information), and signature samples.

2. Associate all attributes related to the same en-
tity. For example the name, contact informa-
tion, and signature sample of each individual
should be grouped together.

3. Map the information about each entity into a
schema that the new database recognizes.

4. Create a detailed trace of where each piece
of information was extracted from, so that
auditors can verify that proper protocol was
followed.

The top row of Table 1 illustrates the output that
Alice expects from an automated system. Ideally,
each entity is to be tagged within the document,
so that the extracted entity can be mapped to a
bounding box within the page. The model also
needs to be able to group each signatory’s name
and corresponding title and signature. Lastly, each
extraction (or ideally, each grouping, each page, or
each document) needs to have a confidence score
that Alice can use to decide whether she needs to
review the model’s output for accuracy.

Note that the above requirements are not limited
to our particular scenario, and generalize to most
information extraction tasks in enterprise settings.
Some requirements (such as traceability of output)
extend to tasks beyond information extraction such
as question answering over documents and summa-
rization.

In the remainder of this paper, we demonstrate
where and how current SotA approaches fall short
of the above-mentioned requirements. In order to
ground our arguments in current research, we use
a set of SotA VrDU models and datasets as the
backdrop to our analysis.

2 SotA models and datasets

VrDU spans a suite of tasks, which, together com-
prise a complete picture of a given document.
These include Document Classification (CLS),
Page Segmentation (SEG), Key Entity Extraction
(KIE), Tabular Reasoning (TR), and Visual Ques-
tion Answering (VQA). Note that we exclude the
Optical Character Recognition (OCR) task, given
the increasing availability of open-source and com-
mercial solutions that can process enterprise docu-
ments.2

SotA VrDU models fall into three categories
based on their core architecture: multimodal
transformer-based models (TR), graph-based mod-
els (GR), and multimodal large language models
(MLLM). Table 2 lists the SotA models from each
category, along with information about their licens-
ing, availability of code and pre-trained weights,
and model size. We have defined SotA as top
within-category performance across a variety of
VrDU tasks, including CLS, SEG, TR, KIE, and

2Open-source solutions include TrOCR (Li et al., 2023),
PaddleOCR, Surya, and Tesseract-ocr, and commercial solu-
tions include ABBYY, IBM DataCap, Google Cloud Vision,
Amazon Textract, and Microsoft Azure OCR services, among
others.
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VQA.3 We exclude the family of MLLMs known
as generalist models, such as GPT-4V (OpenAI,
2023). This is because these models have not been
systematically benchmarked on enterprise VrDU
tasks, and can occasionally struggle with modeling
a given task’s context.4

Table 3 lists the datasets that the SotA models
from Table 2 have used for pre-training, fine-tuning,
or instruction-tuning. Since our focus is on en-
terprise applications, we have excluded datasets
that cover web-based documents (e.g VisualMRC
(Tanaka et al., 2021), TabFact (Chen et al., 2019),
WTQ (Pasupat and Liang, 2015), InfographicVQA
(Mathew et al., 2022), and ChartQA (Masry et al.,
2022)), research publications (e.g. PubLayNet
(Zhong et al., 2019) and DocBank (Li et al., 2020)),
or other non-enterprise collections (e.g. OCR-
VQA(Mishra et al., 2019) and AI2D (Kembhavi
et al., 2016)).

In the following sections, we will discuss the
limitations of these datasets, models, and evalu-
ation methods used within the VrDU literature,
and how they impact adoption in the enterprise
domain. We will end each section with one or
more Research Challenges (RCs) that arise from
the discussion, opening up new opportunities for
VrDU researchers and practitioners to engage in
high-impact research.

3 Data limitations

3.1 Limited publishers

Image documents, especially in the enterprise do-
main, are often owned by specific legal entities and
are therefore not always available for redistribution,
even when they do not include confidential content.
This makes open-domain collections of public doc-
uments difficult to source compared to unimodal
corpora such as Wikipedia, Common Crawl, and
social media posts. As a result, research in the
domain of multimodal document understanding is
dominated by a limited set of corpora, as demon-
strated in Table 3.

