
Findings of the Association for Computational Linguistics ACL 2024, pages 14936–14952
August 11-16, 2024 ©2024 Association for Computational Linguistics

Diffusion Guided Language Modeling

Justin Lovelace* Varsha Kishore Yiwei Chen Kilian Q. Weinberger
Cornell University

Abstract

Current language models demonstrate remark-
able proficiency in text generation. However,
for many applications it is desirable to con-
trol attributes, such as sentiment, or toxicity,
of the generated language—ideally tailored to-
wards each specific use case and target audi-
ence. For auto-regressive language models, ex-
isting guidance methods are prone to decoding
errors that cascade during generation and de-
grade performance. In contrast, text diffusion
models can easily be guided with, for example,
a simple linear sentiment classifier—however
they do suffer from significantly higher perplex-
ity than auto-regressive alternatives. In this pa-
per we use a guided diffusion model to produce
a latent proposal that steers an auto-regressive
language model to generate text with desired
properties. Our model inherits the unmatched
fluency of the auto-regressive approach and
the plug-and-play flexibility of diffusion. We
show that it outperforms previous plug-and-
play guidance methods across a wide range of
benchmark data sets. Further, controlling a new
attribute in our framework is reduced to train-
ing a single logistic regression classifier. Our
code is available at https://github.com/
justinlovelace/Diffusion-Guided-LM.

1 Introduction

The rapid and ubiquitous adoption of (large) lan-
guage models (LMs) raises a critical parallel chal-
lenge: how do we effectively guide their generation
to be safe and fitting for each application and target
audience? For example, one might want an LM to
use different language if it interacts with kinder-
garteners, writes a comedy sketch, provides legal
support, or summarizes news articles.

Currently, the most successful LLM paradigm
is to train a single large auto-regressive model that
can be used for many tasks (Raffel et al., 2020;
Brown et al., 2020). Different approaches to guide

*Correspondence to <jl3353@cornell.edu>.

Figure 1: Illustration of our Diffusion Guided Lan-
guauge Model. We pre-train the autoregressive decoder
and the diffusion network used to generate semantic
proposals. During generation, we can perform plug-and-
play control with simple, linear attribute classifiers.

generation of such LLMs exist, each with their
own strengths and weaknesses. A popular way to
control the generation is to align the LM through
fine-tuning. These approaches are very effective,
but as they change the actual model weights, they
can deteriorate the LM’s performance (Lazaridou
et al., 2020; Ouyang et al., 2022; Bubeck et al.,
2023; Noukhovitch et al., 2023). Further, if new ap-
plications require a unique combination of attribute
preferences (e.g. humorous but not toxic), new ded-
icated models must be fine-tuned and hosted. In
contrast, plug and play approaches do not change
the model weights and instead utilize additional
light-weight classifiers or heuristics to influence
the generation process (Dathathri et al., 2019; Yang
and Klein, 2021; Krause et al., 2021; Liu et al.,
2021; Deng and Raffel, 2023). Such approaches
are highly flexible and do not require fine-tuning

14936

https://github.com/justinlovelace/Diffusion-Guided-LM
https://github.com/justinlovelace/Diffusion-Guided-LM
mailto:jl3353@cornell.edu

or the hosting of dedicated models. However, as
they typically alter the logits in the final layer, they
are prone to creating decoding errors that cascade
through the auto-regressive generation process and
deteriorate the output quality.

One alternative to auto-regressive generation is
provided by diffusion models (Sohl-Dickstein et al.,
2015; Song et al., 2020; Ho et al., 2020). Originally
gaining prominence in image generation, diffusion
models learn to iteratively “denoise” samples of
Gaussian noise into samples from a target data dis-
tribution (e.g. natural images, or text completions).

Crucially, this iterative generation naturally al-
lows for plug-and-play control through a simple
likelihood function (Dhariwal and Nichol, 2021).
Minor errors introduced by the guidance mecha-
nism can be corrected by the diffusion model later
in the generative process. Pre-trained image diffu-
sion models, for instance, can incorporate plug-and-
play guidance at inference-time to perform tasks
such as super-resolution and in-painting, without
any task-specific training.

Recent work has begun to explore the applica-
tion of diffusion to the discrete problem of lan-
guage generation (Li et al., 2022; Gong et al., 2022;
Lovelace et al., 2023; Gulrajani and Hashimoto,
2023; Zhang et al., 2023). Diffusion language mod-
els have demonstrated positive results in control-
lable generation, but still exhibit poor perplexity
and generation quality compared to auto-regressive
models.

In this paper we propose a novel framework,
Diffusion Guided Language Modeling (DGLM),
(see Figure 1) that integrates the fluency of auto-
regressive generation with the flexibility of continu-
ous diffusion. We develop a diffusion network that,
given some text prefix, generates continuous se-
mantic proposals of language continuations. These
semantic proposals act as soft prompts and guide a
fluent auto-regressive model to generate language
aligned with the proposal. During pre-training, we
condition the language decoder on embedded rep-
resentations of the ground truth continuation, teach-
ing the decoder that the semantic proposals contain
valuable information. During inference time, we let
the diffusion model generate its own proposal con-
tinuation from the prefix, guided by a simple linear
classifier to ensure the desired attributes. The pro-
posal vectors function as additional prompts for the
decoder and steer it towards a fluent continuation
that inherits the attributes of the proposal.

DGLM has several compelling properties: 1. It

decouples model training from attribute control.
2. Controlling a new attribute only requires the
training of a simple logistic regression classifier.
3. Empirically, DGLM is extremely effective and
outperforms the current state-of-the-art in plug-and-
play control across diverse benchmark data sets.

2 Background: Diffusion Models

We introduce diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2020), fol-
lowing the presentation of Kingma and Gao (2023)
most closely. Given some dataset drawn from an
unknown distribution q(x), our goal is to learn a
generative model pθ(x), shorthanded as p(x), that
approximates the unknown data distribution q(x).
The observed data x could be an image, text, or
some latent feature vector (Rombach et al., 2021).

