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Abstract

The task of temporal relation extraction (TRE)
involves identifying and extracting temporal
relations between events from narratives. We
identify two primary issues with TRE systems.
First, by formulating TRE as a simple text clas-
sification task where every temporal relation
is independent, it is hard to enhance the TRE
model’s representation of meaning of tempo-
ral relations, and its facility with the under-
lying temporal calculus. We solve the issue
by proposing a novel Temporally Contrastive
learning model (ConTempo) that increase the
model’s awareness of the meaning of temporal
relations by leveraging their symmetric or anti-
symmetric properties. Second, the reusability
of innovations has been limited due to incom-
patibilities in model architectures. Therefore,
we propose a unified framework and show that
ConTempo is compatible with all three main
branches of TRE research. Our results demon-
strate that the performance gains of ConTempo
are more pronounced, with the total combina-
tion achieving state-of-the-art performance on
the widely used MATRES and TBD corpora.
We furthermore identified and corrected a large
number of annotation errors present in the test
set of MATRES, after which the performance
increase brought by ConTempo becomes more
apparent.

1 Introduction

Temporal relation extraction (TRE) is the task of
classifying the temporal relations between pairs of
events conveyed in narratives (Pustejovsky et al.,
2006, 2010). This task is important to the natural
language processing (NLP) community because the
conception of time is a key component of text com-
prehension and reasoning. Additionally, it carries
practical importance, as TRE is a crucial compo-
nent of various downstream applications in ques-
tion answering, information retrieval, and informa-
tion extraction.

TRE is difficult. Despite its importance and
popularity, TRE systems still have relatively poor
performance compared to other natural language
understanding tasks. TRE is also salient because
recent large language models (LLMs) and chat sys-
tems have substantially worse performance than
smaller, fine-tuned TRE models (Yuan et al., 2023;
Huang et al., 2023).

In this paper, we enhance current TRE systems
by identifying and addressing two major issue that
hinder their performance:

1. It is difficult to understand relation labels.
TRE is typically formulated as a multi-label text
classification task. The representation of the re-
lation is determined by a neural classifier, which
outputs logits for different label classes. These log-
its are then converted into label probabilities using
a softmax layer. As a result, in a TRE model, all re-
lation types are considered independent. However,
temporal relations are inherently structured, gov-
erned by an underlying temporal calculus (Allen,
1981, 1983). For instance, if event A occurred be-
fore event B, it can be inferred that B happened
after A. Integrating the meanings of each temporal
relation and the principles of the underlying tem-
poral calculus into the neural classifier presents a
complex challenge, as there is no straightforward
method to do so.

2. The reusability of innovations has been lim-
ited. Many of the recent innovations in TRE have
not built upon one another, primarily due to the
lack of a unified framework (beyond annotation
standards) to accommodate them. For example,
despite being widely cited and used as a baseline
by subsequent systems, the relative time predic-
tion technique (Wen and Ji, 2021) has rarely been
applied on top of newer models, due to incompati-
bilities in model architecture. The evaluation meth-
ods employed by earlier systems vary significantly,
moreover, which complicates direct comparisons

1521



between models and further hinders the develop-
ment of future models.

We propose a novel Temporally Contrastive
learning method (ConTempo)1 to enhance the
model’s representation of the meaning of temporal
relations, and its facility with the underlying tem-
poral calculus. The intuition behind ConTempo is
very simple. Contrastive learning aims to pull sim-
ilar (positive) samples closer and push dissimilar
(negative) samples apart. We leverage the symmet-
ric and antisymmetric properties of temporal rela-
tions to augment a base graph of positive samples
for contrastive learning. For antisymmetric rela-
tions (A before B), we want to push the relation’s
representation away from its inverse (B after A).
For a symmetric relation (A equals B), we likewise
want to pull its representation closer to its inverse
(B equals A). Our experimental results indicate
that ConTempo is effective at creating distinctive
representations for different types of temporal rela-
tion pairs and yields a substantial improvement in
performance.

Then, building upon ConTempo, we create a
unified framework that is compatible with various
previous modes of improvement in TRE systems.
In particular, we have identified two major threads
of innovation in the previous literature on this topic:
(1) GNN encoding of event and context informa-
tion, (2) incorporation of common-sense informa-
tion, and (3) the soft enforcement of logical con-
straints. Our experiment shows that ConTempo is
compatible with techniques from all three major
threads of research and can achieve state-of-the-art
performance on major evaluation corpora, includ-
ing MATRES (Ning et al., 2018b) and TimeBank-
Dense (TBD; Cassidy et al., 2014). We neverthe-
less perceive the need to introduce CleanMATRES,
a refined version of MATRES that we created by
fixing certain annotation errors.

Among all of these innovations, an ablation
study nevertheless shows that ConTempo brings
the most significant performance increase. This
finding underscores our initial hypothesis: the pri-
mary challenge for these models has been their
difficulty with making sense of relation labels.

During our development of the unified
ComTempo framework, we discovered a large
number of annotation errors within MATRES and
TBD, two commonly utilized corpora. Because of

1ConTempo and CleanMATRES are publicly available
online: https://github.com/frankniujc/contempo.