Unsurprisingly, due to licensing restrictions,
the US government is the leading supplier of
VrDU datasets.5 Regulatory disclosure protocols

3Note that GR models often focus on the KIE task alone,
and are therefore represented by one model that currently
reports top performance for that task, i.e. FormNetV2 (Lee
et al., 2023).

4See Appendix A for an example of how GPT-4V can
struggle with interpreting a VrDU task in the enterprise setting.

5See Appendix B for an illustration of the lineage of the

and legal settlements have resulted in collections
such as IIT-CDIP (Lewis et al., 2006), Kleister
(Stanisławek et al., 2021), and DeepForm (Svetlich-
naya, 2020), which cover documents from regu-
lated industries such as tobacco manufacturing and
political advertising. This poses two challenges to
VrDU researchers and practitioners. First, these
public collections are not always representative of
the variety of enterprise documents. As an example,
the authorized signatory forms used in our scenario
would not be represented in any of the datasets due
to their confidentiality. Second, permissive licenses
such as Fair Use do not necessarily permit the use
of these datasets in commercial applications. In
our example, even though Alice does not intend to
use the VrDU technology for commercial purposes,
the fact that she is employed by a for-profit entity
may subject her to more restrictive terms (Gordon-
Murnane, 2010). These limitations motivate the
following Research Challenge:

RC1: The licensing challenges mentioned above
have led to the overuse of few datasets from narrow
domains, which can lead to poor OOD performance.
Can these datasets be combined, augmented, syn-
thesized, or diversified to create better benchmarks
for generalizability and robustness of VrDU mod-
els? Can synthetic datasets, designed to prevent the
leakage of proprietary or confidential information,
help expose SotA models to enterprise corpora?

3.2 Under-representation of associative tasks

Page Segmentation (SEG) and Key Information Ex-
traction (KIE) are two of the core VrDU tasks that
are both extractive, but both have complementary
associative counterparts, i.e. Relation Extraction
(RE). Models that perform SEG can identify vari-
ous components on a page (e.g. heading, paragraph,
figure, etc.), but they do not identify the relation-
ship between components. That would require a
mapping of the full hierarchy of the document’s
structure. In a similar vein, models that perform
KIE can identify entities within a page, but to iden-
tify the relationship between entities, the models
need to perform the additional task of RE.

In many real-world settings, KIE and RE need
to be performed in tandem to enable end-to-end
automation. In our scenario, a model that is solely
trained on KIE would be able to identify each au-
thorized signatory, phone number, and address, but
would not be able to group them together or map

datasets listed in Table 3.
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Model Citation # Params Architecture License Commercial
Affiliate

OSS
Status

Generative/
Grounded

VrDU
tasks

LayoutLMv3LARGE (Huang et al., 2022) 368M TR CC BY-NC-SA 4.0 Microsoft
PW
FW
FC

N/Y

CLS
SEG
KIE
VQA

UDOP (Tang et al., 2023) 794M TR MIT Microsoft
PW
FC

Y/N

CLS
KIE
TR
VQA

FormNetV2 (Lee et al., 2023) 204M GR N/A Google None N/Y KIE

UReader (Ye et al., 2023a) 86M* MLLM Apache 2.0 Alibaba
PW
PC

Y/N
KIE
TR
VQA

DocLLM (Wang et al., 2023a) 1B, 7B MLLM N/A JP Morgan None Y/N

CLS
KIE
TR
VQA

Qwen-VL-MAX (Bai et al., 2023) Unknown MLLM Custom Alibaba FC Y/N VQA
SMoLA-PALI-X (Wu et al., 2023) Unknown MLLM N/A Google None Y/N VQA

Table 2: Models with SotA performance on a variety of VrDU tasks as of Jan 31, 2024. Architecture legend:
TR: Transormer-based. GR: Graph-based. MLLM: Multi-modal LLM. OSS Status legend: PC: Pre-training code.
PW: Pre-trained weights. FC: Fine-tuning code. FW: Fine-tuning weights. VrDU task legend: CLS: Document
classification, SEG: Page segmentation, KIE: Key information extraction, TR: Tabular reasoning, VQA: Visual question
answering. *UReader reports its number of trainable parameters, but the model is created by applying LoRA (Hu
et al., 2022) to mPLUG-Owl (Ye et al., 2023b), which has around 7B parameters.

