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Abstract

Instruction-tuning trains a language model on
hundreds of tasks jointly to improve a model’s
ability to learn in-context, either from task de-
scriptions, task samples, or both; however, the
mechanisms that drive in-context learning are
poorly understood and, as a result, the role of
instruction-tuning on in-context generalization
is poorly understood as well. In this work, we
study the impact of instruction-tuning on multi-
task transfer: how well a model’s parameters
adapt to an unseen task via fine-tuning. We
find that instruction-tuning negatively impacts
a model’s transfer to unseen tasks, and that
model transfer and in-context generalization
are highly correlated, suggesting that this catas-
trophic forgetting may impact in-context learn-
ing. We study methods to improve model trans-
fer, finding that multi-task training—how well
the training tasks are optimized—can signifi-
cantly impact ICL generalization; additionally,
we find that continual training on unsupervised
pre-training data can mitigate forgetting and
improve ICL generalization as well. Finally,
we demonstrate that, early into training, the im-
pact of instruction-tuning on model transfer to
tasks impacts in-context generalization on that
task. Overall, we provide significant evidence
that multi-task transfer is deeply connected to
a model’s ability to learn a task in-context.1

1 Introduction

The surprising ability of large language models to
follow natural language instructions and perform a
variety of complex tasks is attributed in large part
to instructing tuning, the process of fine-tuning a
language model with supervised demonstrations
of instructions or in-context examples paired with
the desired output (Chung et al., 2022; Wang et al.,
2022). However, the mechanisms behind the suc-
cess of instruction tuning remain poorly understood.

1We release our code at https://github.com/
davidandym/Multitask-Transfer-Instruction-Tuning

In principle, a good in-context learner may perform
a task by implementing a learning algorithm over
the examples passed in-context (Akyurek et al.,
2023); in practice, it is not clear how much of the
task is learnt versus recognized via memorization
or implicit latent inference over a pre-existing mix-
ture of experts (Xie et al., 2022; Olsson et al., 2022).
Perhaps most importantly, while instruction tuning
explicitly teaches a model to predict a task given
it’s context, it may also benefit in-context learning
via multi-task transfer from training on hundreds
of supervised tasks jointly.

In this paper, we seek to better understand in-
struction tuning from the perspective of multi-task
transfer. Put simply, instruction-tuning involves
continued training of a language model on super-
vised examples drawn from a variety of tasks. How-
ever, a common challenge when attempting to fit
a single model to multiple tasks is interference be-
tween tasks during optimization, which can lead
to models which generalize worse than single task
models (Sener and Koltun, 2018; Yu et al., 2020).
Despite these challenges inherent to multi-task
learning, which are exacerbated with the number
of tasks, the ability of an instruction-tuned model
to perform in-context learning—learning the task
to predict from examples or instructions provided
in the context—improves with the number of tasks
seen during training, because the model sees more
demonstrations of context (Sanh et al., 2022).

We aim to characterize the extent to which
multi-task transfer dynamics influence the resulting
instruction-tuned model, and whether improving
multi-task transfer can yield benefits to the trans-
fer and in-context learning (ICL) performance of
instruction-tuned models towards unseen tasks.

Contributions We provide an analysis of instruc-
tion tuning as a multi-task transfer problem, and
we evaluate the effect of multi-task transfer on a
model’s in-context learning ability. Leveraging
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few-shot fine-tuning to measure general model
transfer, we demonstrate that instruction-tuning
harms model transfer to unseen tasks over pre-
training; further, we show that model transfer and
in-context learning are highly correlated, suggest-
ing that this catastrophic forgetting may negatively
impact in-context generalization (§3). Next, we ex-
plore different multi-task sampling schemes during
instruction-tuning to study how multi-task train-
ing impacts in-context generalization (§4); we
find that methods which generalize best to the
training tasks achieve better ICL generalization,
suggesting that multi-task training matters during
instruction-tuning. We study the trajectory of catas-
trophic forgetting, finding that model transfer and
ICL ability are both highly correlated in the lat-
ter portion of instruction-tuning, again suggest-
ing they are connected (§5); finally, we show that
mixing instruction-tuning data with unsupervised
pre-training data mitigates catastrophic forgetting
and improves ICL generalization. Our results re-
veal that model transfer is deeply connected to in-
context learning ability and suggest future direc-
tions to improve instruction-tuning for LLMs.