Corpus Relations

MATRES BEFORE, AFTER, EQUAL, VAGUE

TBD BEFORE, AFTER, INCLUDES, IS_INCLUDED,
EQUAL, VAGUE

Table 1: Temporal relations used by MATRES and TBD.

TBD’s dense annotation scheme, the appropriate
level of underspecificity cannot be resolved
without further investigation. But we are able to
provide a thorough re-examination of the MATRES
corpus. After correcting these errors, performance
improves yet again, and the performance increase
brought by ConTempo becomes more apparent.

2 ConTempo

We begin our discussion by first formulating the
TRE task. Then, using a comparison of relational
representations, we will demonstrate the difficulty
that a neural model faces in temporal reasoning and
understanding the meaning of temporal labels. In
particular, there is a significant correlation between
the mistakes a TRE model makes and its degree
of inference over the available symmetric and an-
tisymmetric properties. Next, we will present our
ConTempo method in detail, which enhances a
model’s awareness of the meaning of each tempo-
ral relation and each principles of temporal reason-
ing. Finally, we will empirically demonstrate the
effectiveness of ConTempo and compare it with
previous methods in increasing temporal relation
awareness.

2.1 TRE: Task Formulation

TRE can be formulated as a classification task.
Given an input sequence S = [t1, . . . , tn] and two
events represented by two distinct tokens from
the sequence, e1, e2 ∈ S, where e1 ̸= e2, the
TRE model should classify the relation between
the event pair (e1, e2) into one of several tempo-
ral relations, R. Different corpora have different
sets of temporal relations. Most TRE benchmark
datasets aspire to embody Allen’s (1981) 13 orig-
inal temporal relations, but creating datasets with
such fine-grained annotations is challenging. At-
tempts to utilize all 13 temporal relation types have
failed due to low inter-annotator agreement. There-
fore, recent TRE datasets typically simplify the
relation set to a more coarse subset of the original
set. As listed in Table 1, MATRES has 4 relation
types, and TBD uses 6 relation types.
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2.2 Temporal Relation Labels Awareness

After simplification, Allen’s (1983) full temporal
interval calculus can no longer be maintained. But
interval symmetry and antisymmetry (as shown in
Equation 1) still apply within both MATRES and
TBD.2 In our opinion, it is crucial for TRE mod-
els to reason with intervals in order to yield good
evaluation results on benchmarks—if the models
know A happened before B but do not know that B
happened after A, can we really say that the model
understands time in narratives?

A INCLUDES B ⇐⇒ B IS_INCLUDED A

A BEFORE B ⇐⇒ B AFTER A

A EQUAL B ⇐⇒ B EQUAL A

(1)

Symmetry and antisymmetry also provide us
with an opportunity to test a model’s understanding
of relation labels. In particular, we can measure
the similarity of the model’s representation of a
relation h→r in comparison to its dual h←r :

sim(h→r ,h←r ) = sim(h(e1,e2),h(e2,e1)), (2)

It is relatively commonplace in the context of TRE
to speak of a representation of a temporal relation,
although this in fact refers to the representation of
one of its instances over some event pair h(e1,e2).
Therefore, we will speak of the two interchange-
ably. If the relation between e1 and e2 is symmetric,
then we can interpret high similarity as a sign of
awareness concerning the relation’s meaning be-
cause the relation and its inverse are nearly the
same. On the other hand, if the relation is antisym-
metric, we should expect the relations to be distinct
and, therefore, we should interpret low similarity
as a good sign. Here, we measure similarity with
cosine similarity (sim(a,b) = a·b

∥a∥∥b∥ ).

2.3 Temporal Relation Awareness of
Fine-tuned BERT-based Models

In this section, we examine the extent to which
typical, fine-tuned BERT-based models can be said
to understand temporal relations and the temporal
calculus. All contemporary TRE systems use this
paradigm. Therefore, we experimented with a base-
line model (described in Equation 3) to establish
a foundation for the capacity of TRE models to
summarize the temporal interval calculus.

2We ignore the VAGUE relation in this part of the analysis
because whether symmetry applies to the VAGUE relation
requires more careful consideration (Appendix D.3).
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Figure 1: Similarity measures of event pair representa-
tions with their inverses. Each dot represents a relation
in the MATRES test set: green means the model clas-
sified the relation correctly and red means the model
made a mistake. The box plots underneath show the
quantile statistics. There is an obvious negative correla-
tion between the correctness of the prediction and the
similarity measure. This is evident from observing that
the incorrect predictions (red points) are located in the
upper region of the figure for BEFORE and AFTER.

The baseline model has three components: a pre-
trained encoder (we use a RoBERTa-large model
(Liu et al., 2019)), a 2-layer MLP module (f1) that
encodes the relation of the event pair under a uni-
fied representation scheme, and another single layer
MLP (f2) that decodes the relational representation
into logits for each, different relational type:

E = encoder(S) = [h1, . . . ,hn],

h(e1,e2) = f1([he1 ∥ he2 ]),

PR(e1, e2) = softmax(f2(h(e1,e2))).