Dataset Citation Training size License Upstream
publisher

VrDU
tasks

IIT-CDIP (Lewis et al., 2006) 6,910,192 docs Fair Use US Gov. None
RVL-CDIP (Harley et al., 2015) 400,000 pages Fair Use US Gov. CLS
DocLayNey (Pfitzmann et al., 2022) 80,863 pages CDLA-Permissive Unknown/varied SEG

DocILE (Šimsa et al., 2023)
106,680 docs
108,715 pages

Fair Use US Gov.
KIE
LIR

DocVQA (Mathew et al., 2021) 12,767 pages Fair Use US Gov. VQA
DUDE (Van Landeghem et al., 2023) 5,019 docs Unspecified Unknown/varied VQA
BuDDIE (Zmigrod et al., 2024b) 1,665 pages Proprietary US State Govs. KIE

FUNSD (Jaume et al., 2019) 199 pages Custom US Gov.
KIE
RE

CORD (Park et al., 2019) 2,000 pages CC-BY-4.0 Businesses KIE
SROIE (Huang et al., 2019) 1,000 pages CCA 4.0 Businesses KIE
DeepForm (Svetlichnaya, 2020) ∼20,000 docs MIT US Gov. KIE

Kleister (Stanisławek et al., 2021)
3,318 docs
64,872 pages

OGL US & UK Govs. KIE

VRDU (Wang et al., 2023b) 2,556 docs Fair Use US Gov. KIE
Payment (Lee et al., 2023) ∼10,000 docs Proprietary Google KIE

Table 3: 14 popular datasets in the VrDU literature. The number of used by the models in Table 2. VrDU task
legend: CLS: Document classification. SEG: Page segmentation. KIE: Key information extraction. VQA: Visual
question answering. LIR: Line item recognition. Note: The table excludes OCR datasets as well as those focused on
historical document understanding.
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them to the relational schema of a database.
Despite their relevance to real-world applica-

tions, associative tasks are often ignored in VrDU
datasets, possibly due to the high cost of annotating
documents for multiple tasks. Of the 14 datasets
listed in Table 3, 9 cover the task of Key Informa-
tion Extraction (KIE). Of these, only 1 combines
this task with Relation Extraction (RE).6 This has
led to an under-representation of RE in research
publications, e.g. none of the SotA models listed
in Table 2 report their performance on RE. This
motivates the following Research Challenge:

RC2: How well do current SotA models perform
on the RE task? Can relational architectures such
as graph-based models improve SotA performance
on the RE task?

3.3 Limited grounding

As was noted in our scenario, real-world enter-
prise applications of VrDU models often require
the model to ground its output within the input doc-
ument by mapping each token to its location on
the page, establishing a clear evidentiary trace for
possible audits. While most KIE datasets are an-
notated to support such grounding, VQA datasets
usually lack the grounding annotations. Given that
VQA datasets often include a mix of extractive and
abstractive questions, absence of grounding poses
two fundamental challenges to end users:

First, lack of grounding poses an immediate chal-
lenge to the verification and evaluation of extrac-
tive models. The top row of Table 4 illustrates this
with an example. Given an authorized signatory
form and the question “What is the title of Cynthia
L. Carliss?” two hypothetical models are shown
to provide ungrounded answers. The models are
evaluated using Average Normalized Levenshtein
Similarity, popularized by DocVQA (Mathew et al.,
2021). Model A produces the correct output with
a perfect score, but without any grounding infor-
mation, it is unclear whether the output refers to
the proper bounding box (blue) or is based on the
incorrect context (red). Model B produces an in-
correct response, referring to the title of another
signatory. Nevertheless, the ANLS metric is calcu-
lated at 0.625 due to a partial match with the gold
answer.

