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Abstract

Large Language Models (LLM) have revolu-
tionized Natural Language Processing (NLP),
improving state-of-the-art and exhibiting emer-
gent capabilities across various tasks. How-
ever, their application in extracting informa-
tion from visually rich documents, which is at
the core of many document processing work-
flows and involving the extraction of key enti-
ties from semi-structured documents, has not
yet been successful. The main obstacles to
adopting LLMs for this task include the ab-
sence of layout encoding within LLMs, which
is critical for high quality extraction, and the
lack of a grounding mechanism to localize the
predicted entities within the document. In this
paper, we introduce Language Model-based
Document Information EXtraction and Local-
ization (LMDX), a methodology to reframe
the document information extraction task for
a LLM. LMDX enables extraction of singu-
lar, repeated, and hierarchical entities, both
with and without training data, while provid-
ing grounding guarantees and localizing the
entities within the document. Finally, we ap-
ply LMDX to the PaLM 2-S and Gemini Pro
LLMs and evaluate it on VRDU and CORD
benchmarks, setting a new state-of-the-art and
showing how LMDX enables the creation of
high quality, data-efficient parsers.

1 Introduction

The recent advent of transformers (Vaswani et al.,
2017) and self-supervised pretraining procedures
has led to significant progress in Visually Rich Doc-
ument (VRD) Understanding. Within that field,
the task of document information extraction (IE),
which consists of extracting key entities within a
semi-structured document (e.g. invoice, tax form,
paystub, receipt, etc) given a predefined schema,
has received a lot of attention from industry and

* Correspondence to <vperot@google.com>.

academia due to its importance and wide applicabil-
ity to intelligent document processing workflows.
However, document information extraction still re-
mains challenging for mainstream systems.

In particular, information in semi-structured
forms is organized in complex layout across many
possible templates, which requires deep under-
standing of the document context, spatial alignment
among the different segments of text, and tabular
arrangement of hierarchical entities (we define hi-
erarchical entities as entities that are composed of
logically grouped leaf entities, e.g. line items on an
invoice composed of item description, quantity and
price, or deduction items on a paystub composed of
deduction type and amount, etc.). Moreover, since
some business document automation workflows
require certain level of accuracy, they are often in-
tegrated with human-in-the-loop interactions for
auditing and correction of predictions, requiring
knowing the precise location of extracted entities
to make it a tractable task for a human rater. Fi-
nally, since a quasi-infinite number of document
types exist, and that organizations have limited an-
notation resources, most parsers are built with very
small amount of training data. From those com-
plexities emerge the following desiderata of docu-
ment information extraction systems: they should
(1) support high-quality extraction of singular,
repeated, and hierarchical entities, while (2) lo-
calizing those entities in the document, and (3)
do so with very low or no data annotation cost.

So far, no publicly disclosed system has been
able to address all of those desiderata. Cur-
rent mainstream document IE systems are based
on sequence-tagging and sequence-generation.
Sequence-tagging approaches (Palm et al., 2017;
Lee et al., 2021, 2022, 2023a; Wang et al., 2023c)
classifies each token into Inside-Outside-Begin
(IOB) tags (Ramshaw and Marcus, 1995), which
support extraction and localization of leaf entities.
However, it is non-trivial to extend these meth-
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ods for hierarchical entities. Sequence-generation
based methods (Powalski et al., 2021; Kim et al.,
2022) treats extraction as text generation with auto-
regressive decoders (Sutskever et al., 2014). Al-
though this line of work allows to predict hierarchi-
cal entities, it does not allow localizing entities in
the document. Moreover, both categories require
significant human annotation cost to ensure a high
quality extraction. Thus, a unified IE framework
addressing all three desiderata is highly valuable.

In parallel, Large Language Models (LLMs)
(OpenAI, 2023a; Google et al., 2023; Hoffmann
et al., 2022) have revolutionized Natural Language
Processing, showing the capabilities to solve di-
verse tasks with an instruction (Wei et al., 2022)
or a few demonstrations attached to the prompt
(Brown et al., 2020). This paradigm shift opens
the possibility of extracting entities while address-
ing all the aforementioned desiderata, but using
LLMs for VRD IE has been underexplored. Wang
et al. (2023a) proposes a document-centric LLM
and frames IE as a question-answer task, enabling
zero-shot extraction but lacking support of local-
ization and hierarchical entity extraction. Further-
more, this can suffer from hallucinations, a com-
mon issue with LLMs (Huang et al., 2023).

This motivates us to introduce Language Model-
based Document Information EXtraction and Lo-
calization (LMDX), a principled methodology for
leveraging existing LLMs for information extrac-
tion and localization on visually-rich documents,
meeting all three identified desiderata of extraction
systems and detailed in Figure 1. A comparison of
LMDX characteristics and other document infor-
mation extraction systems can be found at Table 1.
Our contributions can be summarized as follows:

• We present a principled recipe that enables
LLMs to perform the document IE task on leaf
and hierarchical entities with precise entity
localization, including without any training
data, and using only the simple text-in, text-
out interface that is applicable to LLMs.

• We propose a layout encoding scheme that
communicates spatial information to the LLM
without any changes to its architecture.

• We introduce a decoding algorithm that trans-
forms the responses from the LLM into ex-
tracted entities and their corresponding bound-
ing boxes on the document, while discarding
any LLM hallucination.

• We systematically evaluate the data efficiency
of LMDX across multiple public benchmarks,
establishing a new state-of-the-art, and pro-
vide extensive study of the different core de-
signs to demonstrate their effectiveness.

Table 1: Comparison of document information extrac-
tion systems. Unlike mainstream document IE systems,
LMDX enables the zero-shot extraction, including hier-
archical entities, all while localizing its predictions.