2 Background & Preliminaries

2.1 Multi-Tasking Learning & Transfer

Transfer learning—the adaptation of knowledge or
decision rules learned under one environment to
another—has played a critical role in deep learning:
fine-tuning neural network parameters trained in
high-resource environments and tasks to specific
tasks of interest has led to massive improvements
in generalization in nearly every domain of ma-
chine learning (Donahue et al., 2014; Peters et al.,
2017, 2018). Intuitively, fine-tuning succeeds when
pre-training moves the parameters of a model into
regions of the parameter space where solutions to
the target task exist, which single-task learning
alone would not discover (Juneja et al., 2023).

A key driver in deep transfer learning is multi-
task learning (MTL; Caruana, 1997): fitting a sin-
gle neural network to multiple tasks jointly can lead
to a solution that is more general than single-task
models, and can therefore a priori transfer better
to unseen tasks and domains (Finn et al., 2017;
Aribandi et al., 2022). This paradigm of adapting
multi-task parameters to tasks has led to improve-
ments in NLP for lower resource tasks and lan-
guages (Mueller et al., 2020; Gheini et al., 2023),
and may even explain the success of unsupervised

pre-training (Weber et al., 2021).
Despite these successes, multi-task optimiza-

tion often struggles to fit large, diverse sets of
tasks jointly due to inter-task conflicts and task
imbalances (Sener and Koltun, 2018; Kendall et al.,
2018), and several methods have been proposed
that attempt to address this by mitigating task con-
flict and balancing task losses during training (Yu
et al., 2020; Chen et al., 2018; Wang et al., 2020).
However, when the ultimate goal is to transfer to
specific target tasks, prior work has shown that
increasing the number of pre-training tasks is bene-
ficial despite increasing task conflicts (Aghajanyan
et al., 2021; Aribandi et al., 2022); thus, it is not
clear if task conflicts or imbalances are necessarily
harmful to multi-task transfer.

2.2 Mechanisms Behind In-Context Learning

While fine-tuning, particularly parameter-efficient
fine-tuning (Xu et al., 2023), is the predominant
method of transfer in NLP, recently in-context
learning has been proposed as a method to com-
bine transferable knowledge from pre-training with
an LLMs ability to infer what task to perform over
the inputs based on the context provided (Brown
et al., 2020). ICL is a particularly attractive form
of model transfer because, unlike fine-tuning, it re-
quires no parameter updates or additional training
to adapt to an unseen task; instead, given an input
(rk;x) where the input x is concatenated with task-
specifying context rk, a strong in-context learner
will infer that is must perform task k from rk and
then accurately predict task k over the input x.

However, the mechanisms behind ICL in LLMs
are not yet understood: one thread of work sug-
gests that, when rk is a set of task exemplars,
neural networks—specifically attention-based mod-
els (Vaswani et al., 2017)—can approximate learn-
ing algorithms over those exemplars (Akyurek and
Andreas, 2023), or leverage induction heads to per-
form a prefix-match and copy mechanism (Ols-
son et al., 2022). Another direction suggests that
ICL operates as a latent mixture over expert func-
tions learned during pre-training (Xie et al., 2022),
i.e. that ICL first performs task inference by infer-
ring a mixture of pre-trained experts, and then uses
that mixture to make a prediction. This latter per-
spective, in particular, suggests that, in addition to
the task inference mechanisms, general multi-task
knowledge learned during pre-training may play a
critical role in in-context learning ability (§3).
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2.3 The Benefits of Instruction Tuning
Despite non-trivial generalization to unseen con-
texts, the performance of fully unsupervised LLMs
on ICL tasks can often be poor. Instruction tuning
(IT) has emerged as an effective way to improve
a model’s in-context generalization (Sanh et al.,
2022; Wei et al., 2022). In instruction tuning, mul-
tiple tasks are first converted to Text-to-Text (T2T)
problems (Raffel et al., 2020) and contextualized
via task-specifications (Sanh et al., 2022; Wang
et al., 2022). Language models are then fine-tuned
on all tasks jointly, such that the model must use
the specification, rk, to infer which task to predict.
Recent work has shown that as the number of train-
ing tasks and unique task specifications increases
during instruction-tuning, ICL generalization to
unseen tasks improves (Chung et al., 2022).