Forward process. Diffusion models consist of a
forward process and a generative process. The for-
ward process defines a gradual transition from the
data distribution to a Guassian distribution. This
introduces a series of increasingly noisy latent vari-
ables zt for timesteps t ∈ [0, 1] (Kingma et al.,
2021). This Gaussian diffusion process defines
the conditional distribution q(z0,...,1|x). For every
t ∈ [0, 1], the marginal q(zt|x) is given by:

zt = αtx+ σtϵ, where ϵ ∼ N (0, I)

We utilize the common variance-preserving formu-
lation, where σ2

t = 1− α2
t . The noise level is also

commonly written in terms of the log Signal-to-
Noise Ratio (SNR), λt = logα2

t /σ
2
t . The noise

schedule, specified by αt ∈ [0, 1], is a strictly
monotonically decreasing function defined so that
the process starts with the original input, z0 ≈ x,
and the final latent becomes approximately Gaus-
sian, q(z1) ≈ N (z1;0, I).

Generative model. The generative process re-
verses the forward process, defining a gradual tran-
sition from Gaussian noise to the data distribution.
The generative model defines a probability distri-
bution over the latent variables, p(z0, . . . , z1).

Given access to the score function ∇z log qt(z),
the gradient of the log probability density function,
the forward process can be reversed exactly. Diffu-
sion models learn to approximate the score function
with a neural network, sθ(z;λ)) ≈ ∇z log qt(z),
and use the estimated score function to approxi-
mately reverse the forward process. If sθ(z;λ) ≈

14937

∇z log qt(z), then our generative distribution is
close to the true distribution.

This enables us to draw samples from a Guassian
distribution z1 ∼ p(z1), and approximately solve
the reverse diffusion process using the estimated
score sθ(z;λ). In this work, we use the standard
DDPM sampler from Ho et al. (2020).

Training objective. Song and Ermon (2019)
showed that score networks, sθ(z;λ), can be
learned with a denoising score matching (DSM)
loss over all data points x ∼ D and noise levels:

LDSM(x) =

Et,x,ϵ[w(λt) · ∥sθ(zt;λ)−∇zt log q(zt|x)∥22],

where w(λt) is a SNR-dependent weighting term
that is tuned to emphasize noise levels important
for downstream sample quality.

The neural network can be parameterized in
terms of the noise (ϵ), the data (x), or the velocity
(v := αtx+σtϵ) (Salimans and Ho, 2022) because
of the following relationship:

∇zt log q(zt|x) = −ϵ/σt

= −σ−2
t (zt − αtx)

= −zt − (αt/σt)v.

In practice, people have found that parameteriz-
ing the neural network as an ϵ-prediction or a v-
prediction model improves training stability and
downstream performance (Ho et al., 2020; Sali-
mans and Ho, 2022). We follow the best practices
established in recent work (Kingma and Gao, 2023)
and adopt the v-parameterization:

Lv(x) = Et,x,ϵ[w(λt) · ∥v̂θ(zt;λ)− vt∥22].

The above relationships also mean that at every
timestep, t, the diffusion network provides us with
the minimum mean-squared error (MMSE) esti-
mate of the clean data:

x̂θ(zt, λt) = αtzt − σtv̂θ(zt;λ).

Plug-and-play control. When drawing samples
x, we want them to meet certain conditional criteria
y such as a class label. One can learn the condi-
tional score function ∇zt log pt(zt|y) directly with
a conditional diffusion model. However, like learn-
ing a conditional auto-regressive model, this would
require a large corpus of annotated data and the

Figure 2: Overview of our full generation pipeline.
Given some prefix, we first generate an embedded repre-
sentation of the language continuation with a diffusion
model. During this stage, we can optionally intervene
with a lightweight classifier for plug-and-play guidance.
We map the continuation embedding to a soft prompt to
guide an auto-regressive decoder to generate language
aligned with the semantics of the generated embedding.

conditional model could not be easily adapted to
other conditions. We can instead use Bayes’ rule
to decompose the conditional score at time t into
the unconditional score and a likelihood term:

∇zt log pt(zt|y)
= ∇zt log pt(zt) +∇zt log pt(y|zt).

This decomposition shows that we can perform
conditional generation with an unconditional dif-
fusion model if we can estimate ∇zt log pt(y|zt),
the gradient of the log-likelihood of the condition
given the latent (Dhariwal and Nichol, 2021).

Diffusion Posterior Sampling (DPS) (Chung
et al., 2023) utilizes a conditional distribution over
noiseless data p(y|x) and the MMSE estimator
x̂θ(zt, λt) to approximate the conditional:

∇zt log pt(y|zt) ≈ ∇zt log p(y|x̂θ(zt, λt)).

If the distribution of noiseless data p(y|x) is dif-
ferentiable with respect to x, the DPS approxima-
tion is differentiable with respect to zt. We can
therefore utilize a lightweight classifier over clean
data to guide an unconditional diffusion model to
sample data x consistent with some criteria y in a
plug-and-play manner.

In practice, people often introduce some guid-
ance weight term s as a hyperparameter

∇zt log pt(zt|y)
= ∇zt log pt(zt) + s · ∇zt log pt(y|zt),

where setting s > 1.0 increases the influence
of the conditional information. This can be
viewed as sampling from a modified distribution
p̃t(zt|y) ∝ pt(zt)pt(y|zt)s.

14938

3 Diffusion Guided Language Modeling

We present an overview of our framework in Fig-
ure 2. Our method has three main components—a
diffusion network, a lightweight prompt generator,
and a pre-trained auto-regressive decoder. Given
some textual prefix, we use the diffusion model to
sample an embedded, semantic proposal of a pos-
sible continuation. During sampling, we can op-
tionally perform plug-and-play control to enforce
some condition (e.g. low toxicity). After sampling
the semantic embedding, the prompt generator is
used to process the embedding into a soft prompt,
which then guides the auto-regressive decoder to
generate text aligned with the proposal.

3.1 Semantic Proposal Conditioning
Sentence-T5 (Ni et al., 2022) is a sentence encoder
that is trained contrastively, producing embeddings
that capture high-level semantics while being ro-
bust to shallow surface-form variations. Because
of these properties, we learn our diffusion model
in its latent space to generate semantic proposals1.

In order to condition the auto-regressive decoder
on embeddings from Sentence-T5, we introduce a
lightweight prompt generator that maps the embed-
ding to a soft prompt for the decoder (see Figure 3).
We fine-tune the prompt generator and decoder to
generate continuations that correspond to the em-
beddings from the frozen Sentence-T5 encoder.