Document Information Hierarchical Entity Zero-shot
Extraction Systems entity localization support

LayoutLMv3 (Huang et al., 2022),
7 3 7FormNetV2 (Lee et al., 2023a),

Donut (Kim et al., 2022) 3 7 7

DocLLM (Wang et al., 2023a) 7 7 3

LMDX (Ours) 3 3 3

2 Related Work

Framing IE from VRD. Information Extraction
from VRD is a complex task that can be framed
in a variety of ways. Many approaches divide
the problem in two sub-tasks: a text recogni-
tion/serialization step, typically achieved by an
Optical Character Recognition (OCR) service, fol-
lowed by a parsing step, which finds the relevant
entity values from the recognized text. Xu et al.
(2021); Appalaraju et al. (2021) frame this parsing
step as Named Entity Recognition (NER), encoding
each token with a transformer encoder and classi-
fying each document token into IOB tags, allow-
ing extraction and localization of leaf entities only.
Other approaches treat extraction as a sequence
generation problem. Powalski et al. (2021) adds
an auto-regressive decoder on top of a text-layout-
image encoder, all initialized from T5 (Raffel et al.,
2020). This enables to predict hierarchical entities,
but not localize entities in the document. While
LMDX still frames VRD IE as a sequence gener-
ation task, our work contrasts with prior work by
combining the advantages of the different framings
as shown in Table 1, supporting hierarchical enti-
ties, zero-shot extraction and localizing the entities
through the introduction of coordinate tokens.
VRD Representation Learning. As VRDs con-
tain both textual and visual elements whose spatial
position is crucial for their understanding, many
works explore custom architectures and pretrain-
ing strategies to learn the relation between textual,
layout and image modalities (Lee et al., 2023a;
Appalaraju et al., 2023; Zhang et al., 2022). Xu
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Document 
(multi-page)

Document chunks 
( x N )

{
 "retailer":"",
 "line_item":[{
  "product_id":"",
  "product_price":""
 }],
 "subtotal":""
}

LLM Prompts
( x N )

Target Schema

<Document>
Apple Store xx|yy
...
D8050LLA xx|yy
...
</Document>
<Task>
{
  "retailer":"",
  "order_date":"",
  "line_item":[{
    "prd_number":"",
    "item_price":""
  }],
  "subtotal":""
}
</Task>
<Extraction>

<Document>
Apple Store 38|05
...
D8050LLA 25|43
...
</Document>
<Task>
{
 "retailer":"",
 "line_item":[{
  "product_id":"",
  "product_price":""
 }],
 "subtotal":""
}
</Task>
<Extraction>

LLM Completions
( x NK )

{
 "retailer":
  "Apple Store xx|yy",
 "order_date":
  "June 29, 2023 
xx|yy",

 "line_item":[{
  "prd_number":
   "D8050LL/A xx|yy",
  "item_price":
   "$499.00 72|58"
 }],
 "subtotal": 
  "$499.00 78|74"
}
</Extraction>

{
 "retailer":
  "Apple 38|05",
 "line_item":[{
  "product_id":
   "D8050LL/A 25|43",
  "product_price":
   "$100.00 72|43"
 }],
 "subtotal": null
}
</Extraction>

Final Extraction

{
 "retailer":{
  "value":"Apple",
  "location":{
   "page":0,
   "bbox":[18,04,47,08]
}},
 "line_item":[{
  "product_id":{
   "value":"D8050LL/A",
   "location":{
    "page":0, ...
   }},
  "product_price":{
   "value":"$100.00",
   "location":{
    "page":0, ...
   }},...],
 "subtotal":{
  "value":"$499.00",
  "location":{
   "page": 1,
   "bbox": [70,73,90,77]
  }},
}

Prompt
Generation

LLM 
Inference Decoding

■ Input: Red
■ Output: Green  

Chunking

■ Intermediate results: Grey
■ Coordinate Tokens: Blue    

Figure 1: Overview of the LMDX methodology, decomposing the information extraction and localization task in
4 stages in order to frame it for an LLM. From the document, we generate LLM prompts containing both the text
content and coordinate tokens (in color blue), which communicates the layout modality (needed for a high-quality
extraction) and act as unique identifiers of the text segments. The prompts also contain the target schema, enabling
zero-shot information extraction. The LLM completions, in JSON format, naturally support hierarchical entity
extraction (e.g. line_item), and include both entity values and segment identifiers, enabling both entity localization
(i.e. computing entity bounding box) and removing LLM hallucination through our decoding algorithm.

et al. (2020) uses a separate image encoder before
adding the output as feature to the token encodings,
while Huang et al. (2022) jointly models the page
image patches alongside the tokens, using a word-
patch alignment self-supervised pretraining task to
learn the connection between the modalities. Hong
et al. (2021) proposes to encode the relative 2D
distances of text blocks in the attention of the trans-
former, and learning from unlabeled documents
with an area-masking strategy. Kim et al. (2022);
Lee et al. (2023b) foregoes the text modality com-
pletely, using a Vision Transformer encoder with
an auto-regressive decoder pretrained on a pseudo-
OCR and region masking task on large document
image corpora. Unlike prior work, LMDX encodes
the layout modality solely through text coordinate
tokens, hence allows reusing LLMs with no ar-
chitecture change and foregoing expensive vision
encoders, while achieving state-of-the-art results.
LLMs for Extraction has mostly been studied
in the text domain (Keraghel et al., 2024), either
generally (Laskar et al., 2023) or domain-specific
(De Toni et al., 2022; Hu et al., 2024). Wang et al.
(2023b) uses a LLM to insert special tokens to mark
the boundaries of target entities. Ashok and Lipton
(2023) proposes a NER framework with in-context
learning demonstrations, prompting the LLM to
output an entities list with explanations justifying
its matches with the provided entity definitions.
Yet, LLMs remain underexplored for IE on VRDs.

Wang et al. (2023a) uses unlabeled document cor-
pora and turns existing labeled VRD understanding
datasets in instruction tuning format, building a
layout-aware LLM with various document under-
standing capabilities. In contrast, LMDX focuses
on IE specifically, with an emphasis on hierarchical
entity and entity localization support.

3 LMDX Methodology
Overall, our pipeline is divided into four stages:
chunking, prompt generation, LLM inference and
decoding, detailed in the following sections. An
overview with a simple example can be found in
Figure 1, with the input and output of each stage
showcased. In this example, the target extraction
schema contains two leaf entity types retailer and
subtotal, and one hierarchical entity type line_item,
composed of a product_id and a product_price.
Input Document. The input to our pipeline is the
document’s text segments (lines and words) along
with their corresponding spatial position (bounding
box) on the pages, typically obtained with an OCR
service or a PDF rendering engine.

3.1 First Stage: Chunking
While some LLMs support long context (hundreds
of thousands of tokens), not all LLMs can fit the en-
tire document within its prompt, as documents can
be hundreds of pages long. Thus, the document is
divided into document chunks so that each is small
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enough to be processed by the LLM. To achieve
this, we first divide the document into individual
pages, then we iteratively remove the last line seg-
ments until the prompt containing this chunk is be-
low the maximum input token length of the LLM.
Lastly, we group those removed lines as a new doc-
ument page, and repeat the same logic until all
chunks are below the input token limit of the LLM.
At the end of this stage, we have N chunks. The
decision to first divide the document by page stems
from the observation that entities rarely cross page
boundaries, and as such this chunking scheme will
have minimal impact on the final extraction qual-
ity. The algorithm is described in pseudo-code in
Appendix A.1.