Formally, instruction tuning considers a collec-
tion of pairs of task specifications and datasets,
{(rk, Sk)}Kk=1 where Sk = {(xki , yki )}N

k

i=1 is the
training dataset for task k. During training, the
input to the language model, Fθ, is a concatena-
tion of the specification and input, (rk;x), and the
objective of IT is to minimize:

L̂IT (θ) = E
k∼P (K)

[
E

(x,y)∈Sk

[
ℓ(Fθ(rk;x), y)

]]

(1)
where ℓ is typically the negative log-likelihood loss
and P (K) is a distribution over all training tasks.
Although the goal of IT is to improve ICL general-
ization, the loss that it minimizes (1) is a multi-task
objective, and therefore instruction-tuned models
are explicitly trained with multi-task supervision.
However, because the mechanisms behind ICL gen-
eralization are poorly understood, it is not clear if
multi-task transfer from instruction-tuning is a key
benefit to in-context learning, or if it impacts ICL
generalization at all. In this work, we study how
instruction-tuning impacts multi-task transfer, and
whether multi-task transfer matters for ICL.

2.4 Experimental Setup
Instruction-Tuning Data We consider Super-
Natural Instructions (Wang et al., 2022) as our large
set of instruction-tuning tasks, which consists of
1, 600+ tasks in several languages. For the pur-
poses of our experiments—specifically, our focus
on multi-task rather than multilingual transfer—we
limit our tasks to those which are both English and
represent Natural Language tasks (i.e. we do not
use synthetically generated tasks). We select 58

task categories (a subset of task categories repre-
senting natural language tasks), resulting in 619
training tasks; all of the training task categories can
be seen in Table 1. For each task, we select a hold
out 10% of it’s data as test data and 10% of it’s
data as validation data. This set of 619 tasks serves
as our massively multi-task training objective for
instruction-tuning.

When evaluating transfer to unseen tasks, we
test on 93 held out tasks which fall under the 11
remaining task categories that are held out from the
training set Table 2. We hold out 100 samples from
each task as a test set, and 40 additional samples
for few-shot fine-tuning. When performing ICL,
we use 3 contextual samples provided by SNI as
metadata for our in-context exemplars in rk.

Modeling & Evaluation We use the LM-
Adapted T5 models for all our experiments, which
are a family of T5-Large models pre-trained only
on the C4 dataset with the T5 denoising objective,
and then fine-tuned on C4 with a standard language
modeling objective.2 We fine-tune these models on
our instruction-tuning tasks for 3 epochs (roughly
300, 000 steps), using a linear learning rate sched-
ule with a warmup to an initial learning rate of
5e94, a batch-size of 16, and using the standard
LM objective (Wang et al., 2022). For more details,
see Appendix B. When performing instruction-
tuning with in-context exemplars as rk, we use
3 samples provided by SNI as task-metadata for
our exemplars; when instruction-tuning without in-
structions, we set rk to the unique task-ID number
in SNI Figure 5. Following Wang et al. (2022), we
use the ’Rouge-L r’ metric to evaluate all tasks.

3 Does Transfer From Instruction-Tuning
Matter for In-Context Learning?

Instruction-tuning is, in essence, multi-task fine-
tuning of a pre-trained LM, which has been shown
to improve transfer in some settings (Aghajanyan
et al., 2021); however, it is not clear if instruction-
tuning improves transfer to unseen tasks, or even
if model transfer is relevant to in-context learning
ability. In this section we ask: does instruction-
tuning impact model transfer to unseen tasks, and
does it’s impact on task transfer correlate with it’s
impact on in-context learning accuracy?

2LM-Adapted T5 models adapt much quicker to prompt-
based tuning (Lester et al., 2021), as well as instruction-
tuning and LoRA fine-tuning in our experiments, ostensibly
because SuperNatural Instructions frames all tasks as condi-
tional language-modelling problems.
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Figure 1: (Left): Instruction-Tuning Harms Transfer to Unseen Tasks when performing few-shot fine-tuning.
Pre-trained models adapt faster and with higher accuracy to unseen tasks than instruction-tuned models, even when
fine-tuning leverages in-context exemplars. (Right): Few-Shot Transfer is Correlated with In-Context Learning
Accuracy: we see a high correlation between model performance after 5-shot fine-tuning and model performance
when leveraging in-context learning, suggesting that transfer matters for in-context learning performance.

3.1 IT Harms Transfer To Unseen Tasks

We are interested in how multi-task learning im-
pacts transfer to unseen tasks: because pre-trained
models are generally not capable of performing
in-context learning very well, we rely on few-shot
fine-tuning to measure model transfer before and
after instruction-tuning. More specifically, we fine-
tune task-specific LoRA layers (Hu et al., 2022)—a
parameter efficient fine-tuning technique known to
achieve strong fine-tuning performance across a
wide variety of NLP tasks—on 0 to 40 samples of
each task in our set of unseen tasks. We compare
Pre-Trained models to Instruction Tuned models
when setting the distribution over training tasks,
P (K), to be proportional to the task training set
size, as in Wang et al. (2022).