Figure 3: Overview of our semantic conditioning stage.

Given some text sequence, we split it to obtain
a prefix and continuation. We use Sentence-T5 to
embed the continuation into a 768-dimensional vec-
tor, denoted xcont. The prompt generator linearly
projects the embedding to dimension 4d, splits it
into k = 8 feature vectors, and then further re-
fines them using a small transformer (Morris et al.,

1We use Sentence-T5-XL in this work.

2023). This yields a sequence of k soft tokens that
guide the auto-regressive model to reconstruct the
continuation. The input training sequence there-
fore consists of the prefix text and the soft prompt,
which are used to predict the text continuation with
teacher forcing.

The auto-regressive model is trained with the
standard language modeling loss. We mask out the
predictions corresponding to the soft tokens from
the loss function. Because the sentence embedding
corresponds to the ground-truth continuation, the
auto-regressive network will learn to generate text
aligned with the Sentence-T5-XL embedding.

Gaussian noise conditioning. During genera-
tion, we will be utilizing latent proposals from
our diffusion network. While an effective diffu-
sion model produces high-quality proposals, it is
difficult to match the quality of the ground-truth
embeddings used during pre-training. To improve
the robustness of the auto-regressive decoder to mi-
nor errors introduced by the diffusion network, we
incorporate Gaussian noise augmentation, a tech-
nique introduced for cascaded image diffusion mod-
els (Ho et al., 2022; Saharia et al., 2022).

The prompt generator receives a latent
sampled from the forward diffusion process
zt = αtxcont + σtϵ, where the noise level is
sampled according to some schedule αt ∈ [0, 1].
We also condition the prompt generator on the
level of noise. The noise level dynamically adjusts
the influence of the proposal embedding on the
auto-regressive decoder’s output. At low noise
levels the decoder relies heavily on the proposal
embedding, while at high noise levels, the decoder
falls back to standard auto-regressive generation.

During generation, we pass a proposal embed-
ding with some low, but non-negligible, level of
noise (we set σ2

t = 0.05 by default) and the auto-
regressive decoder will generate text aligned with
the proposal while correcting for minor errors intro-
duced by the diffusion network. This also provides
us with a knob to tailor the influence of the dif-
fusion network to the application. We report full
implementation details in Table 7.

3.2 Semantic Diffusion

Our semantic diffusion model operates in the la-
tent space of Sentence-T5, iteratively generating
potential text continuations guided by a text prefix.
Given a text sequence, we split it into a prefix and
a continuation and embed both using Sentence-T5,

14939

denoted as xpref and xcont respectively.
We train the score network to recover the noisy

continuation embedding given the prefix embed-
ding. More formally, the noisy latent is given as
zt = αtxcont + σtϵ and we parameterize our score
network as sθ(zt;λ;xpref). We therefore learn to
sample from the distribution of possible continua-
tion embeddings for the text prefix.

For the diffusion network, we employ a trans-
former model (see Figure 4). To prepare the input,
we first independently project the noisy latent and
prefix embeddings, then split each into 64 feature
vectors. We concatenate these element-wise along
the feature dimension, giving us 64 representations
that we then process with the transformer.

Figure 4: Architecture of our diffusion network.

We convert the transformer’s output to a single
feature vector by inverting the initial projection
operation. We down-project and concatenate the
64 feature vectors to create the final vector used
for score regression. During training, we mask
the prompt embedding (p = 0.1), by replacing it
with a learnable null embedding, for classifier-free
guidance (Ho and Salimans, 2022). This jointly
trains unconditional (sθ(zt;λt)) and conditional
(sθ(zt;λt;xpref)) diffusion networks. During sam-
pling, we can use guidance weight w to blend pre-
dictions as

s̃t = wŝθ(zt;λt;xpref) + (1− w)ŝθ(zt;λt).

Setting w = 1.0 yields the conditional model while
setting w > 1.0 strengthens the influence of the
conditioning information and emphasizes prompt-
adherent continuations. We report full implementa-
tion details of our diffusion model in Table 8.

3.3 Plug and Play Control
To effectively control text generation with desired
conditions (denoted as y), we develop a plug-and-
play approach leveraging the semantic structure of
Sentence-T5’s embeddings. We now present the
mathematical formulation of our approach.

Our semantic diffusion model estimates the
score of possible text continuations within the
Sentence-T5 latent space given some prefix:
∇zt log pt(zt|xpref). Given some condition y that
we wish to enforce for our sample xcont at infer-
ence time, we decompose the conditional score
using Bayes’ rule and the DPS approximation,
x̂θ(zt, λt,xpref), as

∇zt log pt(zt|xpref,y)

= ∇zt log pt(zt|xpref) +∇zt log pt(y|zt,xpref)

≈ ∇zt log pt(zt|xpref)

+∇zt log p(y|x̂θ(zt, λt,xpref),xpref).

Since y depends solely on the continuation and
the DPS estimate already incorporates information
from the prefix, we assume conditional indepen-
dence between y and xpref given x̂θ(zt, λt,xpref).
Mathematically, this is expressed as:

∇zt log p(y|x̂θ(zt, λt,xpref),xpref)

≈ ∇zt log p(y|x̂θ(zt, λt,xpref)).

This simplification allows us to express the con-
ditional score function:

∇zt log pt(y|xpref, zt)

≈ ∇zt log p(y|x̂θ(zt, λt,xpref))

= −∇ztℓy(x̂θ(zt, λt,xpref)

where ℓy(x̂θ(zt, λt,xpref) is the cross-entropy loss.
With this, plug-and-play guidance simply requires
a classifier within the sentence-T5 latent space. We
employ a linear probe (i.e. logistic regression) in
our experiments (see Appendix C for additional
details). We find that semantic diffusion enables ef-
fective control with surprisingly simple classifiers.

Song et al. (2023) observed that the MMSE es-
timate, x̂θ(zt, λt,xpref), introduced approximation
errors in the conditional score estimate. They pro-
pose sampling around the MMSE estimate

x̂(i) ∼ N (x̂θ(zt, λt,xpref), σ
2
t /α

2
t I).