In 8.5% of the training samples in DocVQA,
there are two or more instances of the gold answer

6Some of the datasets such as CORD, DocILE, and BuD-
DIE include shallow relation annotations, but they do not
include complete hierarchical relations or key-value pairings.

within the input page, making it difficult to prop-
erly contextualize the answers in a post-processing
step. Partial matches only complicate this problem
further.

The second challenge arises from the lack of
grounding for abstractive questions, despite the re-
quirement in many enterprise settings that every ab-
stractive decision needs to be explicitly evidenced.
Consider the second row of Table 4 that shows an
example of an abstractive Yes/No question. To de-
termine whether “Cynthia L. Carliss” is a senior
executive, a model would need to follow a reason-
ing path, first locating her title on the page, and
then mapping it to a collection of possible roles
that qualify as senior executive titles.7 In the ab-
sence of any grounding or explanation, it would be
unclear whether a model is providing the correct an-
swer (“No”) or the incorrect answer (“Yes”) based
on a simple match with the keywords “Senior” and
“Executive”, respectively. While grounded reason-
ing datasets exist in the unimodal literature (Chen
et al., 2021; Zhang et al., 2021) and in open-domain
VQA (Zhu et al., 2016; Pont-Tuset et al., 2020),
such datasets are yet to be popularized in multi-
modal document understanding. This gives rise to
the following Research Challenge:

RC3: Having explicitly-encoded knowledge
in the form of KBs or taxonomies may enable
researchers to design models that can perform
grounded abstractive QA by linking the evidence
between the documents and the external knowl-
edge. Can VrDU literature contribute to grounded
question answering by generating deeply annotated
and knowledge-augmented datasets for extractive
as well as abstractive questions? Can these datasets
enhance the grounding and explainability of VrDU
models?

4 Model limitations

4.1 Calibration

Let’s once again consider our scenario. As stated
in Section 1.1, Alice would like to reduce her work-
load by 70%. Let’s suppose that she is able to find
a SotA model that has an F1 score of 0.99 across all
KIE benchmarks. For simplicity, we will assume
that this means the model makes one mistake per
100 extractions. If Alice applies the model to the
signatory forms, there will likely be errors, given

7In many enterprise settings, such knowledge bases and
taxonomies are available as part of training material, policy
documents, business rulesets, or structured databases.
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Document Question: What is the title of Cynthia L. Carliss?

Model A
Answer: Senior Vice President
ANLS: 1.0

Model B
Answer: Executive Vice President
ANLS: 0.625

Document Question: Is Cynthia L. Carliss a senior executive?

Model A
Answer: No
ANLS: 1.0

Model B
Answer: Yes
ANLS: 0.0

Table 4: An example illustrating how lack of grounding can lead to misleading assessments of a model’s performance.
Top-row: Extractive QA. Bottom row: Abstractive QA. The image is excerpted from (CS, 2013).

that 1,000 forms are likely to include more than
100 signatories. If Alice is not able to locate the
possible errors, she will have to review every one
of the model’s extractions to verify its accuracy.
Assuming that Alice can perform the verification
task faster than the extraction task, we will esti-
mate her time-saving as 50%.8 This will still not
meet her target of 70% of documents (or 70% of
fields) being processed in a “straight-through” fash-
ion without a manual touchpoint. In order for Alice
to reach her target, she would need a model that is
well calibrated, and can indicate which documents
or which contexts are likely to include to errors.

Despite the recent attention that calibration re-
search has attracted with regards to the detection
of hallucinations in LLM outputs, the VrDU litera-
ture has largely remained focused on performance
without much regard for calibration. This topic is
especially worthy of attention in the VrDU litera-
ture, given the fact that most SotA models (6 out
of 7 models in Table 2) do not follow a generative
objective with a causal decoder, resulting in output
probabilities that are essentially not well calibrated.

RC4: How can calibration methods proposed in
the unimodal literature be adapted to VrDU mod-
els? What can the VrDU field offer to calibration
research with regards to multimodal semantics?