In Figure 1 (Left), we plot unseen task fine-
tuning transfer, as the number of fine-tuning sam-
ples increases, for both Pre-Trained and Instruction-
Tuned models. On instruction-tuned models, we
perform fine-tuning in two ways: first, as with the
pre-trained models, we provide no task context dur-
ing fine-tuning; second, we set the task context
to match the context provided during instruction-
tuning (In-context Exemplars), so that fine-tuning
may benefit from in-context learning as well.3 We
see that instruction-tuning harms model transfer
to unseen tasks compared to pre-trained models,
i.e. instruction-tuning results in some amount of

3There is no overlap between the examples used for ICL
and Fine-tuning.

catastrophic forgetting (Kirkpatrick et al., 2017) of
general task knowledge from pre-training. This is
surprising because Aghajanyan et al. (2021) and
Aribandi et al. (2022) suggest that supervised multi-
task training can improve model transfer to seen
tasks over just pre-training; we find that it does not
necessarily improve transfer to unseen tasks.

A second take-away from Figure 1 (Left) is that,
rather than benefiting from multi-task transfer, in-
context learning ability improves via instruction-
tuning in spite of it’s impact on model transfer.
However, it is still unclear whether how well a
model’s parameters transfer, via fine-tuning, to a
specific task has any relevance to how well that
model can perform in-context learning on that task.
To answer this, in Figure 1 (Right) we plot 5-shot
fine-tuning test loss by in-context learning test loss
for each unseen tasks using the instruction-tuned
model; note that we use no in-context exemplars
during fine-tuning, so the fine-tuning generaliza-
tion is not impacted by in-context learning. Surpris-
ingly, we see a very strong correlation (Spearman-
R of 0.936 with a p-value of 4.96 × 10−42) be-
tween a model’s generalization to unseen tasks
when leveraging few-shot fine-tuning vs. using
in-context learning. Such a strong correlation sug-
gests that model transfer, as measured by how eas-
ily parameters fine-tune or adapt to a new task, may
be meaningful for in-context learning.
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Figure 2: (Left): More Data Per Task Harms Transfer and In-Context Learning during Instruction Tuning.
Using only 10 samples per task is enough to get strong ICL generalization, and more samples leads to degradation in
both fine-tuning transfer and in-context learning ability. (Right): Changes to Few-Shot Transfer are Correlated
with Changes to In-Context Learning Generalization: when comparing the change, from a 5, 000 data limit
model to a 50 data limit model, in fine-tuning test loss to in-context test learning loss, we see a relatively high
Spearman-R correlation, suggesting that impacts to few-shot parameter transfer matter for in-context learning.

3.2 Less Data Improves Transfer and ICL

Wang et al. (2022) find that using the full dataset of
each task during training can harm in-context learn-
ing generalization, i.e. that only a few (∼ 60) sam-
ples per-task are needed to impart strong ICL abili-
ties; we study whether this can be understood, in
part, through the lens of our results in §3.1. Namely,
we hypothesize that fewer samples per task may
reduce catastrophic forgetting, leading to stronger
model transfer and improving ICL accuracy.

To test this, we instruction-tune several T5 Large
models on increasing limitations of samples per-
task, from 10 up to 5, 000 (the maximum number of
samples for any task in SuperNatural Instructions),
and measure fine-tuned performance and in-context
learning performance (using in-context exemplars).
When the per-task limit exceeds the training dataset
size of a task, we simply use the entire task dataset;
additionally, as in §3.1, we set P (K) to be pro-
portional to the training dataset size of each task
under each setting (i.e. for a limit of 10 samples
per-task, P (K) is uniform). Note that, using 10
samples per task, a model is instruction-tuned on
6, 190 samples in total during instruction-tuning, a
significant reduction from the 1.5-million samples
that a 5, 000 data-limit model trains on.

Despite a significant reduction in data, we see
that, as the number of samples per task decreases,
both few-shot fine-tuning performance and in-
context learning performance increase significantly.

This result not only confirms that only a few sam-
ples per-task are necessary to achieve strong ICL
capabilities, but also suggests that further training
on additional data per-task harms ICL performance
via the same mechanisms by which it harms fine-
tuning transfer, i.e. by catastrophic forgetting of
general task knowledge.

