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Abstract

Reinforcement Learning from Human Feed-
back (RLHF) leverages human preference data
to train language models to align more closely
with human essence. These human preference
data, however, are labeled at the sequence level,
creating a mismatch between sequence-level
preference labels and tokens, which are autore-
gressively generated from the language model.
Although several recent approaches have tried
to provide token-level (i.e., dense) rewards for
each individual token, these typically rely on
predefined discrete reward values (e.g., posi-
tive: +1, negative: -1, neutral: 0), failing to
account for varying degrees of preference in-
herent to each token. To address this limitation,
we introduce TLCR (Token-Level Continu-
ous Reward) for RLHF, which incorporates a
discriminator trained to distinguish positive and
negative tokens, and the confidence of the dis-
criminator is used to assign continuous rewards
to each token considering the context. Exten-
sive experiments show that TLCR leads to con-
sistent performance improvements over previ-
ous sequence-level or token-level discrete re-
wards on open-ended generation benchmarks.

1 Introduction

With the emergent properties of Large Language
Models (LLMs) in relation to the scale of both the
model and data, there has been a notable perfor-
mance improvement, particularly in various lan-
guage generation tasks including summarization
(Chang et al., 2023), translation (Zhang et al.,
2023), and question-answering (Yoon et al., 2022,
2023). Central to these rapid performance gains in
language generation is the Reinforcement Learning
from Human Feedback (RLHF), which employs re-
inforcement learning techniques to fine-tune LLMs
in alignment with human preferences (Christiano
et al., 2017; Bai et al., 2022; Ouyang et al., 2022).

*Equal contribution
†Co-corresponding authors

Figure 1: Illustration of different granularity of re-
wards in RLHF. (a) Sequence-Level Reward provides
a singular preference value for the entire sequence. (b)
Token-Level Discrete Reward allocates fixed discrete
reward values for each token. (c) Our proposed Token-
Level Continuous Reward assigns each token a continu-
ous range of rewards.

However, a fundamental limitation of the current
RLHF approach is its dependency on sequence-
wise (i.e., sparse and holistic) rewards, which
stems from the inherently holistic nature of human-
labeled preference data (Figure 1-(a)). While this
approach effectively directs overall model behav-
ior, it tends to miss the detailed significance and
context of specific words and phrases within se-
quences. This oversight suggests significant room
for enhancement in existing frameworks by intro-
ducing token-wise (i.e., dense) feedback, which
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could more accurately capture the subtleties of lan-
guage generation.

There have been several attempts to incorporate
such granular feedback into the training process.
Recent methods (Guo et al., 2024; Cao et al., 2024)
employ stronger LLMs to identify regions within
a model’s output that require refinement, thereby
enabling a denser reward signal. However, these
methods still have a limitation in reflecting fine-
grained preferences due to the use of a few prede-
fined discrete reward values (Figure 1-(b)).

To this end, we propose TLCR (Token-Level
Continuous Reward), a novel reward model to
provide token-level continuous rewards for fine-
grained RLHF (Figure 1-(c)). In particular, we ob-
tain continuous rewards efficiently and effectively
from the predictive confidence of categorical prefer-
ences (positive, neutral, or negative) for each token,
which are predicted by the token-level preference
discriminator. In order to train such a discriminator,
our method compensates for the lack of token-level
preference labels in an existing sequence-level hu-
man preference dataset by utilizing an external ma-
ture LLM, such as GPT-4 (OpenAI, 2023). This
process involves instructing the external LLM to
revise a given output text, subsequently followed
by analyzing the (1) added, (2) deleted, and (3)
substituted tokens between the original and revised
outputs and labeling token-level preferences.

After training the discriminator with the created
token-level preference labels, we use it during rein-
forcement learning to provide fine-grained dense re-
wards to a generated text from the language model.
During this process, we find that instead of using
fixed reward values for each token based on its pref-
erence (e.g., using +1 for positive, -1 for negative,
and 0 for neutral), assigning values based on the
prediction confidence of the discriminator allows
superior guidance. Such an approach allows for a
continuous range of rewards that reflect the varying
degrees of preference associated with each token
based on the context.

In detail, our contributions can be summa-
rized as follows:

• To address the challenges of sequence-level re-
wards and the inability of token-level discrete
rewards to reflect varying degrees of token pref-
erence, we introduce Token-Level Continuous
Reward (TLCR), that provides a continuous spec-
trum of rewards for each token during Reinforce-
ment Learning from Human Feedback (RLHF).