(3)

The implementation details and hyperparameter
settings are described in Appendix A.

Baseline Model Temporal Awareness Figure 1
shows the similarity between the relational repre-
sentations h→r and their symmetric duals h←r as
generated by the baseline model. We can see an ob-
vious negative correlation between the correctness
of the prediction and the similarity measure. This
is evident from observing that the incorrect predic-
tions (red points) are located in the upper region
of the figure for BEFORE and AFTER. Furthermoe,
the baseline model often assigns similar represen-
tations to relations and their symmetric duals, even
when the two are diametrically opposite in mean-
ing. As shown by the box plot, the first quantile
of both the BEFORE and AFTER relations occupy
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the upper part of the figure, which corresponds to
high similarity. This shows that while fine-tuned
models might have some basic perception of the
significance of these temporal labels, it is by no
means efficient, as all temporal labels are presented
to the model as independent.

2.4 ConTempo: The Method

Contrastive learning builds on the idea of pulling
similar (positive) data points (x, x+) closer to-
gether and pushing dissimilar (negative) data points
(x, x−) apart by adding a contrastive loss term to
the training objective (Robinson et al., 2021). We
thus need to define positive and negative samples
for temporal relation instances, i.e., event pairs. In
this section, we will explain how positive and neg-
ative samples are constructed based on whether the
relation is symmetric (EQUAL) or antisymmetric
(BEFORE, AFTER, INCLUDES, and IS_INCLUDED),
and define how we compute the temporally con-
trastive loss term ℓtc.

Our implementation of ConTempo is inspired
by SimCSE’s (Gao et al., 2021) use of contrastive
learning on natural language inference (NLI) data.
We likewise use a normalized temperature-scaled
cross-entropy loss (NT-Xent; Chen et al., 2020).

Antisymmetric Relations For an antisymmetric
relation h→r = h(e1,e2), we regard the dual of the
relation h←r = h(e2,e1) as a hard negative sample.
However, we cannot construct further positive sam-
ples using temporal reasoning. Instead, we follow
SimCSE’s unsupervised approach to obtain posi-
tive pairs through the use of independently sampled
dropout masks. Standard transformers will apply
dropout (default p = 0.1) at different locations in
the model. Therefore, we simply feed the same
input to our model twice to obtain two relational
representations h→r and h+

r that are slightly differ-
ent; different dropout masks having been applied
during the two encoding passes. Therefore, we can
compute the ConTempo loss by:

ℓtc = − log
esim(h→r ,h+

r )/τ

esim(h→r ,h+
r )/τ + esim(h→r ,h←r )/τ

, (4)

where τ is a temperature hyperparameter.
Unlike SimCSE, however, we did not treat other

relational representations in the same mini-batch
as negatives. While we are certain that the relation
yields the exact dual when we reverse the order of
the two events ((e1, e2) vs. (e2, e1)), the compari-

son is less clear when it is made between different
event pairs. Consider the following examples:

(1) Alan Turing studiede1 at Cambridge for
his undergraduate degree and attendede2

Princeton for his Ph.D.

(2) I failede3 my calculus course and then
criede4 all night in a McDonald’s.

While both temporal relations r1 = (e1, e2) and
r2 = (e3, e4) share the same BEFORE label, it is
difficult to say whether they can be regarded as a
positive pair, because they are different in many re-
spects. First, we know that e1 and e2 are years apart
but e3 and e4 happen on the same day. Second, we
infer BEFORE for different reasons. We know that
e1 happened before e2 through common-sense: a
person needs to complete their undergraduate study
before working towards a Ph.D. But we conclude
that e3 happened before e4 because of and then and
a likely causal relation between failing the course
and crying. We want to preserve these differences
and therefore avoid pushing the representations of
r1 and r2 closer together.

We also do not need to consider relations with
different labels, such as r→1 = (e1, e2) and r←2 =
(e4, e3), as negative samples. Intuitively, con-
trastive learning is more effective when the neg-
ative samples occur nearby but should be far apart
(Robinson et al., 2021). Since event pairs from dif-
ferent sentences contain drastically different syn-
tactic and semantic information, it is not a serious
problem for the classifier to distinguish them.

Symmetric Relations For a symmetric relation
h→r = h(e1,e2), we use the dual of the relation
h←r = h(e1,e2) as an additional, positive sample.
Unlike with antisymmetric relations, we follow
SimCSE and use other relations in the same mini-
batch (B) as negative samples:

ℓtc = − log
esim(h→r ,h←r )/τ

∑
i∈B(e

sim(h→r ,hi)/τ + esim(h←r ,hi)/τ )
.

(5)
We choose a different design here than for anti-
symmetric relations because it is impossible to con-
struct true hard negative samples for symmetric
relations. Also, we do not check whether other
samples in the mini-batch have the same relation
label as h→r because EQUAL is the least common
relation type. With only 3.8% in MATRES and
1.7% of the relations in TBD, it is very rare that
there are multiple EQUAL relations in the same
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Figure 2: The efficacy of ConTempo at increasing the
model’s awareness of temporal relations and their impli-
cations through temporal reasoning.

mini-batch, so the effect of a colliding relation type
is negligible.