To study whether this trend is corroborated at
the individual task-level, in Figure 2 (Right) we
plot the change in In-Context Learning Loss by the
change in Few-Shot Fine-Tuning Loss on Unseen
Tasks, when using 50 vs. 5, 000 samples per-task.
Again, we see a surprisingly strong correlation (in
this case, a Spearman-R of 0.705 with a p-value
of 6.31× 10−15) between individual task behavior
with respect to fine-tuning and ICL transfer. This
correlation is surprising because it is not obvious
why a change to a task’s fine-tuning performance,
which measures how easily a model’s parameters
can adapt to a task, would be tied to the task’s gen-
eralization under in-context learning, which uses
ostensibly separate mechanisms of task inference
over the context (Olsson et al., 2022; Akyurek and
Andreas, 2023); nevertheless, our results suggest
that these factors are tied together in some way.

Discussion Together, the results of §3.1 and
§3.2 show that Instruction-Tuning generally harms
model transfer to unseen tasks, causing catas-
trophic forgetting of general task knowledge, when
transfer is measured via fine-tuning: how easily
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Figure 3: (Left): Models which exhibit the strongest multi-task generalization also demonstrate the best ICL
ability. Despite being trained on the same amount of data and tasks, MTL models whose sample methods result in
the best generalization to the training tasks also have the stronger in-context learning abilities. (Center & Right):
Striking the right balance between high-resource and low-resource tasks during training is important to in-context
learning. Despite having comparable generalization on higher resource tasks, models which over- or under-fit lower
resource tasks exhibit worse ICL generalization: fitting the training tasks well matters during instruction-tuning.

the parameters of the model can adapt to a new,
unseen task. Furthermore, while instruction-tuning
significantly improves a model’s in-context learn-
ing ability, we show that individual task in-context
learning performance is tied to the model’s ability
to transfer to that task via fine-tuning. This is signif-
icant for a couple reasons: first, it sheds light on the
mechanisms driving in-context learning, suggest-
ing that in-context learning relies, to some extent,
on how close a model’s parameters are to a good
solution for each task; second, it suggests that one
way to improve ICL ability is to improve multi-task
transfer, which we explore in the next sections.

4 Multi-Task Generalization vs. ICL

Our results in §3 indicate that, surprisingly, the
ability of a model to transfer to an unseen task may
be indicative of a model’s ability to learn the task
in-context, after instruction-tuning. This result sug-
gests that, by improving multi-task transfer during
instruction-tuning, we may improve it’s in-context
learning ability to unseen tasks. In this section,
we ask how the multi-task training of instruction-
tuning, specifically how well the model fits and gen-
eralizes to the tasks seen during instruction-tuning,
impacts ICL performance.

As described in §2.2, instruction-tuning mini-
mizes L̂IT (θ), computed as the expected task loss
over k ∼ P (K), where P (K) is a distribution over
the set of training tasks K; during training, P (K)
reflects the rate at which tasks are sampled for each
batch. In standard multi-task training, this distri-
bution is often directly modified using different

heuristics or methods to explicitly balance different
task losses and mitigate task conflicts (Chen et al.,
2018; Yu et al., 2020; Wang et al., 2020, inter alia.).
However, the goal of these methods is often to im-
prove generalization to the training tasks; it is not
clear if specialized optimization methods are nec-
essary to improve ICL during instruction-tuning.4

Instead, in instruction-tuning, P (K) is propor-
tional to the dataset size of each task, biasing
training towards tasks that have more training
data (Chung et al., 2022; Wang et al., 2022). To
study whether multi-task training impacts ICL gen-
eralization during instruction-tuning, we consider
two additional distributions for P (K): Uniform
Sampling, which treats P (K) as the uniform dis-
tribution, and Reverse Annealing, inspired by Choi
et al. (2023), which initializes P (K) to the pro-
portional distribution and gradually heats the tem-
perature of the distribution during training, up
to some max temperature T . We sweep over
T = 10{2,3,4,5} and report the two highest perform-
ing methods based on seen task validation data.

In Figure 3 (Left) we plot the training and test
loss of the (seen) instruction-tuning tasks, as well
as the in-context learning loss on unseen tasks, for
instruction-tuned models using 4 different sam-
pling schemes (Uniform Sampling, Proportional
Sampling, and Reverse Annealing with T = 100
and T = 1000). We find that multi-task gener-

4Many of these methods are unsuited for instruction-tuning
with LLMs. For instance, some methods require storing the
model gradients for each task, which would require 2 TB of
memory for T5-Large; other methods require a fully mixed
batch, which requires a minimum batch-size of 619.
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alization (how well the model generalizes to the
training tasks) is correlated with in-context learn-
ing generalization to unseen tasks: Proportional
Sampling achieves the lowest Test Loss on the
seen tasks, and correspondingly has the lowest test
loss of unseen tasks via In-Context Learning, fol-
lowed by the model using Reverse Annealing with
T = 1000 and Uniform Sampling. This is notable,
as it indicates that the multi-task training aspect of
instruction-tuning has a significant impact on how
well a model can perform in-context learning.