• For this, TLCR leverages confidence values from
a token-level preference discriminator, and to
train the discriminator, we use an external mature
language model to refine responses, then assign
token-wise preference labels by calculating the
minimum edit distance between the original and
revised responses.

• Through extensive experiments and analysis, we
show the effectiveness of TLCR in enhancing
fine-grained RLHF compared to the traditional
sequence-level and token-level discrete reward
mechanisms. To the best of our knowledge, our
work is the first to achieve substantial perfor-
mance gain on open-ended generation bench-
marks using token-level rewards.

2 Related Works

2.1 Reinforcement Learning from Human
Feedback.

Foundation models have achieved notable perfor-
mance improvement due to increased model size
and data volume. With these advancements, ensur-
ing safe and reliable real-world applications has
become a priority (Yoon et al., 2024). In this as-
pect, Reinforcement Learning from Human Feed-
back (RLHF) aims to integrate human judgments
and preferences into the reinforcement learning
framework to train models, such as language mod-
els, to align more closely with human values and
expectations (Christiano et al., 2017; Bai et al.,
2022; Ouyang et al., 2022). In this approach, a
reward model is initially trained based on human
feedback, usually pairwise preference ranking, us-
ing the Bradley-Terry preference model (Bradley
and Terry, 1952). This reward model is then uti-
lized to guide the model via reinforcement learning
frameworks, usually Proximal Policy Optimization
(PPO) (Schulman et al., 2017).

However, despite its effectiveness, RLHF has
complexities involving multiple stages and mod-
els, demanding substantial resources. These chal-
lenges are pronounced in large-scale implementa-
tions, with recent research highlighting potential
instability issues (Zheng et al., 2023b; Gao et al.,
2023). To tackle such limitations, Hydra-PPO (San-
tacroce et al., 2023) utilizes switchable architecture
to integrate multiple models involved in PPO train-
ing into a single LLM, while ReMax (Li et al.,
2023b) adapts REINFORCE (Williams, 1992), sim-
plifying the framework by eliminating the need for
extra models used in PPO.
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Recent studies have also been exploring alterna-
tives to conventional reinforcement learning (RL)
frameworks for efficient training. Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023)
simplifies LLM training by using log-likelihood as
an implicit reward, avoiding the need for separate
reward modeling.

2.2 Fine-grained Feedback
The majority of LLM fine-tuning with human
feedback, including RLHF (Ouyang et al., 2022)
and DPO (Rafailov et al., 2023), typically utilize
trajectory-wise rewards learned from pairwise pref-
erence learning. This approach involves assessing
and providing feedback on LLM responses as a
whole rather than each individual word or phrase
within the sequence.

While trajectory-wise rewards have been effec-
tive in guiding the overall behavior of LLMs, they
may present limitations in terms of the granular-
ity and specificity of the feedback. This might
lead to less precise tuning of the model, since spe-
cific aspects of responses that could be improved
or are particularly well-aligned with desired out-
comes may not be individually identified and ad-
justed. This highlights the potential need for more
fine-grained feedback mechanisms in RLHF for
LLMs. For instance, Wu et al. (2023) shows that
fine-grained rewards enable more detailed and spe-
cific guidance for each phrase of the LLM response,
potentially leading to more nuanced and effective
learning and alignment with human preferences
and intentions.

One of the most significant challenges in utiliz-
ing fine-grained rewards for aligning LLMs is the
lack of datasets with fine-grained feedback, since
most existing datasets provide trajectory-wise or
holistic labels. This gap in data availability necessi-
tates innovative approaches to generate or infer fine-
grained signals from the available trajectory-wise
human feedback. Yang et al. (2023) defines the
trajectory-wise reward as an aggregation of individ-
ual token-wise rewards, which are learned through
standard preference-based reward model training.
However, selecting an optimal aggregation func-
tion for token-wise rewards is not straightforward
and depends largely on heuristic approaches. Also,
the lack of additional fine-grained information or
constraints will result in a sub-optimal reward func-
tion.

To address this issue, recent techniques lever-
age external advanced LLMs, such as GPT-4 (Ope-

nAI, 2023), to provide more detailed and accurate
fine-grained insights for learning dense rewards.
Approaches such as FIGA (Guo et al., 2024) and
RLMEC (Chen et al., 2024) utilize off-the-shelf
LLMs to revise the generated response with mini-
mal edits, pinpointing areas within responses that
need fine-tuning and providing specific guidance
at the token level. Meanwhile, DRLC (Cao et al.,
2024) asks external LLMs to identify the positive
and negative segments within an original response,
utilizing them as intrinsic rewards to guide model
adjustments. On the other hand, ABC (Chan et al.,
2024) extracts fine-grained credits from the trained
reward model itself, particularly using attention
maps for token-specific reward reallocation.