Final Training Objective The ConTempo loss is
added to the final training objective with a scaling
hyperparameter γ (Equation 6). The classification
loss ℓclf is the standard cross-entropy loss computed
using the model’s output logits:

ℓ = ℓclf + γ · ℓtc. (6)

2.5 Experiment: ConTempo at Increasing
Temporal Relation Awareness

Here we present the effectiveness of ConTempo at
increasing temporal relation awareness. In this sec-
tion, we trained an enhanced ConTempo baseline
that is identical to the fine-tuned baseline but with
ConTempo loss added to the model. We trained
the model using the same hyperparemeters for the
same amount of time.

In Figure 2, we compare ConTempo with base-
lines using the same similarity measures. We can
observe that the similarity of the model’s represen-
tation of a relation in comparison to its dual drops
significantly after ConTempo is applied. Further-
more, now we can observe that the vast majority
of similarity measures occupy the lower section of
the figure, suggesting that ConTempo is effective
at making antisymmetric relations generate repre-
sentations that are distinct from their duals.

Unfortunately, we also see a similar drop in sim-
ilarity for the symmetric relation (EQUAL). We
believe this is caused by a data imbalance as there
are too few EQUAL instances to balance the overall
effect of the antisymmetric relations.

Method MATRES Antisym. Rel. Sim Sym. Rel. Sim

RoBERTa 80.76 0.127 0.424
Data Expansion 80.16 -0.205 0.148
Relative Time 81.01 -0.237 0.144
Logical Constraints 81.26 -0.302 -0.102

ConTempo (Ours) 82.01 -0.352 -0.080

Table 2: The effectiveness of different methods at im-
proving temporal relation awareness. The table reports
each method’s performance together with the average
similarity measure for all the antisymmetric and sym-
metric relations.

2.6 Previous Attempts at Increasing Temporal
Calculus Awareness

Does similarity reduction really lead to better tem-
poral label awareness? Also, are there any other
ways to increase temporal label awareness? Unfor-
tunately, it is impossible to measure temporal label
awareness directly, but we can infer it indirectly by
observing the model’s performance.

In this section we compared ConTempo with
three previous methods that attempted to address
similar problems. In the following paragraphs, we
elucidate these methods, as they could also increase
temporal relation awareness. In Table 2, we com-
pare the effectiveness of all three with ConTempo.
We use the same model setting for each method
for a fair comparison. Overall, ConTempo is the
most effective at reducing similarity. It also has the
best performance on MATRES. This suggests Con-
Tempo could help the model create more effective
representations for TRE prediction.

Inverse Data Expansion Huang et al. (2023)
simply expand the training set by adding all the
inverse relations. This straightforward approach,
however, does not address the issue that temporal
relation labels are presented independently.

Relative Time Prediction Wen and Ji (2021)
employed a relative timestamp prediction compo-
nent to regulate the training process by predicting
a real number (“relative event time,” RET) that
indicates the relative position of events in a time-
line. This component is trained to maximize the
distance between events in antisymmetric relations
and to minimize the distance between events that
are equal. This approach shares broad similarities
with contrastive learning but faces two major chal-
lenges. First, relative event-time prediction in RET
is ultimately computed for each single event indi-
vidually, which is impossible. By contrast, Con-
Tempo considers events in pairs and accounts only
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for relative information. Second, this model can-
not specify the absolute distance between events,
meaning it does not differentiate between events
that occur seconds apart and those that are days
apart. It also makes predicting chains of events
(e.g., e1 < e2 < . . . < e5 where < indicates
AFTER) difficult, as the model needs to balance
various data points across the entire dataset and
precisely position each event within the relative
time range. ConTempo does not face this issue as
the time distance between any two events (e1, e2)
remains consistent regardless of the direction.

Logical Constraints Wang et al. (2020) pro-
posed to impose soft logical constraints by adding
a loss term that is calculated based on the model’s
output logits. In particular:

ℓS =
∑

| log r(e1, e2)− log r̄(e2, e1)|, (7)

where r(e1, e2) denotes the logits the model out-
puts for relation type r given (e1, e2) as the input,
and r̄ denotes the dual of the relation. Other logical
constraints such as transitivity are also enforced
by Wang et al. (2020); we temporarily skip those
as they are not relevant to the topic of the current
section. We will return to a discussion of other
types of constraint in Section 3.3.

Logical constraint loss has some surface-level
resemblance to ConTempo loss, but their method
focuses on the output logits whereas ours focuses
on regulating the quality of the models’ representa-
tions. The major motivation for Wang et al. (2020)
to add logical constraints was to avoid label con-
flicts; enhancing the model’s understanding of tem-
poral relation labels was secondary.