3.2 Second Stage: Prompt Generation

The prompt generation stage takes in the N docu-
ment chunks and creates a LLM prompt for each of
them. As seen in Figure 2, our prompt design con-
tains the document representation, a description of
the task, and the target schema representation con-
taining the entities to extract. XML-like tags are
used to define the start and end of each component.

<Document>
{DOCUMENT_REPRESENTATION}
</Document>
<Task>
{TASK_DESCRIPTION}
{SCHEMA_REPRESENTATION}
</Task>
<Extraction>

Figure 2: Structure of the LLM prompts.

Document Representation. The chunk content is
represented in the prompt as the concatenation of
all its segment texts (lines or words from OCR),
suffixed with the coordinates of those segments
(derived from the bounding boxes) in the follow-
ing format: <segment text> XX|YYsegment. Coor-
dinate tokens, XX and YY, are built by normalizing
the segment’s X and Y coordinates, and quantiz-
ing them in B buckets, assigning the index of that
bucket as the token for that coordinate.

Encoding the coordinates as tokens within the
prompt allows us to communicate the layout modal-
ity to the LLM, without any change to its architec-
ture. There are many variations to that scheme:
using line versus words as segment, the granular-
ity of the quantization, and the number of coordi-
nates to use per segment (e.g. [xcenter, ycenter] ver-
sus [xmin, ymin, xmax, ymax]). Appendix A.4 shows

how those variations affect the prompt token length.
Experimentally, we’ve found using line-level seg-
ments with 2 coordinates [xcenter, ycenter] and B =
100 quantization buckets worked best, as detailed
in Appendix A.12. Hence, we’ve adopted that co-
ordinate tokenization scheme in our experiments.
Task Description. The task description is simply
a short explanation of the task to accomplish. In
our experiments, we set it to the following: From
the document, extract the text values and tags of
the following entities:.
Schema Representation. The schema is repre-
sented as a structured JSON object, where the keys
are the entity types to be extracted, and the values
correspond to their occurrence (single or multiple)
and sub-entities (for hierarchical entities). For in-
stance, {"foo": "", "bar": [{"baz": []}]} means that
the LLM should extract only a single entity of type
foo and multiple hierarchical entities of type bar,
that could each hold multiple entities of type baz.

After this step, we have N prompts, one for each
document chunk. An example of a prompt on a doc-
ument can be found in Appendix A.8, Figure 10.

3.3 Completion Targets

In this section, we describe the expected LLM com-
pletion format, which can be observed in LLM Com-
pletions section of Figure 1. Like the schema, the
completion is a JSON structured object with the
keys being the entity types, and values being the
extracted information from the document chunk.
JSON was chosen as a format for the completion
and schema since it supports hierarchical objects
(hence hierarchical entities), is very token-efficient,
and emitting JSON is within mainstream LLMs’
capabilities (Sengottuvelu, 2023; OpenAI, 2023b).
Note that the keys in the completion have the same
ordering, occurrence and class (hierarchical or leaf)
as the entity types in the schema. The values of
leaf entities must follow a specific format:

<text on segment1> XX|YYsegment1\n
<text on segment2> XX|YYsegment2\n ...

An entity can span multiple (potentially disjoint)
text segments (lines or words). For each segment
of the entity, the value contains the entity text on
that segment, along with the coordinate tokens of
that segment, which act as a segment identifier,
uniquely identifying the segment, and allowing us
to localize the entities and ground the model predic-
tion (e.g. making sure the extracted value is not a
hallucination), as will be detailed in Section 3.5. Fi-
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nally, missing entity types are explicitly completed
by the model with null for singular types, and []
for repeated types. Samples of completions can be
found in Appendix A.8, Figure 10.

3.4 Third Stage: LLM Inference
In this stage of the pipeline, we run inference on
the LLM with the N prompts. For each prompt, we
sample K completions from the LLM (for a total
of NK completions for the entire document) using
TopK sampling. This randomness in the sampling
allows to do error correction (e.g. if a response is
not valid JSON, have hallucinated segment coor-
dinate identifier, etc), and increase the extraction
quality as will be shown in Section 4.3. We use a
fixed random seed to get a deterministic inference.

3.5 Fourth Stage: Decoding
In this stage (Decoding in Figure 1), we parse the
LLM completions into entities and their locations.
Conversion to structured entities. We begin by
parsing each LLM completion as a JSON object.
Completions that fail to parse are discarded. For
each key-value pair in the JSON object, we inter-
pret the key as the entity type and parse the value to
get the entity text and bounding box (as detailed in
the next paragraph). Predicted entity types that are
not in the target extraction schema are discarded.
If the model unexpectedly predicts multiple values
for single-occurrence entity types, we use the most
frequent value as the final predicted value. Hier-
archical JSON objects are recursively parsed as
hierarchical entities in a similar manner. This algo-
rithm is described in pseudo-code in Appendix A.3.
Entity Value Parsing. We expect the JSON value
to include both text extractions and segment iden-
tifiers for each predicted entity, as described in
Section 3.3. We first parse the value into its (seg-
ment text, segment identifier) pairs. For each pair,
we look up the corresponding segment in the origi-
nal document using the segment identifier and ver-
ify that the extracted text is exactly included on that
segment. The entity is discarded if that verification
fails, ensuring LMDX discards all LLM halluci-
nations. Finally, once we have the entity location
on all its segments, we get the entity bounding
box by computing the smallest bounding box en-
compassing all the words included in the entity.
Entity values with any segments that fail to ground
(invalid entity value format, non-existent segment
identifier, or non-matching segment text) in the
original document are discarded. The entity value

parsing algorithm is described in pseudo-code in
Appendix A.2, and parsing errors rates are detailed
in Appendix A.10.
Prediction Merging. We first merge the predicted
entities for the same document chunk from the K
LLM completions through majority voting (Wang
et al., 2022). For each entity type, we gather the pre-
dicted entities, including empty predictions, across
the K completions. The most common predic-
tion(s) are selected as the predicted value for that
entity type. We then merge the predictions among
the N document chunks by concatenating them to
obtain the document level predictions.
Prediction Merging for hierarchical entities.
For hierarchical entities, we use the entire predicted
tree value from a single LLM completion, as this
method best preserves the parent-child relationship
predicted by the model. For each top-level hierar-
chical entity type, we perform majority voting on
all affiliated leaf, intermediate and top-level entity
types among K completions as if they are flattened.
We then equally tally the votes to determine which
completion to use for the prediction, and select the
most common one for that hierarchical entity.