Despite the advancements these methods have
limitations. Some can only offer provide prede-
fined values for rewards (such as FIGA, and DRLC)
and cannot clearly differentiate between positive
and negative impacts (such as ABC). Others suf-
fer from an inadequate reward model, necessitat-
ing a heavy dependency on stronger regularization
(such as RLMEC). In contrast, our approach offers
continuous-scale rewards that encompass both pos-
itive and negative feedback without the need for
excessive regularization, leading to a more refined
and effective learning.

3 Preliminary

In this work, we focus on aligning the language
model to human preference in terms of helpfulness
and harmfulness of the generated texts through
Reinforcement Learning from Human Feedback
(RLHF).

Language Generation as an MDP We consider
the language generation procedure as a Markov
Decision Process (MDP) as detailed in Rama-
murthy et al. (2022), which is defined by the tuple
(S,A,P,R, γ, Tmax) using finite predefined vocab-
ulary tokens V . An episode in the MDP starts with
a human instruction or a history of human-assistant
conversation pairs followed by a human instruc-
tion x = (x0, ..., xl). This is used as our initial
state s0 = (x0, ..., xl), where s0 ∈ S and S repre-
sents every possible states with xi ∈ V . At time
step t, an action in the environment at ∈ A is
generated by the next token prediction given cur-
rent state st by a policy Language Model (LM)
πθ from V . For t ≥ 1, the transition function
P : S × A 7→ ∆S appends at to the end of the
state st = (x0, ...xl, a0, ..., at−1). This process
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Figure 2: Illustration of the training procedure of the discriminator used in TLCR (Token-Level Continuous
Reward). (a) Using the sequence-level labeled dataset, we utilize an external mature language model LLMext as a
reviser to obtain token-level preference labels. LLMext is instructed to compare the chosen (yc) and rejected response
(ym), reason why the chosen is preferred, and create modified response ym by modifying the rejected response with
minimal editing. Using the Levenshtein Distance between yr and ym, we assign token-wise preference labels based
on whether the tokens have been added, deleted, or substituted. (b) With the token-wise preference label created
from the previous step, we train a discriminator to discriminate positive, neutral, and negative tokens.

continues until the current t exceeds Tmax or the
end of sentence (<eos>) token is generated, yield-
ing the generated sequence y = (a0, ..., aT ). A
reward function R : S × A 7→ R assigns a value
to each transition.

Sequence-level Reward in RLHF Typically, in
RLHF for language models, a sequence-level (i.e.,
sparse) reward model is used, which maps the con-
catenation of the input x and the generated output
y to a single scalar value. This scalar value is solely
assigned to the last generated token or the end of
sentence (<eos>) token aT . Formally, this process
of sparse reward modeling used in previous RLHF
frameworks can be defined as:

rt =

{
Rϕ(x, y), if t = T

0, otherwise.
(1)

Token-Level Discrete Reward in RLHF In con-
trast to the sparse reward approach, token-level
discrete rewards in RLHF assign a predefined dis-
crete value at each time step t ∈ [0, T ], reflecting
the preference for each token, formalized as:

rt =





+1, if at is positive
−1, if at is negative
0, if at is neutral.

(2)

4 TLCR: Token-Level Continuous
Reward

In this section, we introduce an RLHF framework
that utilizes a discriminator-based token-level re-

ward model that allows continuous-scale dense re-
ward signals for RLHF. Section 4.1 details the pro-
cedure for obtaining token-level preference labels.
In Section 4.2, we elaborate on the training pro-
cedure of the token-level preference discriminator.
Subsequently, Section 4.3 outlines how the trained
discriminator is utilized for continuous dense re-
ward signals during the RL phase.

4.1 Token-Level Preference Labeling

Human preference data (Bai et al., 2022; Cui et al.,
2023) is generally comprised of a prompt x =
(x0, ..., xl), accompanied by its chosen response
yc = (ac0, ...a

c
Tc
) and the rejected response yr =

(ar0, ..., a
r
Tr
). The categorization of responses as

being labeled either "chosen" or "rejected" reflects
the holistic evaluation of preferences.