The sampling distribution has large variance early
in the sampling process when the DPS estimate is

14940

C4 OpenWebText

Prefix Guidance (w) MAUVE ↑ OLMo Ppl ↓ Div ↑ MAUVE ↑ OLMo Ppl ↓ Div ↑
Reference - 19.2 58.4 - 17.2 57.6

GPT-2Large - 83.9.3 116.3 50.3 88.2.3 17.6 49.2

DGLM 1.0 84.0.4 30.1 50.8 78.6.4 22.9 50.2
DGLM 1.5 85.6.4 23.0 52.5 82.8.3 17.1 51.4
DGLM 2.0 84.8.8 21.4 53.3 83.1.3 15.4 52.1
DGLM 2.5 84.8.1 20.2 54.0 83.7.4 15.0 52.4
DGLM 3.0 86.6.2 19.8 54.0 84.5.4 14.7 52.5
DGLM 5.0 85.6.4 19.4 53.9 84.0.3 14.2 52.6

Table 1: Language generation evaluation. For the MAUVE score, we report the standard error of the mean over 5
random seeds.

uncertain and converges to the DPS point estimate
at the end of the sampling process. They use a
Monte-Carlo approach to approximate the guidance
with the logmeanexp operation. Adapting this, we
compute the guidance term as:

−∇zt log(
1

n

n∑

i

exp(ℓy(x̂
(i)))).

Early in the sampling process, this steers genera-
tion towards a region of low loss within the latent
space. With n = 32, using the Monte-Carlo esti-
mate incurs negligible overhead, requiring only 32
logistic regression evaluations.

4 Datasets and Metrics

Datasets. We extract a subset of 10 million in-
stances from C4 (Raffel et al., 2019) to pre-train
DGLM. This represents only 2.5% of C4 and scal-
ing the pre-training corpus would likely be fruitful.
We follow Geiping and Goldstein (2023) and filter
out uncompressible text to improve quality. If the
number of GPT-2 tokens is more than t = 0.3 times
the raw number of characters, we drop it from the
dataset. This removes instances consisting of, for
instance, long HTML strings or markdown code.

To evaluate the language generation capabilities
of our DGLM, we extract 5000 random validation
instances from C4 (Raffel et al., 2019) and Open-
WebText (Gokaslan and Cohen, 2019). We condi-
tion the network on the first 32 tokens and generate
a 32 token continuation. For our toxicity mitigation
experiments, we train our logistic regression model
on the Jigsaw Unintended Bias dataset (cjadams,
2019) and evaluate the effectiveness of toxicity
mitigation experiments using 5,000 neutral promps
from RealToxicityPrompts (Gehman et al.). For our
sentiment control experiments, we utilize Amazon

Polarity 2 and SST-2 (Socher et al., 2013) to train a
sentiment classifier, and perform sentiment control
using 5,000 neutral prompts from OpenWebText.

Metrics. We evaluate the fluency of text by
measuring its perplexity with the open-source
OLMo-1B3 language model. We also report
MAUVE scores (Pillutla et al., 2021), a text
generation metric that measures the similarity
of generated text with that of reference text us-
ing divergence frontiers. To get embeddings
for MAUVE, we follow the advice of He et al.
(2022) and utilize ELECTRA-large (Clark et al.,
2020). To evaluate generation diversity, we
use the metric introduced by Su et al. (2022):
Div =

∏4
n=2

|unique n-grams({wi})|
|total n-grams({wi})| where {wi} is a

set of generated samples.
For the guidance tasks, we generate 25 samples

per prompt. We report the OLMo-1B perplexity
of the continuations to evaluate the fluency of the
generations. We follow prior work and measure the
average number of unique 3-grams, denoted Dist-3,
in each set of continuations to quantify generation
diversity. Along with ensuring that guidance does
not degrade language quality or sacrifice diversity,
we measure the adherence to the guidance con-
ditions. Following prior work (Deng and Raffel,
2023; Liu et al., 2021), we use the Perspective API
to measure the toxicity of generated text. Because
Pozzobon et al. (2023) found that the Perspective
API changes significantly over time, we re-score
the released generations for all of the baselines
with the current version of the API. We measure
the average max toxicity across 25 generations and
the toxicity rate, defined as the empirical odds of at
least 1 of 25 continuations being classified as toxic.

To evaluate sentiment, we utilize RoBERTa-
2https://huggingface.co/datasets/amazon_

polarity
3https://huggingface.co/allenai/OLMo-1B

14941

https://huggingface.co/datasets/amazon_polarity
https://huggingface.co/datasets/amazon_polarity
https://huggingface.co/allenai/OLMo-1B

Figure 5: Effect of mitigating toxicity with increasing guidance weights. Increasing guidance reduces toxicity with
minimal loss of fluency.

Large4 (Liu et al., 2020) fine-tuned on sentiment
classification across diverse domains as well as the
fine-tuned DistilBERT model (Sanh et al., 2019)
used by prior work.

5 Experimental Results

Language Generation. We validate the effec-
tiveness of our framework on open-ended language
generation in Table 1 without any plug and play
control. We observe that our method achieves
strong language generation results, matching or
surpassing the reference perplexity with sufficient
classifier-free guidance strength. We observe that
DGLM leads to consistently more diverse genera-
tions than the auto-regressive baseline across both
datasets. We observed that a handful of very high
perplexity samples skews the GPT-2 baseline’s per-
plexity on C4. However, DGLM also achieves
stronger MAUVE scores on that dataset.

We examine the impact of Gaussian noise aug-
mentation in Table 2. As an additional metric, we
re-embed the generated text with Sentence-T5 and
compute the cosine similarity with the proposal
embedding5. We observe that the Gaussian noise
augmentation enables the network to smoothly in-
terpolate between auto-regressive generation (low
perplexity but poor diversity) and diffusion-guided
generation (higher perplexity and diversity). We
observe that lower levels of noise montonically im-
prove the decoders adherence to the proposal.

Plug-and-Play Control. We utilize DGLM to
avoid generating toxic language. We show quanti-
tative results in Figure 5 and Figure 7. Qualitative

4https://huggingface.co/siebert/
sentiment-roberta-large-english

5We follow Zhang* et al. (2020) and rescale the cosine
similarity with a baseline computed between random dataset
samples.