4 Evaluation

We seek to evaluate the effectiveness of LMDX
on public IE benchmarks, and apply it to two
distinct LLMs to validate the generality of the
methodology: PaLM 2-S (Google et al., 2023)
and Gemini Pro (Anil et al., 2023), which we call
LMDXPaLM 2-S and LMDXGemini Pro respectively.

Firstly, starting from their original checkpoint,
we finetune those LLMs on the prompts and com-
pletions detailed in Section 3.2 and 3.3 on a data
mixture containing a variety of (document, schema,
extraction) tuples. In particular, this data mix-
ture contains the Payment dataset (Majumder et al.,
2020), along with a diverse set of publicly available
PDF form templates obtained from government
websites that we filled with synthetic data using an
internal tool, and annotated for schema and entities
to extract. The goal of this tuning is to obtain a
Base Entity Extractor checkpoint by training the
model to learn the IE task along with our desired
extraction syntax. No document or schema con-
tained in the base extraction training phase overlap
with the documents and schemas used in our target
benchmarks, hence we use those LLMs for zero-
shot information extraction evaluation on the target
benchmarks.
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Finetuned Performance. We are also interested
in evaluating how data-efficient LMDX is (e.g. how
quickly it learns information extraction on a new
document type). To answer this, starting from the
Base Entity Extractor checkpoint, we finetune the
LLM directly on the target benchmark.
Parameters. For training, we finetune using a
batch size of 8, a dropout probability of 0.1 and a
learning rate of 10−6 with a standard cross-entropy
loss for 4000 steps on TPUv4 (Jouppi et al., 2023).
Once training is done, for finetuned experiments,
we select the checkpoint with the lowest loss on the
dev set, and report performance on the test set. For
LLM inference, we use a temperature of 0.5 and a
TopK of 40, sampling 16 responses for each chunk
processed by the LLM, as described in Section 3.4.
Finally, for both training and inference, we use an
input token length of 6144 and output token length
of 2048. We use line-level segments and only two
coordinates [xcenter, ycenter] with 100 quantization
buckets, as supported by Appendix A.12.

4.1 Benchmarks
Visually Rich Document Understanding
(VRDU). Wang et al. (2023d) introduces two
public visually-rich documents IE benchmarks:
Registration Form, containing 6 semantically rich
entity types, and Ad-buy Form, containing 14 entity
types with one hierarchical line_item entity type.
For each benchmark, VRDU proposes samples
of 10, 50, 100 and 200 train documents with
high-quality OCR1 which we use to evaluate the
data efficiency of LMDX. It also offers different
tasks to evaluate the generalization powers of
extraction systems: Single Template Learning
(STL) where train/test splits share the same single
template, Unseen Template Learning (UTL) where
train/test contain disjoint sets of templates, and
Mixed Template Learning (MTL) where train/test
contain overlapping sets of templates. We report
Micro-F1 through the provided evaluation tool. For
VRDU, we only run the finetuning experiments
using LMDXPaLM 2-S, given the significant cost of
finetuning on all its tasks and train split sizes.
Consolidated Receipt Dataset (CORD).2 Park
et al. (2019) introduces a benchmark of Indone-
sian receipts from shops and restaurants, with a
target schema of 30 fine-grained entities, grouped
into menu, total and subtotal hierarchical entities.
We adopt the evaluation tool from prior work (Kim

1https://cloud.google.com/vision/docs/ocr
2https://huggingface.co/datasets/naver-clova-ix/cord-v1

et al., 2022) and report Micro-F1 on that bench-
mark. For our experiments, we use the official
train (|D| = 800), dev and test splits. To eval-
uate LMDX’s data efficiency, we further sample
the first |D| = 10/50/100/200 documents from
the train split. For each of those data setup, we
finetune LMDX for 12000 steps. For comparison,
we also train and evaluate state-of-the-art baselines
LayoutLMv3LARGE and Donut. Those baselines
are detailed in Appendix A.7.
Baselines In the zero-shot setting, we compare
LMDX to other LLM baselines: GPT-3.5, Gem-
ini Pro (Anil et al., 2023), and PaLM 2-S (Google
et al., 2023) that we prompt with the raw OCR text
and IE instruction (called GPT-3.5+OCR, Gemini
Pro+OCR and PaLM 2-S+OCR respectively). We
also compare LMDX with strong Vision-Language
models: LLaVA-v1.5-13B (Liu et al., 2023), Gem-
ini Pro, and GPT-4V (OpenAI, 2023a) that we
prompt with the document page image and IE in-
structions (called LLaVA-v1.5-13B+Image, GPT-
4V+Image, and Gemini Pro+Image). Those base-
lines are fully detailed in Appendix A.6. Unlike
LMDX, those large model baselines do not local-
ize their predictions. In the finetuned setting, we
compare LMDXPaLM 2-S to popular VRD IE base-
lines. For VRDU, we compare to its published
baselines (Wang et al., 2023d), LayoutLM/v2/v3
and FormNet. For CORD, we train and eval-
uate state-of-the-art baselines LayoutLMv3 and
Donut. Those baselines are detailed in Ap-
pendix A.7. Following prior work (Lee et al., 2022,
2023a; Xu et al., 2020, 2021), for all models lever-
aging the text modality, we use the benchmarks’
provided OCR, ensuring a fair comparison.

4.2 Results
VRDU results are presented in Table 2. In
zero-shot (|D| = 0) setting, LMDXPaLM 2-S and
LMDXGemini Pro have higher extraction quality than
all other large models baselines, including the
ones using the same LLM and OCR or image,
showing improvements brought by the LMDX
methodology itself. In finetuned setting on VRDU,
LMDXPaLM 2-S is much more data efficient than the
baselines: it is at 5.06% Micro-F1 of its peak per-
formance at 10 training documents for Registration
Form Mixed Template (87.72% vs 92.78% Micro-
F1) while LayoutLMv2, the strongest finetuned
baseline, is within 19.75% of its peak performance
(69.44% vs 89.19% Micro-F1), showcasing that it
learns extraction on a new document type much
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Table 2: Results of LMDXPaLM 2-S and LMDXGemini Pro on the different tasks and training data size setups |D| of
VRDU, with best and second best performing model results in bold and underlined respectively, with Micro-F1
reported. We specify the modalities leveraged by each model (T → Text, L → Layout, I → Image) and
whether their entities are localized.

|D| Model

M
od

al
ity

L
oc

al
iz

ed
? Registration Form Ad-buy Form

Single Unseen Mixed Template Unseen Mixed Template

Micro-F1 Micro-F1 Micro-F1 Micro-F1 Micro-F1 Line Item F1

0

LLaVA-v1.5-13B+Image I 7 5.29 5.05 5.00 0.38 0.34 0.00
GPT-4V+Image I 7 68.97 69.44 65.34 31.84 31.95 4.45