In Figure 3 (Center & Right) we plot the indi-
vidual task train loss and test loss, respectively, for
tasks when binned by dataset size. The sampling
scheme which achieves the best in-context general-
ization (Proportional Sampling) has the highest par-
ity, for both training loss and test loss, across tasks
of different resources. Conversely, while all the
methods we consider have comparable loss on the
very high resource tasks (∼ 5, 000 samples), they
have significantly higher test losses on the lower
resource tasks, suggesting that generalizing well
to the long-tail of tasks in the instruction-tuning
dataset is important for in-context learning gener-
alization. Importantly, striking the right balance
during training seems critical: while Reverse An-
nealing sampling underfits lower resource tasks,
Uniform Sampling overfits lower resource tasks;
only Proportional Sampling manages to achieve
strong test loss on lower resource tasks by not over-
or under-fitting them during training.

Discussion The results of §4 indicate that multi-
task training, i.e. how the training tasks are opti-
mized and how well the final solution generalizes
to them, impacts in-context learning ability during
instruction-tuning. This result is not intuitive, as it
is not obvious that task imbalances should impact
in-context learning abilities after training given re-
cent results on scaling up the number of tasks for
both instruction-tuning (Chung et al., 2022; Wang
et al., 2022) as well as multi-task transfer (Aribandi
et al., 2022). While none of these works consider
specialized MTL methods as a component of trans-
fer learning, our findings suggest that ICL gener-
alization can be improved by stronger MTL meth-
ods which better balance seen task generalization
during training. However, we also find that propor-
tional sampling is a very strong baseline.

5 The Trajectory of ICL & Forgetting

In §4 we focus on improving multi-task transfer
by explicitly attempting to address task imbalances
and balance generalization across training tasks. In
this section, we instead focus on improving model
transfer by mitigating the catastrophic forgetting
we observe in §3. More specifically, we ask can
early-stopping and continual learning improve ICL
generalization by mitigating the effects of catas-
trophic forgetting on model transfer?

5.1 The Trajectory of Catastrophic Forgetting

We begin by studying whether early-stopping
can mitigate catastrophic forgetting, and improve
ICL performance, by studying the trajectory of
these values during instruction-tuning. Specifi-
cally, in Figure 4 (Left) we plot few-shot fine-
tuning transfer and in-context performance dur-
ing the instruction-tuned model trajectory, evaluat-
ing checkpoints every 50, 000 steps of instruction-
tuning. Interestingly, we see that early-stopping is
not an effective method to improve ICL generaliza-
tion because ICL generalization increases through-
out the entire training process; even more surpris-
ing, we find that fine-tuning transfer increases over
time as well. While we expect catastrophic forget-
ting to get worse as we continue to fit the training
tasks, we instead see that, after an initial phase of
significant catastrophic forgetting, transfer begins
to increase with continued multi-task training.

The trajectories in Figure 4 suggest that, while
ICL performance and fine-tune transfer are initially
at odds, they may improve together as training pro-
gresses.5 In Figure 4 (Center) we plot the correla-
tion, across tasks, between the change in fine-tune
transfer and ICL performance in the first 50, 000
steps of training: we see that the correlation is
very low (Spearman-R of 0.245 with a p-value of
0.019). In contrast, the correlation between the
change in fine-tune transfer and ICL performance
from the 50, 000th step to the end of training (Fig-
ure 4 (Right)) is much higher, with a Spearman-R
correlation of 0.621. This correlation suggests that,
during the latter portion of instruction-tuning, the
mechanisms which improve fine-tuning transfer are
also driving improvements to ICL performance.

5However, we note that this trajectory of fine-tuning trans-
fer occurs even in a standard multi-task setup (i.e. no task con-
texts are included), meaning the behavior of non-monotonic
forgetting is not because of in-context learning.
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Figure 4: (Left) Fine-Tuned vs. ICL Transfer over time during instruction-tuning with and without mixing
in unsupervised data. Early into training, few-shot fine-tuning performance degrades while in-context learning
performance increases significantly; after this period, both fine-tune transfer and in-context learning begin to
improve together. Additionally, mixing in C4 data alleviates catastrophic forgetting and improves ICL generalization.
(Center) During the first phase of training there is little correlation between the effects on transfer and in-context
learning performance. (Right) After the first 50, 000 steps of training, the changes to fine-tuning transfer and ICL
performance become much more tightly correlated, implying multi-task transfer impacts ICL performance after this
initial phase of instruction-tuning.