C4

Noise (σ2
t) S-T5 Sim ↑ OLMo Ppl ↓ Div ↑

Reference - 35.7 19.2 58.4

DGLM

1.0 36.7 17.3 45.9
0.8 45.6 21.8 47.1
0.6 50.9 22.9 48.6
0.4 54.6 26.1 49.8
0.2 56.8 28.1 50.3

0.05 58.5 30.1 50.8
0.0 59.1 30.7 51.4

Table 2: Impact of Gaussian noise augmentation. σ2
t =

1.0 corresponds to Gaussian noise and σ2
t = 0.0 corre-

sponds to the clean proposal.

examples are presented in Table 9. Plug-and-play
guidance with a linear probe effectively mitigates
toxicity with negligible trade-offs in fluency. We
simultaneously achieve lower perplexity, lower tox-
icity, and higher diversity than all baselines.

We also employ DGLM to steer the sentiment
of generated text. We present results for negative
sentiment in Figure 6 and positive sentiment in
Figure 8. We observe that our method is similarly
effective in this setting, decreasing (or increasing)
sentiment with no loss of fluency and minimal loss
of diversity for modest guidance values.

Compositional Control. We present qualitative
results from composing multiple attribute classi-
fiers with DGLM. We fine-tune an additional logis-
tic regression model on the AG News topic clas-
sification dataset. We then sum the losses for the
sentiment and topic classification classifier to guide
generation. We find that DGLM successfully en-
ables compositional control and present qualitative
examples in Table 3 (additional examples are in
Table 10). We leave rigorous evaluations of the
compositionality of DGLM to future work.

14942

https://huggingface.co/siebert/sentiment-roberta-large-english
https://huggingface.co/siebert/sentiment-roberta-large-english

Figure 6: Effect of guiding generations towards negative sentiment with increasing guidance weights. Increasing
guidance improves alignment with the target sentiment while sacrificing diversity.

Topic Sentiment Prefix Continuation

Sci/ Tech Negative Therefore, we will not
provide a technical review of the software, including its capabilities,
nor will we provide you with any reports or comments regarding
the accuracy of information.

Sports Positive Other than that, I think we really did a great job of letting the fans know how it felt
to see them come out in record numbers for an 82 game season.

Table 3: Language generated by controlling two attributes simultaneously.

Decoding Overhead. Plug-and-play methods for
auto-regressive generation often introduce over-
head at each decoding step. For example, DEx-
perts employs auxiliary language models that work
alongside the primary model. In contrast, DGLM
incurs a one-time cost for generating the semantic
proposal, which is then amortized across subse-
quent decoding steps. We therefore compute run-
times across a range of generation lengths. We
report the relative increase in runtime compared to
the original GPT-2 model for each method (base-
line data from Liu et al. (2021)) in Table 4. As seen
in the table, DGLM incurs a large cost for short
sequences but has reduced overhead compared to
prior methods with modest generation lengths.

Method Relative Runtime

GPT-2 1.0x

GeDi 2.9x
DeXperts (large) 3.6x
PPLM 270.1x

DGLM (32 tokens) 7.4x
DGLM (64 tokens) 4.4x
DGLM (128 tokens) 2.6x
DGLM (256 tokens) 1.7x

Table 4: Relative runtime compared to GPT-2.

6 Related Work

Fine-tuning. Continual pre-training on text from
some target domain (domain-adaptive pretraining
or DAPT) is an effective technique for control-
ling attributes in generated text (Gururangan et al.,
2020). Lu et al. (2022) optimize a reward function
by fine-tuning an LM with control tokens for dif-
ferent reward quantiles. Reinforcement Learning
with Human Feedback (RLHF) involves training
a reward model on human preference data that is
then used to fine-tune the LM (Wu et al., 2023;
Ouyang et al., 2022). Jang et al. (2023) train mul-
tiple personalized RLFH models and show that
these personalized models can be used alone or in
conjunction with one another to produce text with
desired attributes.

Guided Generation. Finetuning LMs is expen-
sive and therefore to reduce cost, Dathathri et al.
(2019) proposed Plug and Play Language Model
(PPLM), a method that used light-weight classi-
fiers to guide frozen language models during text
generation. Similarly, FUDGE (Yang and Klein,
2021) trains classifiers on partial sequences to pre-
dict whether a particular attribute is satisfied and
updates the output probability distribution accord-
ingly. Instead of using a classifier, GeDi (Krause
et al., 2021) trains a small class-conditional lan-
guage model to act as a discriminator and guide

14943

the language generation. Similarly, DeXperts (Liu
et al., 2021) trains experts and anti-experts by fine-
tuning small language models, and using these ex-
perts to guide generation. Reward-Augmented De-
coding (RAD) (Deng and Raffel, 2023) trains a
reward model to score generations and adjust logit
probabilities to promote high-reward tokens.

7 Conclusion

We present Diffusion Guided Language Modeling
(DGLM), a powerful integration of auto-regression
and diffusion that enables versatile attribute-guided
text generation with lightweight classifiers. The
diffusion model generates controllable semantic
proposals that guide the language decoder. Ex-
tending DGLM to control an unseen attribute only
requires learning a single logistic regression model.
Experimental results show that DGLM significantly
outperforms prior plug-and-play methods, opening
avenues for building highly adaptable LMs with
user-controllable behavior.

8 Limitations

While DGLM demonstrates strong capabilities for
guided text generation, we acknowledge important
limitations. First, like any system that controls text
attributes, it risks potential misuse to steer language
in harmful directions. Researchers and practition-
ers should carefully evaluate generation systems to
mitigate these risks.

In addition, DGLM currently has slower in-
ference speed than some plug-and-play baselines
when generating short texts (<32 tokens). We ex-
pect advances in accelerating diffusion models and
distilling diffusion steps will help address this limi-
tation in future work.

More broadly, while DGLM outperforms recent
methods, there is still substantial room for improve-
ment in controllable text generation. The frame-
work currently utilizes simple linear classifiers that
may not robustly capture complex attributes. Ex-
tending DGLM to complex attributes may require
more complex classifiers. We hope our work sparks
further research towards reliable and beneficial
guided language models.

Acknowledgements

This research is supported by grants from the Na-
tional Science Foundation NSF (IIS-2107161, and
IIS-1724282, HDR-2118310), the Cornell Center
for Materials Research with funding from the NSF

MRSEC program (DMR-1719875), DARPA, arXiv,
LinkedIn, and the New York Presbyterian Hospi-
tal.