Gemini Pro+Image I 7 53.90 53.72 48.60 15.24 15.38 0.91
Gemini Pro+OCR T 7 73.62 73.66 69.41 32.90 34.46 19.25
PaLM 2-S+OCR T 7 62.80 63.51 59.78 29.70 30.24 9.86
GPT-3.5+OCR T 7 67.23 67.49 63.86 29.84 30.05 7.65

LMDXPaLM 2-S T+L 3 73.81 74.94 71.65 39.33 39.74 21.21
LMDXGemini Pro T+L 3 76.78 77.18 75.15 37.94 38.02 23.29

10

FormNet T+L 3 74.22 50.53 63.61 20.28 20.47 5.72
LayoutLM T+L+I 3 65.91 25.54 36.41 19.92 20.20 6.95

LayoutLMv2 T+L+I 3 80.05 54.21 69.44 25.17 25.36 9.96
LayoutLMv3 T+L+I 3 72.51 21.17 60.72 10.01 10.16 5.92

LMDXPaLM 2-S T+L 3 90.88 86.87 87.72 54.82 54.35 39.35

50

FormNet T+L 3 89.38 68.29 85.38 39.52 40.68 19.06
LayoutLM T+L+I 3 86.21 55.86 80.15 38.42 39.76 19.50

LayoutLMv2 T+L+I 3 88.68 61.36 84.13 41.59 42.23 20.98
LayoutLMv3 T+L+I 3 87.24 47.85 81.36 38.43 39.49 19.53

LMDXPaLM 2-S T+L 3 93.06 88.43 91.42 75.70 75.08 65.42

100

FormNet T+L 3 90.91 72.58 88.13 39.88 40.38 18.80
LayoutLM T+L+I 3 88.70 63.68 86.02 41.46 42.38 21.26

LayoutLMv2 T+L+I 3 90.45 65.96 88.36 44.35 44.97 23.52
LayoutLMv3 T+L+I 3 89.23 57.69 87.32 41.54 42.63 22.08

LMDXPaLM 2-S T+L 3 93.97 89.70 92.41 75.99 78.05 69.77

200

FormNet T+L 3 92.12 77.29 90.51 42.87 43.23 21.86
LayoutLM T+L+I 3 90.47 70.47 87.94 44.18 44.66 23.90

LayoutLMv2 T+L+I 3 91.41 72.03 89.19 46.31 46.54 25.46
LayoutLMv3 T+L+I 3 90.89 62.58 89.77 44.43 45.16 24.51

LMDXPaLM 2-S T+L 3 93.97 90.22 92.78 78.42 79.82 72.09

faster. Moreover, LMDXPaLM 2-S generalizes better
to unseen templates than finetuned baselines: on
Registration Form, LMDXPaLM 2-S has a drop less
than 5% Micro-F1 on Unseen Template compared
to Single Template across data regimes, while Lay-
outLMv2 see a drop between 19% and 27%.

On CORD (in Table 3), we observe similar
trends, reaching state-of-the-art on all but one data
regime, highlighting the generality of the results.

Performance on Hierarchical Entities. To show-
case extraction quality on hierarchical entities, we
display in Table 2 the F1 score on Ad-buy Form
Mixed’s line_item entity type. Overall, LMDX
has much higher Line Item F1 than the baselines
for all data regimes. In particular, LMDXPaLM 2-S
has similar Line Item F1 at zero-shot than the best
finetuned baseline at 200 train documents (21.21%

Table 3: Results of LMDXPaLM 2-S and LMDXGemini Pro on the different training data size setups |D| of CORD,
compared to zero-shot (Large Models) and finetuned (LayoutLMv3 and Donut) baselines. Micro-F1 is reported,
with best and second best performing model results in bold and underlined respectively.

Model Modality Localized? |D|=0 |D|=10 |D|=50 |D|=100 |D|=200 |D|=800

LLaVA-v1.5-13B I 7 5.97 - - - - -
GPT-4V+Image I 7 64.05 - - - - -

Gemini Pro+Image I 7 47.12 - - - - -
Gemini Pro+OCR T 7 59.57 - - - - -
PaLM 2-S+OCR T 7 55.85 - - - - -
GPT-3.5+OCR T 7 48.92 - - - - -

Donut I 7 0.00 26.15 65.68 71.81 75.85 81.55
LayoutLMv3 T+L+I 3 0.00 74.04 85.78 90.39 93.59 95.66

LMDXPaLM 2-S T+L 3 66.95 90.02 91.40 91.48 93.40 94.51
LMDXGemini Pro T+L 3 66.03 89.45 91.66 91.16 93.76 95.57
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Table 4: Entity Localization Accuracy on Registration
Form and Ad-Buy Form Mixed Benchmarks, for mod-
els supporting localization. Best result is in bold.

Model |D|=0 |D|=10 |D|=50 |D|=100 |D|=200

R
eg

.F
or

m LayoutLM N/A 98.71 99.69 99.63 99.69
LayoutLMv2 N/A 99.00 99.54 99.72 99.75
LayoutLMv3 N/A 99.20 99.39 99.72 99.67

LMDXPaLM 2-S 93.21 99.75 99.87 99.92 99.87
LMDXGemini Pro 94.43 - - - -

A
d-

bu
y

Fo
rm LayoutLM N/A 92.60 95.24 95.09 95.38

LayoutLMv2 N/A 93.95 95.64 95.72 95.78
LayoutLMv3 N/A 90.68 95.28 95.88 95.95

LMDXPaLM 2-S 88.18 94.51 98.28 98.69 98.65
LMDXGemini Pro 92.51 - - - -

versus 25.46% respectively). With all the training
data, LMDXPaLM 2-S scores a 72.09% Line Item
F1, an absolute improvement of 46.63% over the
best baseline LayoutLMv2. Finally, as LMDX en-
codes the layout modality, it possesses much higher
zero-shot Line Item F1 than large models baselines.
Entity Localization Accuracy. In order to eval-
uate the localization quality independently of the
extraction quality, we compute the Localization Ac-
curacy of LMDX and all baselines that can localize
entities using the formula: AccuracyLocalization =
NE+L

NE
where NE+L is the number of entities cor-

rectly extracted and localized, and NE is the num-
ber of entities correctly extracted. Since LMDX
localizes at the line level, localization verification
is done at the line-level as well, i.e. localization is
considered correct if the prediction bounding box is
covered by the groundtruth line-level bounding box
by more than 80%. We present the results in Ta-
ble 4. Overall, LMDXPaLM 2-S and LMDXGemini Pro
can localize their predictions reliably at the line-
level with the segment identifiers, with 88%-94%
accuracy at zero-shot, and 98%-99% in finetuned
cases, which is slightly higher than baselines.