5.2 Continual Learning on Pre-Training Data

Finally, we ask whether or not we can mitigate
catastrophic forgetting by continuing to train on
the data used for pre-training while performing
instruction-tuning; specifically, whether continuing
to train on C4 (Raffel et al., 2020), the large, unsu-
pervised dataset that our T5 models are pre-trained
on, can help in-context learning generalization.
To study this, we train an additional instruction-
tuned model where, for every 3 steps of instruction-
tuning, we mix in an additional step on a sample
of unsupervised C4 data; every step has the same
batch-size, and models with and without the C4
data take the same number of steps on instruction-
tuning data.

We plot the comparison between instruction-
tuned models and models trained on instruction-
tuning and C4 data in Figure 4 (Left). As expected,
mixing in C4 data into instruction-tuning results
in significantly less catastrophic forgetting, with
respect to few-shot fine-tuning, throughout train-
ing. However, continued training on C4 data leads
to a significant increase in ICL generalization as
well. This is unexpected because it is not clear
why continued training on C4 data should improve
in-context learning ability: it adds no additional
examples of task specifications or task supervision
and consists solely of data which the pre-trained
model has already seen. We conjecture that the
benefit to in-context learning of continual train-
ing on unsupervised data, is due to effects on fine-

tuning transfer and the strong connection we ob-
serve (throughout this paper) between a model’s
degree of fine-tuning transfer and in-context learn-
ing strength across tasks.

6 Conclusion

Summary of findings This paper studies the
impact of multi-task transfer from instruction-
tuning on in-context generalization. We find that
instruction-tuning has a surprisingly negative im-
pact on transfer to unseen tasks and, moreover,
that a models ability to transfer to a task and it’s
in-context generalization on that task are highly
correlated. However, we also observe that tech-
niques to improve general model transfer—such
as training with less data per-task, better balancing
multi-task losses during training, and continuing
training on unsupervised data during instruction-
tuning—can all improve in-context generalization
by mitigating the negative impact of instruction-
tuning on model transfer. Finally, we additionally
find that the negative impact of instruction-tuning
on transfer happens early into training, after which
both model transfer and in-context generalization
improve in a highly correlated manner.

Future Work Overall, our findings highlight sev-
eral under-appreciated consequences of instruction
tuning and point to promising directions for future
work. One promising direction is to incorporate
ideas from multi-task learning into the instruction
tuning process, as a way to increase positive trans-
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fer between seen tasks, which may in turn improve
multi-task transfer to unseen tasks, thereby improv-
ing ICL generalization. Our findings also imply
that multi-task transfer, and in particular the impact
of the specific tasks used during instruction-tuning,
may have a much more significant effect on ICL
generalization than previously thought.

Limitations Due to a limited compute budget
and desire for others to easily reproduce our re-
sults, we focus our evaluations on a relatively small
family of pre-trained models. Although we expect
our findings to hold for larger model sizes, con-
ducting additional experiments with larger models
would be necessary to confirm this. We also focus
our experiments on a single dataset, namely Super-
Natural Instructions, itself composed of hundreds
of tasks. We hold-out particular categories of tasks
for unseen evaluations and our conclusions would
be strengthened by repeated trials with further held-
out categories, although this would significantly
increase the required compute budget.
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A Dataset Details

In this paper, we leverage the pre-existing
SuperNatural-Instructions dataset (Wang et al.,
2022), which consists of a collection of 1,616 NLP
and synthetic tasks, along with expert-written in-
structions and selected examples for each task. Our
instruction-tuning training set is collected by first
filtering all tasks that are not in English, as well as
all synthetically generated tasks. We next select a
set of evaluation domains ({ Healthcare, Social
Media, Social Media -> Twitter, Social
Media -> Reddit, Sports, Animals, Reviews
-> Books, Reviews -> Trip Advisor, Reviews
-> Restaurants, Reviews -> Music, Public
Places -> Restaurants, Scientific Research
Papers }) and exclude all tasks from those domains
from the training set. Finally, all tasks constructed
from a set of adversarial sources ({ anli, paws,
hans, hellaswag, codah, adversarial_qa }) are
excluded. The remaining 619 tasks, representing
the categories listed in Table 1 are used as our train-
ing tasks.