As illustrated in Figure 2-(a), we utilize an ex-
ternal mature Language Model LMext as a reviser
to assign token-wise preference labels for the re-
sponse. The process begins by presenting the
model with both the prompt and the rejected re-
sponse to refine the rejected response to align more
closely with human preferences. Considering the
difficulty in explicitly defining "good human pref-
erence," we reduce the ambiguity during the pro-
cess by also providing the chosen response yc to
LMext. This allows the revising model to compare
the rejected and chosen responses, understand the
reasons behind the chosen response’s preference,
and adjust the rejected response to better meet hu-
man preference criteria. Throughout this refine-

14972



ment process, we instruct the model to make min-
imal modifications to the rejected response. This
minimal modification ensures the core message
remains intact while optimizing preference align-
ment, making it easy to identify which particular
tokens are responsible for the output preference, a
more straightforward approach than comparing yc
and yr directly. Formally, given an instruction I
(the full details of the instruction used are described
in Appendix A), prompt x, rejected response yr,
and chosen response yc, the LMext produces the
modified response given as

ym = (am0 , ..., amTm
) = LMext(I, x, yr, yc). (3)

Motivated by previous works (Liu et al., 2022;
Guo et al., 2024), once we obtain the modified re-
sponse ym, we use the Levenshtein Distance (LD)
(Levenshtein, 1965) to determine the preference
of each token. The LD calculates the minimum
number of edits—(1) additions, (2) deletions, or (3)
substitutions—required to transform one sentence
into another through dynamic programming. By
identifying the edited tokens regarding LD, we can
determine which tokens contribute to a response
being preferred or rejected.

When calculating the LD of going from yr to
ym, we assign a token-wise preference labels pr =
(pr0, ...p

r
Tr
) and pm = (pm0 , ..., pmTm

) for yr and ym,
respectively. Specifically,

prt =

{
negative, if ar

t is deleted or substituted
neutral, otherwise,

(4)

pmt =

{
positive, if am

t is added or substituted
neutral, otherwise.

(5)

4.2 Discriminator Training
Following the token-level preference labeling pro-
cess, we train a discriminator Dϕ that differentiates
between these positive and negative tokens (Figure
2-(b)). The output space of Dϕ is binary, where the
prediction of 1 indicates positive and 0 indicates
negative preference of the token.

To train the discriminator, we employ a binary
cross-entropy loss function. Formally, for a given
token at with its corresponding preference label pt,
the loss function L for Dϕ is defined as follows:

L = −pt log(Dϕ(at|x, a0:t−1))

− (1− pt) log(1−Dϕ(at|x, a0:t−1)),
(6)

where Dϕ(at|x, a1:t−1) represents the discrimina-
tor’s predicted probability that the t-th token at is

Figure 3: Illustration of using the discriminator for
assigning token-level continuous reward during PPO.
The discriminator’s prediction probability of a token
being positive undergoes normalization to fit a scale
from -1 to 1. A value near -1 signifies an unfavorable
preference, near 1 suggests a favorable preference, and
around 0 denotes a neutral preference.

positive given the previous contexts, and pt = 1
for positive labels, pt = 0 for negative labels.

For tokens labeled as neutral, we introduce a soft
labeling strategy to encourage the discriminator to
remain unbiased towards either class. Specifically,
neutral tokens are assigned a uniform probability
distribution (i.e., pt = 0.5 for neutral labels), im-
plying an equal likelihood of being positive or neg-
ative.

4.3 Discriminator-Guided Token-Level
Continuous Reward

As illustrated in Figure 3, we utilize the trained
discriminator to obtain token-level signals during
the reinforcement learning phase. In detail, our
discriminator-guided token-level reward mecha-
nism employs a normalization formula,

rt = 2 ·Dϕ(at|x, a0:t−1)− 1 ∀t ∈ [0, T ], (7)

to translate the discriminator’s confidence in token
preference classification into a scale ranging from
-1 to 1. A maximum reward of 1 is granted to to-
kens identified with high confidence as aligning
positively, signaling their strong adherence to en-
couraging the model to favor such tokens in future
responses. Conversely, tokens considered negative,
marked by a confidence score of 0, receive the min-
imum reward of -1, indicating a deviation from
the desired preferences and advising the model to
avoid such tokens. Tokens that the discriminator
views with neutral confidence scored at 0.5 are as-
signed a reward of 0, reflecting their ambiguous
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contribution to preference alignment and suggest-
ing no immediate need for the model to alter its
approach for such tokens.