4.3 Ablation Study

In this section, we ablate different facets of the
LMDX methodology to highlight their importance.
The results can be found in Table 5. For all abla-
tions, we evaluate LMDXPaLM 2-S on the VRDU
Ad-Buy Form Mixed Template task at |D| = 10
data size, only changing the ablated facet.
Effects of Base Entity Extraction Training. In
this ablation, we remove the initial training on the
varied data mixture and directly finetune on the
VRDU target task. As seen in Table 5, skipping that
training leads to -11.44% micro-F1 as the model
has to learn from scratch the task, the desired com-

pletion format and coordinate tokens’ semantics.

Effects of Coordinate Tokens. In this ablation,
we replace the coordinate tokens, which communi-
cate the position of each line within the document,
by the index of that line. This index still acts as a
unique identifier for the line segment (required for
entity localization) but does not communicate any
position information. An example of a prompt with
line index can be found in Appendix A.8 Figure 11,
and per-entity F1 can be found in Appendix A.14
Table 9. As seen in Table 5, the coordinate tokens
are crucial to quality, leading +14.98% micro-F1.

Effects of Sampling Strategy. In this ablation,
we discard our strategy of sampling K = 16 com-
pletions per chunk, and instead sample a single
response. As seen in Table 5, this leads to a 1.5%
drop in micro-F1. While overall minor for qual-
ity, the sampling strategy corrects extraction format
mistakes (see parsing error rates in Appendix A.10),
leading to a successful extraction on all documents.

Effects of Missing Entity Types. In this ablation,
we study the effect of having the model’s comple-
tions skip missing entity types in the completions
instead of explicitly outputting ”type” : null for
those (See example in Appendix A.8, Figure 12).
As seen in Table 5, this leads to a 6.77% drop in
micro-F1 over explicitly outputting missing types.
We hypothesize that this is due to the fact that hav-
ing completions skip missing types means that, dur-
ing response generation, the model has to choose
with a single token computation budget within the
N remaining entity types which one is the next
present (essentially a N -way classification). Ex-
plicitly emitting missing entity types means the
model only has to copy the types directly from the
schema in the prompt, and has to do 2-way classifi-
cation within a single token computation budget to
declare if an entity is present or not (e.g. emit token
null if entity is missing or ” if present), which is
an easier task.

Table 5: Ablations of LMDX’s core designs. Abla-
tions are done on VRDU Ad-Buy Mixed Template with
LMDXPaLM 2-S with at |D| = 10 data size. All compo-
nents contribute to the final performance.

LMDX Without Without Without Without
Micro-F1 EE Coordinate Sample Missing

(∆) Training Tokens Strategy Types

54.35
42.91 39.37 52.85 47.58

(-11.44) (-14.98) (-1.50) (-6.77)

15147



|D|=0 |D|=1 |D|=3 |D|=5 |D|=10
65

70

75

80

85

90

95
M

icr
o-

F1

LMDXPaLM 2 S Random
LMDXGemini Pro Random
LMDXPaLM 2 S Nearest Neighbors
LMDXGemini Pro Nearest Neighbors

Figure 3: In-Context Learning results on CORD with
random and nearest neighbors retrieval methods for
LMDXPaLM 2-S and LMDXGemini Pro.

4.4 In-context Learning Performance

In this section, we study how in-context learning
(ICL) compares to finetuning. To do so, we test
two methodologies: Random, which randomly se-
lects |D| documents and extractions from the train
set, and Nearest Neighbors, which uses similarity
based on SentenceT5 embeddings (Ni et al., 2021)
to retrieve |D| documents to add in the LLM con-
text. The results on CORD for LMDXPaLM 2-S and
LMDXGemini Pro are shown in Figure 3. Overall,
while both methods increase the performance sig-
nificantly, nearest neighbors shows a clear advan-
tage, matching the best random ICL performance
with only a single in-context example (86.43%
versus 86.57% micro-F1 for LMDXPaLM 2-S), and
matching the finetuned performance at |D| = 10
examples (90.33% versus 90.02% micro-F1), as
examples from the same template are retrieved (see
Appendix A.9). Beyond |D| = 10, the quality
plateaus as no more example fit in the prompt.

5 Conclusion
In this paper, we have introduced LMDX, a method-
ology that enables using LLMs for information
extraction on visually rich documents. With its
coordinate tokens and decoding strategy, LMDX
allows the high-quality extraction of singular, re-
peated and hierarchical entities, while localizing
the entities in the document. LMDX is data effi-
cient, and even allows extraction at zero-shot on
entirely new document types and schemas. LMDX
can benefit from orthogonal research fields, and we
continue the discussion in the Limitations section.
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Limitations

We acknowledge the limitations of LMDX from
the following aspects to inspire future research in
the field of information extraction and localization.

Firstly, LMDX’s input is text lines and their
bounding boxes, usually coming from OCR. This
means that LMDX can not extract non-textual enti-
ties thus would not be able to extract an entity that
would be an image embedded in a document (e.g. a
product_image entity in a product webpage). This
also limits performance in high-data scenarios, as
all page image information is discarded. Further-
more, such input means that LMDX is sensitive to
errors from the OCR process (wrong reading order,
incorrect line grouping, undetected text and erro-
neously recognized characters). Qualitatively, we
have found that a common error type for LMDX is
caused by OCR grouping multiple semantically dif-
ferent segments together (we give a deeper analysis
with concrete examples in Appendix A.11). Thus,
techniques aiming to improve this error type would
be a worthwhile future research direction.

Moreover, LMDX’s localization mechanism is
applied at the line level, where we verify that the
predicted text is indeed present on the line. If
the entity text appears multiple times on the line,
we don’t have a definitive way to choose the cor-
rect text. Thus, LMDX’s localization and bound-
ing boxes are not reliable beyond line-level gran-
ularity. While sufficient for greatly speeding up
human-in-the-loop interactions like prediction au-
diting/review, getting entity bounding boxes pre-
cise at character-level would be beneficial, more
natural-looking, and a worthy research direction.