8If Alice is following a dual review process (i.e. a Maker-
Checker process), then the 50% time-saving estimate is con-
sistent with removing the Maker from the process, allowing
Alice to act as the Checker. Having said that, the estimate
is still likely to be very generous, because ungrounded mod-
els do not contextualize their extractions, and Alice would
need to manually locate each extracted output in the original
document before verifying it.

4.2 Model licensing and availability

As discussed in Section 3.1, SotA models inherit
the licensing challenges of the datasets that they
have been trained on. Additionally, the models
carry their own Intellectual Property, which might
restrict their use.

Moreover, the unavailability of open-sourced
code and/or model weights might further limit us-
age in downstream tasks. As Table 2 shows, only
4 of the 7 SotA models on the list have any open-
sourced components, and no model has all three
components that are required for it to be consid-
ered fully open-source (i.e. pre-training code, pre-
trained weights, fine-tuning code).

RC5: Can the field incentivize enterprise stake-
holders to participate in open research by investing
in methodologies that address their needs?

4.3 Grounding and generation

The recent success of large generative models has
prompted researchers to explore Multimodal Large
Language Models (MLLMs) as a solution to the
VrDU problem. This has led to the emergence of a
suite of generative MLLMs with promising perfor-
mance across several VrDU tasks, including VQA,
KIE, and CLS. A key challenge of these genera-
tive models is the fact that they are not designed
to ground their responses within the input, further
complicating the grounding challenge mentioned
in Section 3.3.

RC6: How can generative architectures be rec-
onciled with grounding requirements?
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4.4 Field-level vs. document-level
performance

The benchmarks in the VrDU field often calcu-
late a model’s performance as an average over all
fields within the dataset, whereas in real world
settings, performance is often measured at the doc-
ument level. In our scenario, Alice’s goal is to
reduce her workload by 70%. This is achievable
by: 1) Using a model that processes 70% or more
of documents without an error, or 2) Using a model
that has an average per-document performance of
70% or more. Neither of these metrics are com-
monly calculated as part of standard benchmarks.
As an example, Table 5 shows the performance of
LayoutLMv3 when measured overall, compared to
context-specific measurements such as doc-level
accuracy and average F1 per document. Doc-level
accuracy shows the percentage of documents that
can be processed in a “straight-through” fashion,
i.e. ones which the model processes without any er-
rors. As the table shows, only 4% of documents are
processed by the model without any errors, falling
far behind Alice’s target of 70%. On the other
hand, LayoutLMv3’s average F1 per document is
83.08. This means that Alice can focus her effort
on reviewing the portions of each document that
the model is likely to mishandle. She can strategize
by analyzing the model’s performance per entity
type, and focus her efforts on the “Header” category
for which the model performs poorly compared to
other entity types. Alternatively, given a model that
produces well-calibrated probabilities, Alice can
focus her efforts on low-confidence outputs. This
gives rise to the following research opportunity:

RC7: Studies such as Zmigrod et al. (2024a)
have proposed evaluation metrics that take into
account the semantic structure of documents, and
combine extractive and associative performance.
What additional metrics should be used to assess
the performance of VrDU models on key tasks?

4.5 The problem of reading order

VrDU datasets that cover the KIE task are often
evaluated using a standard IOB schema. Originally
developed for the IE task in unimodal text, the IOB
schema honors a sequence order that is inherent to
unimodal text. In contrast, multimodal documents
are 2-dimensional artifacts, and a canonical order-
ing of the words might not be readily available due
to their complex structure.

Nevertheless, in order to support the IOB

Reported F1 (with segments) 92.08
True F1 (no segment info) 82.86*

F1 per
entity type

Header 57.49
Question 86.03
Answer 83.25

Doc-level accuracy 4%
Avg F1 per doc 83.08

Table 5: Evaluation of LayoutLMv3 performance as
reported in Huang et al. (2022) (Reported F1) versus
when using contextualized metrics (e.g. Doc-level F1).
*The “True F1” value of 82.86 is consistent with the
value reported in Lee et al. (2023), i.e. 82.53.

schema, many VrDU datasets provide a proposed
ordering as part of their annotations, which the
models in turn use during evaluation. This leads
to a fundamental problem of information leakage—
the datasets are providing information to the model
regarding the order of the words which would not
be available in real-world test settings.