Given our token-wise reward approach, we adapt
our reinforcement learning phase to align with the
original PPO (Schulman et al., 2017) implementa-
tion, diverging from the conventional RLHF frame-
work with a sparse reward setting (contextual ban-
dit) (Ouyang et al., 2022).

5 Experimental Settings

This section presents the datasets, models, com-
pared baselines, training details, and the evaluation
metrics used in the paper.

Dataset Throughout the experiments, we use
the full-hh-rlhf dataset (Bai et al., 2022) which
is centered on improving the helpfulness and harm-
lessness of the language model generation. This
dataset includes 112k training instances and 12.5k
instances for evaluation. Every instance in the
dataset features a prompt, along with a chosen
response considered preferable and a rejected re-
sponse, offering a clear basis for performing model
alignment for better helpfulness and harmlessness.
Following the setting in (Li et al., 2023b), we ran-
domly divide the dataset into three parts: 20%
for supervised fine-tuning (SFT), 40% for reward
model learning, and 40% for reinforcement learn-
ing for reward maximization.

Model During the Supervised Fine-Tuning (SFT)
phase we use Llama-2-7B (Touvron et al., 2023) as
our base model. Similarly, for the reward model
training, we initialize our discriminator Dϕ with
Llama-2-7B. During the RL phase, we initialize
our policy model with the trained SFT model. For
the external language model LMext, we use gpt-4-
0125-preview1.

Training Details We use DeepSpeed-Chat (Yao
et al., 2023) framework for performing RLHF,
where PPO is the default algorithm. Within this
framework, our proposed TLCR is integrated to
provide token-level rewards to enhance the PPO
algorithm. Experimental details are presented in
Appendix B.

All experiments were conducted 3 times with
different random seeds, and the average value is
reported. The experiments were conducted using 8
x NVIDIA A100 80GB PCIe.

1https://platform.openai.com/docs/models/gpt-4-and-gpt-
4-turbo

Method Turn1 Turn2 Overall
SFT 4.78 3.01 3.90
DPO (Rafailov et al., 2023) 5.10 3.56 4.33
PPOseq (Schulman et al., 2017) 5.29 4.08 4.68
ReMax (Li et al., 2023b) 5.66 3.86 4.76
FIGA (Guo et al., 2024) 5.11 3.57 4.35
PPOsynthetic 4.90 3.53 4.21
TLCRfixed 5.47 4.3 4.89
TLCR (ours) 5.71 4.38 5.04

Table 1: Turn1, Turn2, and Overall Evaluation re-
sults on MT-Bench (Zheng et al., 2023a).

Baselines For comparison, we evaluate against
a variety of baselines: SFT and DPO (Rafailov
et al., 2023), where no preference data is utilized;
sequence-level reward PPO (PPOseq) (Schulman
et al., 2017) and ReMax (Li et al., 2023b), both em-
ploying sparse rewards; as well as FIGA (Guo et al.,
2024), which introduce fixed token-level rewards.

Moreover, to verify that the performance im-
provements are not solely due to the use of GPT-
4 for creating synthetic data, we conducted an
additional experiment, labeled PPOsynthetic. This
experiment used pairs of rejected samples and
their synthetically modified responses generated by
GPT-4, applied to traditional sequence-level PPO
(Schulman et al., 2017). Additionally, we include
TLCRfixed as a variant of our approach using fixed
token-level rewards. Specifically, TLCRfixed assigns
a reward of +1 to the positive, -1 to the negative,
and 0 to the neutral token instead of normalized
confidence values. A token is considered neutral if
the max confidence is below 0.6.

Evaluation Automatic evaluation of instruction-
following language models are becoming a primary
metric for preference evaluation with leaderboards2

for ranking. In light of this trend, , we report MT-
Bench (Zheng et al., 2023a) and AlpacaEval (al-
paca_eval_gpt4) (Li et al., 2023a) for our evalua-
tions. Also, we perform human evaluation on 100
random samples from the full-hh-rlhf test set.