References
Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vah-

dat, Jiaming Song, Karsten Kreis, Miika Aittala,
Timo Aila, Samuli Laine, Bryan Catanzaro, et al.
2022. ediffi: Text-to-image diffusion models with
an ensemble of expert denoisers. arXiv preprint
arXiv:2211.01324.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Hyungjin Chung, Jeongsol Kim, Michael Thompson
Mccann, Marc Louis Klasky, and Jong Chul Ye. 2023.
Diffusion posterior sampling for general noisy in-
verse problems. In The Eleventh International Con-
ference on Learning Representations.

inversion Jeffrey Sorensen Lucas Dixon Lucy Vasser-
man nithum cjadams, Daniel Borkan. 2019. Jigsaw
unintended bias in toxicity classification.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language models:
A simple approach to controlled text generation. In
International Conference on Learning Representa-
tions.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Pi-
otr Padlewski, Jonathan Heek, Justin Gilmer, An-
dreas Peter Steiner, Mathilde Caron, Robert Geirhos,
Ibrahim Alabdulmohsin, et al. 2023. Scaling vision
transformers to 22 billion parameters. In Interna-
tional Conference on Machine Learning, pages 7480–
7512. PMLR.

Haikang Deng and Colin Raffel. 2023. Reward-
augmented decoding: Efficient controlled text gen-
eration with a unidirectional reward model. In The
2023 Conference on Empirical Methods in Natural
Language Processing.

14944

https://openreview.net/forum?id=OnD9zGAGT0k
https://openreview.net/forum?id=OnD9zGAGT0k
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB

Prafulla Dhariwal and Alexander Nichol. 2021. Diffu-
sion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–
8794.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A Smith. Realtoxicityprompts:
Evaluating neural toxic degeneration in language
models.

Jonas Geiping and Tom Goldstein. 2023. Cramming:
Training a language model on a single gpu in one day.
In International Conference on Machine Learning,
pages 11117–11143. PMLR.

Aaron Gokaslan and Vanya Cohen. 2019. Open-
webtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and Lingpeng Kong. 2022. Diffuseq: Sequence to
sequence text generation with diffusion models. In
The Eleventh International Conference on Learning
Representations.

Ishaan Gulrajani and Tatsunori B Hashimoto. 2023.
Likelihood-based diffusion language models. arXiv
preprint arXiv:2305.18619.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360.

Tianxing He, Jingyu Zhang, Tianle Wang, Sachin
Kumar, Kyunghyun Cho, James Glass, and Yulia
Tsvetkov. 2022. On the blind spots of model-based
evaluation metrics for text generation. arXiv preprint
arXiv:2212.10020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–
6851.

Jonathan Ho, Chitwan Saharia, William Chan, David J
Fleet, Mohammad Norouzi, and Tim Salimans. 2022.
Cascaded diffusion models for high fidelity image
generation. The Journal of Machine Learning Re-
search, 23(1):2249–2281.

Jonathan Ho and Tim Salimans. 2022. Classifier-
free diffusion guidance. arXiv preprint
arXiv:2207.12598.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans.
2023. simple diffusion: End-to-end diffusion for
high resolution images.

Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong
Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh
Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu.
2023. Personalized soups: Personalized large lan-
guage model alignment via post-hoc parameter merg-
ing. arXiv preprint arXiv:2310.11564.

Tero Karras, Miika Aittala, Timo Aila, and Samuli
Laine. 2022. Elucidating the design space of
diffusion-based generative models. Advances in
Neural Information Processing Systems, 35:26565–
26577.

Diederik Kingma, Tim Salimans, Ben Poole, and
Jonathan Ho. 2021. Variational diffusion models.
Advances in neural information processing systems,
34:21696–21707.

Diederik P Kingma and Ruiqi Gao. 2023. Understand-
ing diffusion objectives as the ELBO with simple
data augmentation. In Thirty-seventh Conference on
Neural Information Processing Systems.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2021. Gedi: Genera-
tive discriminator guided sequence generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4929–4952.

Angeliki Lazaridou, Anna Potapenko, and Olivier Tiele-
man. 2020. Multi-agent communication meets natu-
ral language: Synergies between functional and struc-
tural language learning. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7663–7674.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S
Liang, and Tatsunori B Hashimoto. 2022. Diffusion-
lm improves controllable text generation. Advances
in Neural Information Processing Systems, 35:4328–
4343.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. 2021. Dexperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6691–6706.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Seo
Shekhtman, and Kilian Q Weinberger. 2023. Latent
diffusion for language generation. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang,
Lianhui Qin, Peter West, Prithviraj Ammanabrolu,
and Yejin Choi. 2022. Quark: Controllable text
generation with reinforced unlearning. Advances

14945

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/forum?id=NnMEadcdyD
https://openreview.net/forum?id=NnMEadcdyD
https://openreview.net/forum?id=NnMEadcdyD
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=NKdtztladR
https://openreview.net/forum?id=NKdtztladR

in neural information processing systems, 35:27591–
27609.

John X Morris, Volodymyr Kuleshov, Vitaly Shmatikov,
and Alexander M Rush. 2023. Text embeddings
reveal (almost) as much as text. arXiv preprint
arXiv:2310.06816.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant,
Ji Ma, Keith Hall, Daniel Cer, and Yinfei Yang. 2022.
Sentence-t5: Scalable sentence encoders from pre-
trained text-to-text models. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1864–1874.

Alexander Quinn Nichol and Prafulla Dhariwal. 2021.
Improved denoising diffusion probabilistic models.
In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 8162–8171.
PMLR.

Michael Noukhovitch, Samuel Lavoie, Florian Strub,
and Aaron Courville. 2023. Language model align-
ment with elastic reset. In Neural Information Pro-
cessing Systems.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

William Peebles and Saining Xie. 2022. Scalable dif-
fusion models with transformers. arXiv preprint
arXiv:2212.09748.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. Advances in Neural Information Process-
ing Systems, 34:4816–4828.

Luiza Amador Pozzobon, Beyza Ermis, Patrick Lewis,
and Sara Hooker. 2023. On the challenges of using
black-box APIs for toxicity evaluation in research.
In ICLR 2023 Workshop on Trustworthy and Reliable
Large-Scale Machine Learning Models.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2021. High-
resolution image synthesis with latent diffusion mod-
els.