Additionally, as pointed out by Lee et al.
(2023), some models assume that they have ac-
cess to segment-level bounding boxes at test time.
They demonstrated how the performance of Lay-
outLMv3 on the FUNSD dataset would decrease
by almost 10 points when access to segment-level
information wasn’t provided (see second row of
Table 5).

Recent studies such as Zhang et al. (2023) have
taken steps towards addressing this problem by
proposing graph-based models that are sensitive
to reading order. The authors have also released
revised versions of the FUNSD and CORD datasets
to address the problem of information leakage. Fur-
ther investigation in this domain will enhance real-
world outcomes for downstream users.

RC8: What other measures can be employed to
ensure common benchmarks are protected against
information leakage?

5 A utility-focused research agenda

Given the challenges laid out in previous sections,
we will now discuss the opportunities that they of-
fer to researchers and practitioners in the field. We
will present these opportunities in the context of
several high-level focus areas, each covering one
or more of the research challenges discussed in pre-
vious sections. Consistent with previous sections,
we will present the focus areas in the context of
the main components of research: datasets, models,
and evaluation methods.
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5.1 Datasets: Curation

The inherent issue of copyright and ownership that
limits the use of document collections in training
VrDU models is compounded by the confidentiality
of content in most enterprise settings. Recent work
that has focused on synthetic document generation
explores the possibility of creating realistic layouts
(Raman et al., 2022), content (Hiebel et al., 2023),
or both (Babkin et al., 2023). A challenge in using
synthetic documents for VrDU tasks is that many
of them are modeled after the same public-domain
datasets mentioned in Section 3.1, and are thus
likely to carry the same biases in their multimodal
signal. To tackle this problem, a two-pronged ap-
proach is needed: 1) Enterprise researchers and
practitioners can take on a leading role in releasing
synthesized collections that reflect their proprietary
documents with high fidelity, without violating
their confidentiality. 2) Public-domain collections
such as the IIT-CDIP dataset can be augmented
with a larger variety of enterprise collections from
a wider range of industries and time spans. As Fig-
ure 2 illustrates, the datasets that are derived from
a variety of upstream sources are rare, and curators
often focus on one or two specific publishers.

5.2 Datasets & Models: Grounding

As previously noted, grounding is a crucial require-
ment for downstream applications, and is often
missing in both datasets and models. For extrac-
tive tasks such as KIE and extractive VQA, a basic
level of spatio-visual grounding can be achieved
by tying each token to its corresponding bounding
box within the page. When annotating datasets, we
encourage researchers to use tools that support vi-
sual annotations, such as PAWLS (Neumann et al.,
2021). Developing models that provide bounding-
boxes as part of their output further enables down-
stream users to verify them. Lastly, evaluation
strategies that do not consider the placement of
each answer within the original document risk over-
estimating performance. As discussed in Section
3.3, metrics such as ANLS can overestimate per-
formance in extractive settings, and fail to capture
semantic nuances in abstractive settings.

For abstractive tasks such as CLS and abstrac-
tive VQA, grounding can be a more challenging
task. Nevertheless, borrowing from the rich body
of research focused on verification and evidence
retrieval can open new opportunities for VrDU re-
searchers in this space.

5.3 Models: A new focus on calibration

We encourage the development of new benchmarks
that probe the model’s output or its internal repre-
sentations from a calibration perspective. In the
unimodal literature, previous studies have often
done so by presenting evidence that the model
generates compositional representations (Ettinger
et al., 2018), that the model’s confidence aligns
with its performance (Jiang et al., 2021), or that the
model makes “forgivable” errors (Renduchintala
and Williams, 2022). Similar measures can be used
by VrDU researchers to demonstrate whether the
models produce well-calibrated outputs. Below are
some research questions that can probe the issue of
calibration in the VrDU domain:

• Is the model able to map documents to a
compositional semantic space, where similar
documents (in terms of content) are grouped
together? How about similar documents in
terms of visual style? In terms of layout?
In terms of category (e.g. forms versus con-
tracts)? Or in terms of issuer/producer?