6 Results

6.1 Results on MT-Bench

Table 1 shows the comparison of the MT-Bench
(Zheng et al., 2023a) evaluation results. MT-Bench
is a multi-turn benchmark that measures the abil-
ity of LLMs to engage in coherent, informative,
and engaging conversations. The process of eval-

2https://huggingface.co/spaces/lmsys/chatbot-arena-
leaderboard
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Figure 4: Evaluation on test questions from AlpacaE-
val dataset (Li et al., 2023a).

uation involves prompting GPT-4 to act as judges
and asses the quality of the models’ responses on
80 questions on a scale of 1 to 10. The result
shows that among the baselines, TLCR achieves the
highest preference scores with the overall score be-
ing 5.04. Notably, compared to the sequence-level
(i.e., sparse) rewarded PPO (PPOseq), our TLCR,
which is a token-level (i.e., dense) rewarded PPO,
achieves 0.36 increase in performance.

Compared to the results from SFT, PPOsynthetic
shows better performance, yet it underperforms
the PPOseq trained on the original data. Further-
more, a significant performance gap was observed
between PPOsynthetic and TLCR, which was trained
on the same synthetic data. Moreover, our TLCR
outperforms TLCRfixed by 0.15. These results indi-
cate that the modified synthetic dataset from GPT-4
alone cannot give a satisfactory signal during the
alignment process without our targeted continuous
token-level reward.

6.2 Results on AlpacaEval

Figure 4 shows the evaluation results for 805 test
questions from the AlpacaEval dataset (Li et al.,
2023a). This evaluation method entails presenting
GPT-4 with two responses generated by different
models and determining the binary win rate based
on GPT-4’s preference. We achieve the higher win
rate among all baselines; TLCR achieves win rates
of 84.89%. 80.12%, 77.19%, 66.65%, 77.31%, and
60.76% over SFT, DPO, PPOseq, ReMax, FIGA,
and TLCRfixed respectively.

6.3 Human Evaluation

We present the human evaluation result in Fig-
ure 5. Given the generations from SFT, PPOseq,

Figure 5: Human evaluation results on 100 random
samples from full-hh-rlhf test set. Five annotators
were tasked with selecting the most preferred response
generated by different methods. We report the average
proportion of preferences chosen to each method’s out-
puts

Figure 6: Reward score evaluation comparison using
three different reward schemes: (a) Sequence-Level Re-
ward, (b) Token-Level Discrete Reward, and (c) Token-
Level Continuous Reward.

TLCRfixed, and TLCR, five human annotators3 are
asked to choose the most preferred answer. We
report the ratio of samples selected as the most
preferred. The results show that TLCR achieved
the highest preference rate, receiving an average of
45.23% of the total votes.

7 Ablation Studies

7.1 Reward Comparison
In Figure 6, we compare reward scores across dif-
ferent methods: SFT, PPO, TLCRfixed, and our pro-
posed TLCR. Across all evaluated reward metrics,
SFT consistently records the lowest scores due to
its lack of training for maximizing any specific
reward score.

Figure 6-(a) shows the reward score obtained
using sequence-level rewards, which were the di-
rect maximization target for PPOseq during rein-
forcement learning. Notably, TLCR (ours), despite
not being explicitly maximized with this reward,
shows a reward score closely competitive to that of
PPOseq, obtaining a score of 4.13 compared to 4.28
from PPOseq. On the other hand, TLCRfixed lags
behind in achieving comparable sequence-level re-
ward scores, with only obtaining a score of 3.04.

3Human annotators all have TOEFL iBT score above 100
and possess a bachelor’s degree or higher.
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Figure 7: PPO training curve (perplexity, length, KL
divergence) for TLCR under various conditions.

Moving to Figure 6-(b), we look into the eval-
uation based on token-level discrete rewards, a
value for which TLCRfixed explicitly maximized.
Here, the limitations of sequence-level feedback
become apparent, as evidenced by PPOseq’s under-
performance (achieving a score of only 25.7) in
enhancing token-level generation quality. Notably,
TLCR also exceeds this aspect, effectively captur-
ing token-level preference.

Lastly, Figure 6-(c) shows the outcomes evalu-
ated on token-level continuous rewards, the core
metric our TLCR model was trained to maximize.
Consistent with previous trends, PPOseq shows in-
sufficient results (with a score of 17.0), further
emphasizing the shortcomings of sequence-level
feedback in refining token-level outputs. TLCR
achieves the highest score in this category as well.

Overall, these findings reinforce the inherent
limitations of traditional sequence-level and token-
level discrete reward feedback mechanisms and
demonstrate the advantages of our TLCR approach
in achieving token-level improvements.