Lastly, LMDX relies on LLMs supporting thou-
sands of tokens in input and output (as detailed
in Appendix A.4), which is both computationally
expensive and slow, requiring the use of hardware
acceleration for acceptable latency and through-
put. We showcase a latency comparison between
popular solutions in Appendix A.13. General re-
search in accelerating LLM inference (Shazeer,
2019; Ainslie et al., 2023; Leviathan et al., 2023;
Hong et al., 2023) would make LMDX more cost-
effective in production setting. Specifically for
LMDX, the coordinate tokens represent a large
part of the total number of tokens, so research
on minimizing their number (e.g. by introducing
dedicated coordinate tokens within the LLM vo-
cabulary) would yield significant savings and be a
worthwhile direction for future work.
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A Appendix

A.1 Chunking algorithm

Algorithm 1 Document Chunking
1: function CHUNK(D, L, F ) . D is a document containing multiple pages. L is token limit.
2: . F is a function that outputs prompt token length given some segments (e.g. lines).
3: C = φ . C is to record all produced chunks.
4: for i = 1 to |D.pages| do
5: S = D.pages[i].segments
6: while S 6= φ do
7: for j = |S| to 1 do . Start pruning from the end of the page.
8: if F (S[1 : j]) ≤ L then
9: C = C ∪ {S[1 : j]}

10: S = S[j + 1 : |S|] . Continue to work on the rest of the segments.
11: Exit for loop
12: end if
13: end for
14: end while
15: end for
16: return C
17: end function

A.2 Entity value parsing algorithm

Algorithm 2 Entity Value Parsing
1: function PARSEENTITYVALUE(D, E) . D is a document chunk.
2: . E is raw extraction results for one entity type parsed from one LLM sample.
3: G = φ . G is to record all parsed entity values.
4: R = Regex(“(\d\d\|\d\d)”) . R is a regex that captures the segment identifiers.
5: M = {“s.x|s.y” 7→ s|s ∈ D.segments} . M holds a mapping between segment id and segment.
6: for i = 1 to |E| do
7: W = φ . W is to hold all words for this entity.
8: P = R.split(E[i]) . P is expected to be interleaved text values and segment ids.
9: for j = 1 to |P |/2 do

10: if P [j ∗ 2] /∈M then
11: Go to next i . Segment ID is hallucinated. Grounding failure.
12: end if
13: S = M [P [j ∗ 2]] . Retrieve the stored segment from M with parsed segment ID.
14: T = P [j ∗ 2− 1] . T is to hold the predicted text.
15: if T not substring of S then
16: Go to next i . Grounding failure, skip the current entity.
17: end if
18: W = W ∪ (S ∩ T )
19: end for
20: G′.value =

⋃
w∈W w.text_value . G′ is to hold the entity to return.

21: G′.bounding_box = {min(b.x),min(b.y),max(b.x),max(b.y)}w∈W,b=w.bounding_box
22: G = G ∪ {G′}
23: end for
24: return G
25: end function
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A.3 Decoding algorithm

Algorithm 3 Responses Decoding
1: function DECODEFORTYPE(J , T , D) . J is one or more JSON objects.
2: . T is an entity type.
3: . D is a document chunk.
4: E = φ . E is to record all parsed and grounded entities.
5: for j = 1 to |J | do
6: J ′ = J [j][T.type] . J ′ is to hold entities for T’s type before grounding.
7: if T.subtypes = φ then . T is leaf entity type.
8: E = E ∪ ParseEntityV alue(D, J ′)
9: else . T is hierarchical entity type.

10: E′.subtypes =
⋃

T ′∈T.subtypesDecodeForType(J
′, T ′, D) . E′ is hierarchical entity.

11: E = E ∪ {E′}
12: end if
13: end for
14: return E
15: end function
16:
17: function MAJORITYVOTING(T , E) . T is an entity type.
18: . E is a 2D vector of entities of type T from all LLM responses.
19: V = [0, 0, ..., 0] ∈ R|E| . V is to record all votes.
20: L = {T}
21: while L 6= φ do
22: T ′ = L[0]
23: E′ = φ
24: for j = 1 to |E| do
25: E′ = E′ ∪ {e|e ∈ E[j], e.type = T ′} . E′[j] holds entities with type T ′ from E[j].
26: end for
27: for i = 1 to |E′| - 1 do
28: for j = i+ 1 to |E′| do
29: if E′[i] = E′[j] then
30: V [i] = V [i] + 1
31: V [j] = V [j] + 1
32: end if
33: end for
34: end for
35: L = L[1 : |L|] . Remove T ′ and inject its sub-types for recursion.
36: L = L ∪ T ′.subtypes
37: end while
38: return E[argmax(V )] . Return the entity values with the highest votes.
39: end function
40:
41: function DECODEALLSAMPLES(S, T , D) . S is all LLM response samples on D.
42: . T is a list of entity types.
43: . D is a document chunk.
44: return

⋃
T ′∈T MajorityV oting(

⋃
S′∈S DecodeForType(ParseJson(S′), T ′, D))

45: end function
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A.4 Token Length Statistics

Table 6 details the token length (50th and 99th per-
centiles) of the prompt and completion targets for
LMDXPaLM 2-S for the train split of datasets used in
our experiments. We select the line level segment,
2 coordinate scheme, no JSON indentation so that
all datasets fit within our 6144 prompt token length
and 2048 output token length.

Table 6: Prompt and target token length of different coordinate-as-tokens schemes on VRDU and CORD bench-
marks, using the vocabulary of PaLM 2-S. We vary the number of coordinates and their quantization buckets in
the localization tags, the segment level (e.g. line versus word), chunking style (e.g. page versus max input tokens)
and JSON indentation in the schema and completion targets.

VRDU Ad-Buy Form

# Coord. # Quant. Segment Chunking JSON Indent
Input Target

50th 99th 50th 99th

2 100 Line Page None 2377 3920 602 1916
2 100 Word Page None 3865 13978 718 2328
4 100 Line Page None 3329 5284 777 2473
2 1000 Line Page None 2687 4322 660 2095
2 100 Line Page 4 2417 3328 689 2234
2 100 Line 6144 tokens None 2377 3920 602 1916

VRDU Registration Form

# Coord. # Quant. Segment Chunking JSON Indent
Input Target

50th 99th 50th 99th

2 100 Line Page None 963 1578 79 147
2 100 Word Page None 3083 5196 101 349
4 100 Line Page None 1232 2017 91 177
2 1000 Line Page None 1052 1723 83 155
2 100 Line Page 4 977 1592 92 160
2 100 Line 6144 tokens None 963 1578 79 147

CORD

# Coord. # Quant. Segment Chunking JSON Indent
Input Target

50th 99th 50th 99th

2 100 Line Page None 342 869 355 1495
2 100 Word Page None 396 1067 375 1638
4 100 Line Page None 408 1139 422 1801
2 1000 Line Page None 364 959 376 1957
2 100 Line Page 4 411 938 474 1997
2 100 Line 6144 tokens None 342 869 355 1495

A.5 Schemas
In this section, we present the schemas used for
the experiments of this paper. The schema for
VRDU Ad-Buy Form, VRDU Registration Form,
and CORD can be found in Figure 4, Figure 5 and
Figure 6 respectively.
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{
"advertiser": "",
"agency": "",
"contract_num": "",
"flight_from": "",
"flight_to": "",
"gross_amount": "",
"line_item": [
{
"channel": "",
"program_desc": "",
"program_end_date": "",
"program_start_date": "",
"sub_amount": ""

}
],
"product": "",
"property": "",
"tv_address": ""

}

Figure 4: VRDU Ad-Buy Form Schema.