3 The Unified Framework

Our survey of previous systems suggests that the
reusability of innovations of TRE has been limited.
For example, papers working on GNN-encoding
of document-level information (Zhang et al., 2022;
Mathur et al., 2021; Yao et al., 2022) rarely incorpo-
rate other published innovations, such as additional
common-sense information, in their models. We
call for more collaboration between different direc-
tions of TRE research.

In this section, we argue that ConTempo is
compatible with various recent innovations across
different research directions. In particular, Con-
Tempo is complementary to: (1) GNN encodings
of event and context information, (2) incorporat-

ing common-sense information, and (3) the soft
enforcement of logical constraints.

3.1 Event and Context Encoder
All natural language understanding models need
methods to encode their input sequence into vec-
torized representations, and to extract the relevant
event and context representations. Currently, re-
searchers typically use pre-trained language mod-
els such as BERT (Devlin et al., 2019) or RoBERTa
to encode the input sequence because of the rich in-
formation these models gather during pre-training.

In TRE, an event is usually described by a com-
plete phrase or even an entire clause. But since it
is hard to annotate a discontinuous sequence, TRE
corpora typically label the semantic head as the
sole event trigger to represent the complete event.
Extracting representations from only the event trig-
gers may not obtain all the relevant information to
make a correct prediction, however.

Therefore, TRE systems now utilize Graph Neu-
ral Networks (GNNs) to encode additional infor-
mation about events and context. Zhang et al.
(2022) proposed using dependency trees to help the
model access different event arguments. TIMERS
(Mathur et al., 2021) proposed using a GNN to en-
code three graphs: a sentence structure graph, a
temporal structure graph, and a discourse structure
graph. More recently, MulCo (Yao et al., 2022)
reported better results using only the sentence (GS)
and temporal (GT ) structure graphs. They achieved
better results with fewer graphs by using multi-
scale contrastive learning between the fine-tuning
of BERT and the training of the GNN to decrease
GPU memory usage. Unlike ConTempo, their con-
trastive learning is not used to enhance the under-
standing of temporal labels.

We add MulCo to the unified framework by con-
catenating the GNNs’ outputs to the event repre-
sentations as h̃e = [hGSe ∥ hGTe ∥ he].

Please refer to Yao et al. (2022) for the detailed
description of their model. We provide only a quick
overview in Appendix B.

3.2 Common-sense Information
Similar to event and context encoding, we can also
add additional features from external sources to
enhance the representation. The feasibility of our
unified framework is demonstrated by admitting
temporal common-sense information.

Earlier TRE methods (Ning et al., 2018a, 2019;
Wang et al., 2020) used temporal information de-
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GPT-3 Prompt:

But the great-uncle of 6-year-old shipwreck survivor
rafter Elian Gonzalez only ducked his head and
walked faster.
Q: In about 10 words describe how long does the event
"ducked" typically last.
A: Ducking typically lasts only a few seconds.

Figure 3: An example prompt and response for GPT-3.
The context sentence is highlighted in orange, the event
trigger, in red and GPT-3’s response, in green.

rived from simple heuristics, or from corpora such
as TempProb, which contains typical temporal-
relation information between event triggers. Un-
fortunately, TempProb’s coverage and accuracy is
limited. Alternatively, the MC-TACO corpus (Zhou
et al., 2019) was developed for temporal common-
sense knowledge, presenting typical duration infor-
mation through answers to multiple-choice ques-
tions. This approach, however, requires the model
to select a typical duration from a restricted set of
pre-defined options, and is incapable of addressing
typical granularity and underspecificity problems.
Our system is the first to apply temporal common-
sense information from LLMs for TRE purposes.

We used GPT-3 (text-davinci-003), employ-
ing the template illustrated in Figure 3, to obtain
descriptions of the typical durations of events in
MATRES. We then use our system’s underlying
RoBERTa encoder to encode a description of the
typical duration, and use the [CLS]-pooler output
as the representation, denoted as hdur

e .3

ĥe = [hdur
e ∥ h̃e]

h(e1,e2) = f1([ĥe1 ∥ ĥe2 ])
(8)

3.3 Training Objective

The third type of innovation is the modification
of the training objective. ConTempo itself is an
innovation to the training objective.

In this section, we show that ConTempo is com-
patible with other techniques that have been ap-
plied to training objectives. We have incorporated
the aforementioned soft logical constraints (Wang
et al., 2020) into the unified framework.

We add both the symmetric loss (ℓS) and the
conjunction loss (ℓC) to the loss function. There
is a bit of overlap between Wang et al.’s (2020)

3The prompts and the generated responses from GPT-3
will be made publicly accessible online.

symmetric loss and ConTempo loss, but as previ-
ously discussed, we focus on regulating the repre-
sentation whereas Wang et al.’s (2020) focus on
avoiding label conflicts. ConTempo and the log-
ical constraints complement each other, however,
as ConTempo does not attempt to treat transitivity
within contrastive learning. Instead, it is covered
by conjunction restrictions. The loss terms are:

ℓS =
∑

| log r(e1, e2)− log r̄(e2, e1)|,

ℓC =
∑

|Lt1 |+
∑

|Lt2 |
(9)

where Lt1 and Lt2 are defined as:

Lt1 = log r1(e1, e2) + log r2(e2, e3)− log r3(e1, e3),

Lt2 = log r1(e1, e2) + log r2(e2, e3)− log(1− r4(e1, e3)).
(10)

See Wang et al. (2020) for details, including the
induction table for the conjunctive constraints. The
final training objective is:

ℓ = ℓclf + γ · ℓtc + λS · ℓS + λC · ℓC . (11)

4 Experiments

4.1 Experimental Setup
The hyperparameter settings and training details
are explained in Appendix A.

Data We experimented with both MATRES
(Ning et al., 2018b) and TBD (Cassidy et al., 2014),
the two popular corpora that are most often used to
benchmark TRE systems. Both are derived from
the TimeBank Corpus (Pustejovsky et al., 2003),
which is annotated using the TimeML standard
(Pustejovsky et al., 2005). The VAGUE labels are
computed into the F1s for both MATRES and TBD
but are regarded as negative labels.

TBD is a dense re-annotation of the TimeBank
corpus where every possible pair of events/times in
a given window is forced to be annotated regard-
less of whether there exists a specified temporal
relation. As a result, TBD has ample data sam-
ples (12715 relations from 39 articles) but a rela-
tively low inter-annotator agreement, with Cohen’s
(1960) κ ranging between 0.56 and 0.64.

MATRES aimed at reducing noise in TBD’s an-
notation. It introduced the concept of orthogonal
temporal axes for hypothetical, negated, opined,
and static events. In practice, these events are ig-
nored during temporal relation annotation. They
further reduced the number of temporal relations
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Model CleanMATRES MATRES TimeBank-Dense

ChatGPT 3.5 65.29 25.94 53.06
ChatGPT 3.5 (CoT) 66.97 35.54 57.14
ChatGPT 4 76.47 41.64 67.58
ChatGPT 4 (CoT) 80.76 56.70 65.14
Fine-tuned GPT 3.5 73.41 55.27 61.71

LSTM (Cheng and Miyao, 2017) - 73.4 62.2
SCS-EERE∗ (Man et al., 2022) 91.25 80.98 65.92
Joint Constrained Learning (Wang et al., 2020) - 78.8 -
Relative Time∗ (Wen and Ji, 2021) 89.61 81.63 66.81
MulCo∗ (Yao et al., 2022) 91.34 82.08 67.51
TIMERS (Mathur et al., 2021) - 82.3 67.8
Endpoint Comparisons (Huang et al., 2023) - 82.6 68.1

ConTempo Baseline 91.35 82.01 67.78
ConTempo + Unified Framework (Ours) 92.66 83.17 68.56

Table 3: F1 on CleanMATRES, MATRES and TBD. ConTempo achieved substantial improvements over strong
baselines. Rows with results that we reproduced using the same evaluation settings as our model are labelled with *.

down to only four types. They also simplified the
annotation scheme by asking the annotators to com-
pare only the start times of events, as the end time
of a durative event can often be ambiguous and
cause confusion. During our survey of TRE base-
lines, we found that there are actually several ver-
sions of MATRES being used by different research
labs (see Appendix C). We use the version that is
available on the Ning et al.’s (2018b) GitHub page4

and reproduced several key baseline systems’ per-
formances using our unified evaluation standards.

During the development of ConTempo, we dis-
covered a large number of annotation errors in both
MATRES and TBD. To further reduce the noise
in the annotations, we re-examined and corrected
the test set annotations of MATRES, creating the
CleanMATRES test set. We will detail the process
and describe the data in Section D.

Baseline Systems We compared ConTempo’s
performance with seven prior systems: LSTM
(Cheng and Miyao, 2017), SCS-EERE (Man et al.,
2022), Joint Constrained Learning (Wang et al.,
2020), Relative Time (Wen and Ji, 2021), MulCo
(Yao et al., 2022), TIMERS (Mathur et al., 2021)
and Endpoint Comparisons (Huang et al., 2023).
We reproduced the results of SCS-EERE and Rela-
tive Time using their publicly available code. Ad-
ditionally, we reimplemented MulCo according to
the specifications provided in the paper.

LLM Baselines We incorporated the perfor-
mance of LLMs as an additional baseline alongside
the aforementioned baseline systems. Specifically,

4https://github.com/qiangning/MATRES

Model CleanMATRES

ConTempo + Unified Framework 92.66

- ConTempo 91.30 (-1.36)
- GNN 91.65 (-1.01)
- GPT-3 Typical Duration 92.06 (-0.60)
- Logical Constraints 92.14 (-0.52)

Table 4: Ablation study results.

we reproduced the results from Yuan et al.’s (2023)
using both ChatGPT-3.5 and ChatGPT-4. Chain-
of-thought (CoT) was deployed in the experiments.
Additionally, we fine-tuned GPT-3.5 utilizing Ope-
nAI’s API using the suggested settings to perform
the task.

4.2 Experimental Results

Table 3 reports the performance of our ConTempo
model compared to other baseline models on Clean-
MATRES, MATRES, and TBD. The results of our
models and our reproductions are the average over
three different runs with different random seeds.