Chitwan Saharia, William Chan, Saurabh Saxena,
Lala Li, Jay Whang, Emily L Denton, Kam-
yar Ghasemipour, Raphael Gontijo Lopes, Burcu
Karagol Ayan, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. 2022. Photorealistic
text-to-image diffusion models with deep language
understanding. In Advances in Neural Information
Processing Systems, volume 35, pages 36479–36494.
Curran Associates, Inc.

Tim Salimans and Jonathan Ho. 2022. Progressive dis-
tillation for fast sampling of diffusion models. In
International Conference on Learning Representa-
tions.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep un-
supervised learning using nonequilibrium thermody-
namics.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza
Mardani, Ming-Yu Liu, Jan Kautz, Yongxin Chen,
and Arash Vahdat. 2023. Loss-guided diffusion mod-
els for plug-and-play controllable generation. In Pro-
ceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 32483–32498.
PMLR.

Yang Song and Stefano Ermon. 2019. Generative mod-
eling by estimating gradients of the data distribution.
Advances in neural information processing systems.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole.
2020. Score-based generative modeling through
stochastic differential equations. In International
Conference on Learning Representations.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Ling-
peng Kong, and Nigel Collier. 2022. A contrastive
framework for neural text generation. arXiv preprint
arXiv:2202.06417.

14946

https://proceedings.mlr.press/v139/nichol21a.html
https://openreview.net/forum?id=bRDHL4J5vy
https://openreview.net/forum?id=bRDHL4J5vy
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/2112.10752
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://doi.org/10.48550/ARXIV.1503.03585
https://doi.org/10.48550/ARXIV.1503.03585
https://doi.org/10.48550/ARXIV.1503.03585
https://proceedings.mlr.press/v202/song23k.html
https://proceedings.mlr.press/v202/song23k.html

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri,
Alane Suhr, Prithviraj Ammanabrolu, Noah A
Smith, Mari Ostendorf, and Hannaneh Hajishirzi.
2023. Fine-grained human feedback gives better
rewards for language model training. arXiv preprint
arXiv:2306.01693.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer
normalization in the transformer architecture. In In-
ternational Conference on Machine Learning, pages
10524–10533. PMLR.

Kevin Yang and Dan Klein. 2021. Fudge: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3511–3535.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. Advances in Neural Information
Processing Systems, 32.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Yizhe Zhang, Jiatao Gu, Zhuofeng Wu, Shuangfei Zhai,
Josh Susskind, and Navdeep Jaitly. 2023. Planner:
Generating diversified paragraph via latent language
diffusion model. arXiv preprint arXiv:2306.02531.

14947

https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

A Additional Figures

We present toxicity mitigation results with the Toxic
Rate metric in Figure 7. We present plug-and-play
results with positive sentiment guidance in Figure 8.
We present the sentiment guidance results with the
DistilBERT classifier used in prior work in Figure 9
and Figure 10.

B Numerical Results

We provide the numerical results for our toxicity
mitigation and sentiment control experiments in
Table 5 and Table 6.

For the baseline methods, we observed a hand-
ful of extremely high perplexity generations (e.g.
>1e4) that significantly increase the average per-
plexity. Prior work typically filters out these in-
stances when computing the average perplexity6.
We did not observe any such high perplexity con-
tinuations for our method. We therefore do not
perform this filtering for our method.

C Implementation Details

We train all of the models in this work on a single
NVidia A6000 GPU.

Transformer Implementation. We use different
configurations of the same transformer architec-
ture for the prompt generator and the diffusion net-
work. We utilize a pre-normalization transformer
(Vaswani et al., 2017; Xiong et al., 2020) with RM-
SNorm (Zhang and Sennrich, 2019) and SwiGLU
activations (Shazeer, 2020). We condition the trans-
former on the level of noise by mapping αt to a
sinusoidal positional embedding (Vaswani et al.,
2017) and pass it through an MLP with a single
hidden layer to obtain a time embedding. We ap-
ply adaptive RMSNorm conditioned on this time
embedding before the feedforward layers and at-
tention layer (Peebles and Xie, 2022). We utilize
query-key RMSNorm (Dehghani et al., 2023) for
the self-attention mechanisms because it has been
shown to improve stability.

Diffusion Network. We employ the v-
parameterization and minimize:

Lv(x) = Et,x,ϵ[w(λt) · ∥v̂θ(zt;λ)− vt∥22].

To set the weighting function, we followed the ad-
vice of (Karras et al., 2022) and parameterized it
with a log-normal distribution based on the noise

6See here for an example.

levels where the model was best able to minimize
the loss. This led us to set w(λt) = N (λt; 0, 2.4).
Consistent with past work (Balaji et al., 2022), we
observed that increasing weights at high noise lev-
els improved the alignment of generations with the
conditioning information. For our final weighting
function, we therefore used a fat-tailed Cauchy dis-
tribution for the left half of the distribution and a
normal distribution for the right half. This gives us

w(λt) =

{
1
Zc

Cauchy(λt; 0, 2.4) if λt < 0
1
Zn
N (λt; 0, 2.4) if λt ≥ 0

where Zc and Zn are normalization constants such
that the density of each distribution at 0 is re-scaled
to 1. For training, we utilize the adaptive noise
scheduler introduced by Kingma and Gao (2023)
to reduce the variance of the loss estimate.

Sampling Configuration. We use the stochas-
tic DDPM sampler with 50 sampling steps with
the cosine noise schedule (Nichol and Dhariwal,
2021). We follow Hoogeboom et al. (2023) and
set the variance for the DDPM sampler to a log-
scale interpolation between the upper and lower
bounds of the variance from Ho et al. (2020):
σ2 = exp(v log(σ2

max) + (1− v) log(σ2
min)) with

v = 0.2 . We did not explore this choice in detail
and further exploration of sampling configurations
would likely improve performance.

Logistic Regression Classifiers. We train logis-
tic regression models with sci-kit learn. We utilize
the default L-BFGS solver with L2 regularization
of 1e-3. We use balanced class weights for the
toxicity classifier due to the class imbalance in the
toxicity dataset. Our toxicity and sentiment classi-
fiers achieve an Area Under the Receiver Operating
Curve of 83.7 and 95.7, respectively.