7.2 Alignment of Discriminator with Human
Preference

Since the discriminator assigns the token level con-
tinuous reward during PPO, it is important to an-
alyze the discriminator’s alignment with human
preferences. Directly obtaining token-level human
labels is challenging due to the fine granularity re-
quired. Therefore, we examine the test set of the
token-level preference obtained by GPT-4 using
our token-level preference labeling framework, and
the results show a token-level preference prediction
accuracy of 81.4% from our trained discriminator.
This high accuracy indicates that the discriminator
effectively mirrors token-level preferences, con-
firming the effectiveness of our approach in align-
ing with human preferences at the token level.

Figure 8: Examples of Token-Level Preference Pre-
dictions from our trained Discriminator Dϕ. Green
represents positive preference, and red represents nega-
tive preference. The concentration of the color visual-
izes the intensity (i.e., scale) of the preference.

7.3 The Effect of Positive and Negative
Token-Level Rewards

In this section, we explore TLCR’s performance
under two conditions: excluding negative rewards
(where we consider only rt ≥ 0 from Equation
7, denoted as TLCRw/o negative) and excluding posi-
tive rewards (where we focus on instances where
rt ≤ 0 in Equation 7, denoted as TLCRw/o positive).
Similar to Zheng et al. (2023b), we monitor the
PPO training process by using action space mod-
eling metrics, such as perplexity, response length,
and KL divergence between the policy model and
the SFT model to show informative details of the
training stability of each setting.

In Figure 7, under conditions excluding negative
rewards, the model is observed to increase the gen-
eration length to increase the number of positive
tokens, thereby inflating its reward. Conversely,
sentence length decreases to minimize negative to-
ken generation when positive rewards are not used.
It can be viewed as ’reward hacking’, resulting
in highly elevated KL divergence and perplexity.
This result shows the importance of considering
both positive and negative rewards in training to
prevent reward hacking and ensure accurate prefer-
ence training.

7.4 Qualitative Results

Figure 8 illustrates the qualitative analysis of token-
level preference predictions made by our trained
Discriminator Dϕ. For the response A to Question
1, incorrect details like ’08’ from ’2008’ are iden-
tified as negative due to the misinformation. Con-
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versely, the subsequent tokens are predicted as pos-
itive due to their accurate information. Similarly,
in the case of response B, ’Elon Musk’ receives
a negative prediction, attributed to the inaccurate
information.

Furthermore, in the response B to Question 2,
the term ’samoosa’ is marked as unfavorable, likely
due to an apparent spelling error, contrasting with
the favorable assessment of ’samosa’ in response
A, which is spelled correctly.

For Question 3, the response B exhibits hallu-
cinated outputs, characterized by repetitive, non-
terminating sentences. While the initial sentence
in both response A and response B is awarded a
favorable preference, the following hallucinated
segments in response B are marked with a negative
preference.

These examples highlight the value and useful-
ness of token-level preference in providing detailed
feedback on sentence quality. As illustrated, a
generated sequence can include a mixture of ac-
curate and inaccurate information or even correct
and helpful responses impaired by minor spelling
errors in specific words. This fine-grained approach
to feedback is crucial for distinguishing the subtle
quality of language model outputs.

8 Conclusions

In this study, we introduced the Token-Level Con-
tinuous Reward (TLCR), a novel reward model
aimed at providing detailed, token-based contin-
uous rewards for Reinforcement Learning from
Human Feedback (RLHF). By utilizing the pre-
diction confidences from a discriminator to assign
rewards at the token level, our approach offers a
sophisticated reward system that adjusts to the vary-
ing degrees of relevance each token holds within
its context. The superiority of TLCR over tradi-
tional sequence-level and token-level discrete re-
ward mechanisms has been established through
detailed experiments and analyses.

9 Limitations

Current work uses a 7B parameter model, trained
with a single dataset partitioned for three stages.
Also, the current reward model training utilizes
the offline static dataset, which might cause a dis-
tribution mismatch during policy model training.
Moreover, the token-wise preference discriminator
exhibits a bias due to the ambiguity of good hu-
man preference, implying room for improvement.

Future works can include model-data scaling, iter-
ative updating of the reward model and the policy
model, and combining multi-objective preference
(e.g., safety reward and helpfulness reward) learn-
ing for more fine-grained guidance.

10 Broader Impact

This paper presents a method to improve LLMs
via RLHF, targeting fine-grained alignment with
human preferences and values. We hope our work
will help reduce potential risks caused by LLM
generations.
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A Prompt Used for Instructing the External Language Model

Figure 9: Prompt used to instruct the external language model LMext to modify the rejected sample.