Overall, ConTempo brings a substantial perfor-
mance increase to the TRE model. Even the sim-
ple ConTempo baseline’s performance is in the
same ballpark as previous state-of-the-art systems.
When enhanced by other innovations under the
unified framework, our model outperformed the
previous state-of-the-art models by 1.32%, 0.57%,
and 0.46% for the three datasets, respectively.

4.3 Ablation Study

In order to evaluate the efficacy of the proposed
components in the unified framework, we con-
ducted an ablation study, wherein we removed one
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component at a time and reran the experiment using
the aforementioned hyperparameters. The results
of this study are presented in Table 4. Among
the four components, contrastive learning demon-
strated the most substantial impact on performance,
with its removal leading to a 1.36% decrease in
the model’s effectiveness. The GNN module also
makes a substantial contribution to overall perfor-
mance. Finally, both GPT-3 typical duration in-
formation and logical constraints exhibit moderate
effects on the system’s performance.

The ablation study result confirms our initial
hypothesis: the primary challenge for these models
has been making sense of relational labels.

5 Conclusion

In this paper, we propose a novel ConTempo
method that utilizes contrastive learning on the
symmetric and antisymmetric properties to enhance
the model’s awareness of temporal relations. Using
ConTempo, we observe an apparent change in the
representation of relations generated by the model.
Particularly, we see a significant reduction in the
similarity between relation representations h→r in
comparison to their dual h←r .

ConTempo and GNN encoding, temporal
common-sense information, and soft logical con-
straints can work in synergy to create a unified sys-
tem that has achieved state-of-the-art performance
across various benchmark corpora. Our success
demonstrates the flexibility of ConTempo, and we
call for more collaboration between different direc-
tions of TRE research.

TRE is a rare and curious case where fine-tuned
small LMs perform considerably better LLMs.
Even with the help of groundbreaking techniques
such as chain-of-thought (Wei et al., 2022), the
best performance ChatGPT can achieve is 52.4%
on MATRES (Yuan et al., 2023) and 41.0% on TBD
(Huang et al., 2023) — remarkably lower than the
fine-tuned small language models’ performance.
This anomaly presents tremendous opportunity for
both TRE researchers and LLM researchers. TRE
can be used as a hard task for the LLMs’ to analyse
their capabilities at reasoning and comprehension.
In conclusion, exploring the integration of exist-
ing TRE innovations with LLMs and incorporating
LLMs as a key component within TRE frameworks
could significantly enhance performance and drive
forward the advancement of both fields.
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Limitations

We only evaluate ConTempo’s performance using
RoBERTa. Other language models, such as De-
BERTa (He et al., 2021), T5 (Raffel et al., 2020)
and DistilBERT (Sanh et al., 2020) may provide
even better performance. We leave further explo-
ration for future work.

Due to restricted dataset resources, our unified
model’s evaluation was conducted only using TB-
Dense and MATRES. There are other TimeML-
based and even non-TimeML-based corpora related
to TRE. We leave more evaluation to future work
and encourage the community to reproduce our
results on more datasets.
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A Training Details

We use roberta-large as the pre-trained encoder.
The best model is selected with the highest develop-
ment set performance among 20 epochs of training,

optimized using AdamW (Loshchilov and Hutter,
2019) with an initial learning rate of 1e-5 and a
0.01 weight decay. We use a linear scheduler with
a warm-up ratio of 0.1 and a batch size of 64. The
dropout rate is 0.1 across the system. For Con-
Tempo, we determined τ = 0.05, γ = 1.0 using a
grid search over {0.1, 0.05, 0.01} × {1, 0.1, 0.01}.

For the components in the unified systems, we
follow the hyperparameter suggested by the cor-
responding papers (Yao et al., 2022; Wang et al.,
2020).

B MulCo

MulCon utilized a sentence structure graph GS and
a temporal structure graph GT to encode document-
level information. The sentence structure graph has
three types of nodes: the document, the sentences
and the tokens. All sentences are connected to the
document node and each token node is connected
to the sentence it located in. For an event, GS’s
embedding of the event trigger token is used.

The temporal structure graph, on the other hand,
also has three types of nodes. The document cre-
ation time (DCT) node, the time expressions, and
the events. Each time expression is connected to
the DCT, and each event is connected to a time
expression if there is an E2T link in the corpus.
Finally, each event node has an edge point to itself.

C MATRES Versions

We found two versions of MATRES that has been
used by different works. Ning et al. (2018b) re-
leased a version on GitHub 5 that contains 837 re-
lations in the Platinum test set. Wang et al. (2020)
released another version6 with 818 relations in the
Platinum test set. The difference (19 relations)
could constitute as 2.32% of the test set data. We
use Ning et al.’s (2018b).