• Does the model produce well calibrated prob-
ability distributions as part of its output? If
not, does it lend itself to a post-hoc calibration
approach such as Jiang et al. (2021)?

• Does the model’s performance linearly scale
with its confidence?

• Can the model’s errors be identified at test
time using contextual signals? For example,
does the model consistently do well on tables
but poorly on diagrams?

• How can the model be integrated into an op-
erational pipeline where human oversight can
be directed towards high-risk samples?

5.4 Evaluation: Contextualizing the
performance

Lastly, we encourage researchers to report perfor-
mance metrics not only at the dataset-level, but also
at the document (and possibly output-type) levels.
This can be used as an estimate of the amount of
time that a knowledge worker can save by using
the model in an operational pipeline, provided that
the model is well calibrated.

Performance can also be profiled based on the
category, type, visual complexity, and contents of
the input. As an example, the DocVQA benchmark
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provides a breakdown of the different classes of
questions and the type of reasoning that is required
to answer them (e.g. reasoning over tables, charts,
layout, or text). This can facilitate a more purpose-
ful analysis of each model’s performance compared
to a singular measurement.

6 Conclusion

In this position paper, we provided a detailed break-
down of the challenges of operationalizing current
VrDU models in enterprise applications. We ar-
gued that these challenges can be embedded within
three key components of research: datasets, mod-
els, and evaluation strategies. Using a fictional
scenario that was inspired by real-world use cases,
we contextualized each challenge by demonstrating
how it could hinder end-user adoption. Lastly, we
proposed a set of research questions that can be in-
vestigated to address each challenge and facilitate
the adoption of SotA models in enterprise settings.
We hope that the agenda put forward in this paper
can inspire new directions in the VrDU literature
that accommodate downstream applications within
operational pipelines.

7 Limitations

In Sections 1 and 2, we defined the scope of this
position paper around major challenges in oper-
ationalizing VrDU models in enterprise settings
from a task-centric perspective, hence excluding
end-task-agnostic fields such as Optical Charac-
ter Recognition and Scene Text Recognition. This
task-centric perspective however might not hold
for future studies due to the growing popularity of
OCR-free models such as Donut Kim et al. (2022)
and Dessurt Davis et al. (2022).

The authors acknowledge that certain require-
ments that can drive impact in enterprise settings
can limit applicability in other aspects, such as
performance. For example, in settings where low
recall carries high risk, if grounding and explain-
ability come at the cost of recall, end users might
prefer to trade them off for better performance.

Lastly, the limitations regarding data and model
availability are often motivated by guidelines
around data governance and intellectual property,
and might not be addressable in the context of a re-
search agenda that is isolated from the legal context.
We hope that the research challenges and recom-
mendations made in this position paper motivate
further investigations into the legal and governance

implications of data- and model-sharing across aca-
demic and enterprise entities.
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A GPT-4V example

Figure 1 shows an interaction with the GPT-4V
model, recorded on Jan 7, 2024. The model was
prompted on a document classification task, using
a document from the RVL-CDIP dataset. The doc-
ument, a tax revenue report issued by a local tax
council, was tagged as a “budget” report within the
dataset. GPT-4V mischaracterizes the document as
a scientific report based on its style and numeric
content. Subsequent prompts with minor modifica-
tions to the question do not meaningfully change

the output of the model, and can only change the re-
sponse from “scientific publication” to “statistical
report” or “memo”.

B Upstream publishers of popular VrDU
datasets

Figure 2 shows the lineage of the datasets listed in
Table 3, based on upstream publishers.
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Figure 1: GPT-4V response to a document classification problem. The document is a budget report by a tax council,
excerpted from the RVL-CDIP dataset (Harley et al., 2015).

Figure 2: The lineage of the datasets listed in Table 3. Each dataset is displayed in a bordered box. The remaining
boxes represent upstream sources of documents, with the most upstream publisher highlighted in orange.
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