B Experimental Details

We use the Adam optimizer, setting β1 = 0.9 and β2 = 0.95. We set the maximum sequence length,
including prompts and responses, to 512. Further details for each stages of the PPO process using the
Deepspeed-Chat (Yao et al., 2023) framework is detailed as follows:

• Supervised Fine-Tuning (SFT): We use a batch size of 16 per device, a learning rate of 10−5, and
use a cosine learning rate schedule without warm-up. We train for 2 epochs.

• Reward Model Training (i.e., Discriminator Dϕ training): Our reward model training stage
involves training the discriminator. Similar to the SFT training, we use the batch size of 16 per
device, with a learning rate of 10−5, and use a cosine learning rate schedule without warm-up. A
weight decay of 0.1 is used, and we train for 2 epochs.

• Reinforcement Learning with PPO: For the RL stage, we use ZeRO-2, gradient checkpointing, and
offload. The learning rate is set to 10−6, and we use a cosine learning rate schedule without warmup.
We train for 1 epoch. The KL penalty coefficient is set to 0.1. We use ZeRO-3 for the reference
model and the reward model, as they do not require training. The hybrid training engine is used.
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C Generated Response Comparison

Instruction What is some cool music from the 1920s?

SFT 1920s music? I’m not sure I know what that means. I’ll do my best to help. Can you
tell me a little more about what you’re looking for?

PPO

1920s jazz music was hugely influential and popular, and some classic songs from
that era include “Some of These Days” by Ma Rainey, “Livery Stable Blues” by
Bessie Smith, “The Charleston” by Scott Joplin, and “I’m Crazy ‘Bout My Baby”
by Fats Waller. Other popular 1920s music genres included ragtime, big band,
and early blues.

FIGA

1920s music tends to be jazz and blues. If you like jazz, I recommend The Jazz
Singer by Al Jolson, or Hot Jazz from Louis Armstrong. If you’re interested in
blues, King Oliver’s Creole Jazz Band is a great place to start, or any music by
Bessie Smith. These would all be great choices for a collection of cool 1920s music.
If you’re looking for something more current, you might also enjoy artists
like Louis Armstrong, Duke Ellington, or Bix Biederbeck, who played a heavy role
in shaping music during that time period. You could also explore the music of the
Harlem Renaissance, which was a cultural movement that significantly influenced the
1920s and beyond. Of course, this list is just a starting point, and there are many other
great artists and songs from the 1920s that are worth exploring. These are a few
suggestions to get you started on your journey into the music of this era, with plenty
of options to discover and enjoy.

TLCRfixed

Here are 10 cool songs from the 1920s:
-“Some of These Days” by Sophie Tucker
-“When the Saints Go Marching In” by the Original Dixieland Jazz Band
-“Tiger Rag” by Louis Armstrong
-“Yes! We Have No Bananas” by Benny Goodman
-“I Got Rhythm” by George Gershwin
-“Ain’t Misbehavin’” by Fats Waller
-“I’m Looking Over a Four-Leaf Clover” by the Mills Brothers
-“Honeysuckle Rose” by Bix Beiderbecke
-“The Charleston” by Glenn Miller
-“I’m Confessin’ (That I Love You)” by the Ink Spots

TLCR (Ours)

1920s music can be cool in many ways. Here are some suggestions:
- Jazz: This style of music featured improvisations and syncopated rhythms.
Notable jazz musicians from the 1920s include Louis Armstrong, Duke Ellington,
and Bix Beiderbecke.
- Blues: The blues style originated in the 1920s, and featured simple melodies
and soulful vocals. Famous blues artists from this era include Ma Rainey, Bessie
Smith, and Charley Patton.
- Gospel: This style of music began in the 1920s, combining elements of blues,
jazz, and spirituals. Notable gospel performers from the 1920s include the Campbell
Sisters, Mahalia Jackson, and Thomas A. Dorsey.
- Vaudeville: Vaudeville is a type of variety entertainment that became popular
during the 1920s. Its music featured fast-paced songs with lively rhythms, such as
ragtime, cakewalk, and novelty numbers. Famous vaudeville performers from the
1920s include Bert Williams, Eddie Cantor, and Al Jolson.
- Broadway: Broadway theater music became popular in the 1920s, featuring lavish
productions and elaborate dance routines. Notable Broadway composers

Table 2: Example of the Generated Responses from Different Methods for a Given Instruction.
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