The remaining task categories not used for train-
ing are split into two different evaluation categories:
NLU if their sources are NLP datasets, and Syn-
thetic if they are synthetically generated. We lever-
age all tasks that fall under each category for these
evaluations, so long as the task has more than 140
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x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

Fact: rain helps plants to survive.

input: Fact: pesticides can harm animals. 
output: What can harm animals? 
input: Fact: rain can help form soil. 
output: Rain can help form? 
input:

Instruction

Context

Figure 5: Examples of different types of rk which may
specify the task k to a language model, Fθ, at the input.
The language model then generates from the conditional
distribution Fθ(y|rk;x), where ; denotes concatenation.

total examples (necessary for evaluation and few-
shot fine-tuning). Finally, any task that falls under
a training task category but was held out because
it is from an adversarial source (held-out domain)
is used for the adversarial (domain generalization)
test set, similarly filtering for 140 minimum sam-
ples. The task categories and task counts for each
evaluation set are shown in Table 2.

B Model & Training Details

For all of our experiments, we use the LM-
Adapted T5-Large model checkpoint found
at https://huggingface.co/models?other=
t5-lm-adapt. These are T5-architecture models
trained exclusively on the C4 Language Modeling
corpus (i.e. no additional supervised data, unlike
the traditional T5 model) on the T5 denoising
objective, and then fine-tuned on C4 using a
standard, auto-regressive language modeling
objective. As a result, these models have stronger
in-context learning capabilities out of the box, and
are similarly much more suited to pattern-based
fine-tuning and instruction-tuning, which both
leverage auto-regressive training objectives.

When performing instruction-tuning, we train
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Seen Categories Num. Tasks

Text Categorization 24
Speaker Identification 9
Question Generation 49
Sentiment Analysis 29
Misc. 29
Question Answering 150
Text Matching 15
Program Execution 12
Summarization 11
Question Understanding 11
Fact Verification 2
Gender Classification 7
Information Extraction 15
Poem Generation 1
Sentence Composition 15
Story Composition 9
Discourse Connective Identification 1
Named Entity Recognition 11
Textual Entailment 19
Text Completion 9
Wrong Candidate Generation 15
Commonsense Classification 23
Paraphrasing 5
Dialogue Generation 11
Explanation 4
Coherence Classification 6
Linguistic Probing 9
Pos Tagging 8
Stereotype Detection 7
Punctuation Error Detection 1
Text Simplification 4
Word Semantics 10
Sentence Ordering 3
Code to Text 4
Fill in The Blank 6
Text Quality Evaluation 4
Answer Verification 3
Intent Identification 4
Dialogue State Tracking 4
Text to Code 12
Number Conversion 2
Spam Classification 1
Word Relation Classification 4
Stance Detection 2
Speaker Relation Classification 2
Grammar Error Detection 1
Preposition Prediction 1
Negotiation Strategy Detection 7
Style Transfer 2
Discourse Relation Classification 1
Question Decomposition 2
Sentence Perturbation 4
Sentence Compression 1
Entity Relation Classification 1
Translation 2
Sentence Expansion 1
Entity Generation 1
Toxic Language Detection 1

Table 1: All training categories.

Unseen Categories: Language Understanding Num Tasks

Coreference Resolution 14
Data to Text 9
Question Rewriting 11
Title Generation 18
Dialogue Act Recognition 7
Answerability Classification 11
Keyword Tagging 5
Overlap Extraction 2
Word Analogy 8
Cause Effect Classification 7
Grammar Error Correction 1

Table 2: Our Unseen Task Evaluation Setup, leveraging
the Task category taxonomy presented in SuperNatural-
Instructions.

all models for 3 epochs, using a batch-size of 16
and a learning-rate of 5e94, using a linear learning
rate with a warm-up period of 500 steps. We train
on the standard conditional generation loss, using
cross-entropy to minimize the NLL of the label y
given the input x and the task context rk.

For LoRA fine-tuning, we use the PEFT im-
plementation (https://huggingface.co/docs/
peft/index). We fine-tune for 5 epochs, using
a constant learning rate of 1e93 and a batch-size
of 32. We set r to 16, alpha to 32, and we use a
dropout of 0.05.

For Reverse Annealing, we begin with an initial
temperature of 1 and linearly increase that tem-
perature up to 1, 000. This was chosen, based
on validation data, as the best maximum tem-
perature out of {100, 1, 000, 10, 000, 100, 000}.
For DWA, we use a temperature of 1 for the
softmax, which was chosen, based on vali-
dation data, as the best temperature out of
{0.01, 0.1, 1, 10, 100, 1, 000, 10, 000, 100, 000}.
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