D Additional Composition Results

As specified in the main paper, DGLM is naturally
suited for simultaneously controlling multiple at-
tributes. Table D presents additional qualitative
results for compositional control. From the table,
we see that the instances satisfies both control at-
tributes.

14948

https://github.com/alisawuffles/DExperts/blob/4ef198fe4cad76f87f7ceac362171a3bda906303/scripts/evaluation/evaluate_generations.py#L31

Figure 7: Effect of plug-and-play toxicity mitigation with increasing guidance weights. We observe that increasing
guidance reduces toxicity at the cost of language fluency.

Figure 8: Effect of guiding generations towards positive sentiment with increasing guidance weights. The left plot
shows the impact on language perplexity and the right plot shows the impact on language diversity.

Figure 9: Effect of guiding generations towards negative sentiment with increasing guidance weights. The left plot
shows the impact on language perplexity and the right plot shows the impact on language diversity.

14949

Figure 10: Effect of guiding generations towards positive sentiment with increasing guidance weights. The left plot
shows the impact on language perplexity and the right plot shows the impact on language diversity.

Method Avg. Max Toxicity ↓ Toxic Rate ↓ OLMO Ppl ↓ Dist-3 ↑
GPT-2 0.383 0.254 34.4 0.853

DAPT 0.269 0.091 24.9 0.841

PPLM 0.376 0.240 40.8 0.855
GeDi 0.243 0.051 170.5 0.827
DExperts 0.200 0.022 36.0 0.842

DGLM (No Guidance) 0.355 0.218 28.8 0.862
DGLM (s=5.0) 0.182 0.025 30.7 0.865
DGLM (s=10.0) 0.135 0.013 33.5 0.867
DGLM (s=20.0) 0.101 0.005 38.2 0.869

Table 5: Toxicity Mitigation Results.

14950

Target Sentiment: Positive

Method Positive Prop. (RoBERTa) ↑ OLMO Ppl ↓ Dist-3 ↑
GPT-2 0.621 53.6 0.861

DAPT 0.844 26.8 0.854

PPLM 0.649 137.1 0.854
GeDi 0.944 140.4 0.806
DExperts 0.969 160.8 0.850

DGLM (No Guidance) 0.694 35.6 0.868
DGLM (Guidance 5.0) 0.927 33.2 0.870
DGLM (Guidance 10.0) 0.959 31.1 0.869
DGLM (Guidance 20.0) 0.965 29.1 0.864
DGLM (Guidance 50.0) 0.966 27.2 0.844
DGLM (Guidance 100.0) 0.980 24.3 0.821
DGLM (Guidance 500.0) 0.989 25.0 0.806

Target Sentiment: Negative

Method Positive Prop. (RoBERTa) ↓ OLMO Ppl ↓ Dist-3 ↑
GPT-2 0.621 53.6 0.861

DAPT 0.466 30.3 0.855

PPLM 0.540 199.1 0.859
GeDi 0.097 170.7 0.832
DExperts 0.082 61.7 0.837

DGLM (No Guidance) 0.694 35.6 0.868
DGLM (Guidance 5.0) 0.297 34.6 0.867
DGLM (Guidance 10.0) 0.176 33.6 0.866
DGLM (Guidance 20.0) 0.112 33.3 0.861
DGLM (Guidance 50.0) 0.068 33.4 0.852
DGLM (Guidance 100.0) 0.048 32.8 0.847
DGLM (Guidance 500.0) 0.053 27.0 0.842

Table 6: Sentiment Control Results.

Table 7: Implementation details for auto-regressive pre-training stage.

Prompt Generator Architecture Pre-Activation Transformer (Vaswani et al., 2017; Xiong et al., 2020)
Soft Prompt Tokens 8
Transformer Layers 6
Transformer Dimension 768
Self-Attention Heads 12
Activation Function SwiGLU (Shazeer, 2020)
Normalization Layer Adaptive RMSNorm (Zhang and Sennrich, 2019; Peebles and Xie, 2022)
Max Seq Length 96
Optimizer AdamW (Loshchilov and Hutter, 2019)
Learning Rate 5e-6
(β1, β2) (0.9, 0.99)
Batch Size 64
Warmup Steps 5000
Learning Rate Schedule Cosine Decay
Weight Decay .02
Gradient Clipping 1.0
Batch Size 64
Augmentation Noise Schedule Scaled Cosine (s=3.0) (Hoogeboom et al., 2023)
Training Steps 250k

14951

Table 8: Implementation details for diffusion training.

Diffusion Architecture Pre-Activation Transformer (Vaswani et al., 2017; Xiong et al., 2020)
Input Tokens 64
Transformer Layers 12
Transformer Dimension 768
Transformer Output Projection Dimension 96
Final Feature Vector Dimension 96*64
Self-Attention Heads 12
Activation Function SwiGLU (Shazeer, 2020)
Normalization Layer Adaptive RMSNorm (Zhang and Sennrich, 2019; Peebles and Xie, 2022)
Optimizer AdamW (Loshchilov and Hutter, 2019)
Learning Rate 1e-3
(β1, β2) (0.9, 0.999)
Batch Size 256
Warmup Steps 1000
Learning Rate Schedule Cosine Decay
Weight Decay .1
Gradient Clipping 1.0
Batch Size 256
Training Noise Schedule Adaptive Kingma and Gao (2023)
Sampling Noise Schedule Cosine Nichol and Dhariwal (2021)
Training Steps 250k

Guidance Prefix Continuation

Low Toxicity She made out with him, took sexy pictures in
a photo booth, and watched him

have fun with his friends. She shared the
photos on her private Facebook page, where
a family...

Positive Sentiment Cycle, published by the CTC, is running its 10th edition and it is getting better every
time I see the contents! It’s also very...

Negative Sentiment Cycle, published by the CTC, is running its ‘news’ section, with no substance at all
and zero interest in the subject it...

Table 9: Qualitative examples of guided generation.

Topic Sentiment Prefix Continuation

Sports Negative The person that makes such decisions
and coaches the team, is really just a bad
sports person. That’s all there ever was to it.
I think we are going down...

Business Negative I realized this 10 years
ago when I started running my own business
and it was very clear to me that Sunland was
really not making any money...

Sci/ Tech Positive And that’s pretty much the
best part about this site – you can get all
sorts of great technical info with just a couple
clicks...

Table 10: Additional Qualitative examples of compositional control.

14952