D CleanMATRES

As we previously mentioned, we identified a large
quantity of annotation errors within both MATRES
and TBD. This is not surprising, however, as both
corpora reported adequate inter-annotator agree-
ments. TBD reported κ ranged from 0.56 to 0.64
and MATRES reported a good — but not perfect
— κ of 0.84 (Table 6). In this section, we will
first provide a description of the annotation errors

5https://github.com/qiangning/MATRES
6https://github.com/CogComp/

JointConstrainedLearning/tree/main/MATRES
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Relabelling EQUAL VAGUE BEFORE AFTER

EQUAL 10 32.26% 15 13.27% 1 0.24% 0 0%
VAGUE 3 9.68% 24 21.24% 5 1.17% 5 1.86%

BEFORE 6 19.35% 39 34.51% 405 95.52% 0 0%
AFTER 10 32.26% 26 23.01% 4 0.94% 256 95.17%

Orth. Axes 2 6.45% 9 7.96% 9 2.12% 8 2.97%
Total 31 100% 113 100% 424 100% 269 100%

Table 5: Re-annotation of the MATRES test set. The statistics of the correct labels are highlighted in bold. Each
column corresponds to an original MATRES label. Some relations involve events that should have been placed on
one of the orthogonal axes.

Corpus Cohen’s κ

TimeBank-Dense 0.56-0.64

MATRES 0.84
MATRES EQUAL 1.0
MATRES VAGUE 0.75

Table 6: Detailed inter-annotator agreement of MA-
TRES and TBD.

we identified in MATRES. Then, we will describe
our re-annotation process. Finally, we will present
an overview of the result of the re-annotation —
CleanMATRES.

D.1 A Qualitative Analysis of the Annotation
Errors

(3) He wone1 the Gusher Marathon,
finishinge2 in 3:07:35.

Original Annotation:
Correct Annotation:

VAGUE
EQUAL

(4) The last surviving member of the team
which first conquerede1 Everest in 1953
has diede2 in a Derbyshire nursing home.

Original Annotation:
Correct Annotation:

VAGUE
BEFORE

(5) More than 16,000 dead pigs have been
founde1 floatinge2 in rivers that provide
drinking water to Shanghai.

Original Annotation:
Correct Annotation:

EQUAL
AFTER

Examples (3-5) show three examples of incorrect
annotations in MATRES. In example 3, the relation
between won and finishing is labelled as VAGUE,

but, nonetheless, the two mentions refer to two as-
pects of the same punctual event. For example 4, it
is clear that the member died a long time after they
conquered Everest. For example 5, since MATRES
annotators were only comparing the start-time of
events, the pigs floating in rivers must took place
before the event that they were found.

The two examples presented in this study
illustrate the main sources of annotation errors
commonly found in data sets. As posited by Ning
et al. (2018b), the first example’s error likely
stems from the annotators’ lack of comprehension
regarding time granularity and event coreference.
MATRES annotations are created by asking
annotators two heuristic question:
(Q1) Is it possible that e1start is before e2start?
(Q2) Is it possible that e2start is before e1start?

The heuristic questions, Q1 and Q2, do not ad-
equately address these concepts, necessitating the
need to develop improved annotation guidelines.
By effectively conveying the intricacies of time
granularity and event coreference, the frequency of
such errors may decrease, although perhaps with
a lower κ. The second example’s mistake should
perhaps be attributed to a misunderstanding of the
text.

D.2 CleanMATRES Annotation

We undertook a re-annotation of the MATRES test
set. The test set were labelled independently by two
authors of this paper, who were then forced to rec-
oncile where they disagreed. Our pass through the
test set reveals a significant number of annotation
inaccuracies, particularly in the cases of the EQUAL

and VAGUE relations. As detailed in Table 5, we
found a mere 32.26% of the EQUAL and 21.24%
of the VAGUE edges to have been accurately anno-
tated.
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D.3 Discussion: Vague Relations
We want to take the opportunity to discuss the is-
sues related to the VAGUE relation. The VAGUE

relation, which could be better called the under-
specified relation, describes relations that are un-
certain due to insufficient context. However, this
certainty is highly subjective to the annotator and
hard to rigorously quantify. TBD adopted an “80%
rule” that instruct annotators to label a relation as
vague if they are “80% confident that it was the
writer’s intent that a reader infer that relation.” As
a result, inter-annotator agreement on vague edges
is the lowest among all relation types.

MATRES took a different approach and treats
certain combinations of the start time comparisons
as vague relations. The approach attenuates the
issue but by no means solve the issue. The two
heuristic questions are also subject and involves
a degree of uncertainty. Furthermore, similar to
EQUAL relations, a simple heuristic question mis-
take could result in incorrect VAGUE relation anno-
tation.

With all the aforementioned issues, CleanMA-
TRES excludes all VAGUE relations from the test
set. We only consider BEFORE, AFTER, and EQUAL

relations during the evaluation of CleanMATRES.
We also did not include the analysis of VAGUE re-
lations in Section 2, as it requires a more thorough
examination of the application of temporal calculus
when underspecificity is involved. Allen’s (1983)
original temporal calculus assumes all events are
intervals with well-defined endpoints. Yao et al.
(2020) and Niu et al. (2023) provided a more in-
depth analysis to the VAGUE edges and underspeci-
ficity.
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