{
"file_date": "",
"foreign_principle_name": "",
"registrant_name": "",
"registration_num": "",
"signer_name": "",
"signer_title": ""

}

Figure 5: VRDU Registration Form Schema.
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{
"line_item": [ # menu
{
"discount_price": "", # menu.discountprice
"identifier": "", # menu.num
"name": "", # menu.nm
"other": "", # menu.etc
"quantity": "", # menu.qty
"sub_name": [], # menu.sub_nm
"sub_price": [], # menu.sub_price
"sub_quantity": [], # menu.sub_qty
"subtotal_price": "", # menu.itemsubtotal
"total_price": "", # menu.price
"unit_price": "" # menu.unitprice

}
],
"subtotal": { # subtotal
"discount_price": "", # subtotal.discount_price
"other": [], # subtotal.etc
"service_price": "", # subtotal.service_price
"subtotal_price": [], # subtotal.subtotal_price
"tax_price": [] # subtotal.tax_price

},
"total": { # total
"cash_price": [], # total.cashprice
"change_price": "", # total.changeprice
"credit_card_price": "", # total.creditcardprice
"emoney_price": "", # total.emoneyprice
"line_item_quantity_count": "", # total.menuqty_cnt
"line_item_type_count": "", # total.menutype_cnt
"other": "", # total.total_etc
"total_price": [] # total.total_price

}
}

Figure 6: CORD Schema. Note that the original entity types (shown as comments) have been renamed to more
semantically meaningful names.
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A.6 Zero-shot Baselines Details
We compare LMDX to other Large Model base-
lines on all benchmarks in the zero-shot context.
Those baselines are detailed below.
Text-based Baselines. We evaluate the zero-shot
extraction ability of multiple strong Large Lan-
guage Models: GPT-3.53, Gemini Pro (Anil et al.,
2023) and PaLM 2-S (Google et al., 2023). To
do so, we prompt them with the raw benchmark’s
OCR text (no coordinate tokens or segment iden-
tifier like for LMDX), and extraction instructions
alongside the schema in JSON format. We then
parse the completions as JSON to get the predicted
entities directly. Note that those predicted entities
are not localized within the document. A sample
prompt can be observed in Figure 7. In particu-
lar for GPT-3.5, we use the gpt-3.5-turbo-1106
through OpenAI’s API.
Page Image-based Baselines. We evaluate the
zero-shot extraction ability of multiple strong
Vision-Language Models: LLaVA-v1.5-13B (Liu
et al., 2023), Gemini Pro (Anil et al., 2023), and
GPT-4V (OpenAI, 2023a). The prompt includes
task description, instructions and target schema
represented in JSON format as text input and the
document page as image input. We provide exam-
ples of valid JSON values in the task instructions.
Note that those predicted entities are not localized
within the document. A sample prompt can be ob-
served in Figure 8. In particular for GPT-4V, we
use the gpt-4-1106-preview through OpenAI’s
API. For Gemini Pro, we use gemini-pro-vision
through the VertexAI API4.

A.7 CORD Baselines Details
LayoutLMv3 Baseline. We follow the released
implementation5 for the LayoutLMv3LARGE

model and the training protocol described in
(Huang et al., 2022) as closely as possible. In par-
ticular, we train the model for 80 epochs for each
experiment on CORD (namely, 10, 50, 100 and
200-document training sets), on the IOB tags of the
leaf entities. One difference in our training is that,
due to computational resource constraints, we use
batch_size = 8 and learning_rate = 2 · 10−5.

As the LayoutLMv3 model can only extract leaf
entities, we design and heavily optimize a heuristic
algorithm to group the leaf entities into hierarchical

3https://platform.openai.com/docs/models/gpt-3-5-turbo
4https://cloud.google.com/vertex-ai/docs/generative-

ai/start/quickstarts/quickstart-multimodal
5https://github.com/microsoft/unilm/tree/master/layoutlmv3

entities menu, subtotal and total. The best heuris-
tics we could find are as follows:

• For the subtotal and total hierarchical entity
types, since they appear only once per docu-
ment, we group all their extracted sub-entities
under a single subtotal and total entity, respec-
tively.

• For menu hierarchical entity type, we observe
that those entities usually occur multiple times
on a document, and each menu has at most one
nm, num, unitprice, cnt, discountprice, price,
itemsubtotal, etc sub-entities and potentially
multiple sub_nm, sub_price and sub_cnt sub-
entities. We also notice that the sub-entities
aligned horizontally overwhelmingly belong
to the same menu entity, and a menu entity
can sometimes span over two or more con-
secutive horizontal lines. To leverage those
observations, we perform a two-step grouping
process for menu entities. First, we merge
the extracted leaf sub-entities into horizon-
tal groups, where a threshold of 0.5 on the
intersection-over-union of the Y-axis was used
for the determination of horizontal alignment.
Second, we further merge the consecutive hor-
izontal groups into menu entities, if and only
if the horizontal groups do not have type du-
plication in any of the nm, num, unitprice, cnt,
discountprice, price, itemsubtotal, and etc sub-
entities (namely, those sub-entities only show
up in at most one of the consecutive horizontal
groups to be merged). We allow duplication
of sub_nm, sub_price and sub_cnt sub-entity
types. After those two steps, we obtain the
final menu entities.

Donut Baseline. We follow Donut released im-
plementation6 for the Donut benchmarking results
on CORD. We use the default training configura-
tion for all experiments on CORD (namely, 10, 50,
100 and 200-document training sets), with the fol-
lowing difference: we reduce batch size from 8 to
4 due to computational resource constraints, and
increase the number of train epochs from 30 to 60.
For each experiment, checkpoint with the lowest
loss on the dev set is selected and we report perfor-
mance on test set. Micro-F1 scores produced by
Donut evaluation code are reported (similar to all
our other models).

6https://github.com/clovaai/donut
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${RAW_OCR_TEXT}

Given the document, extract the text value of the entities included in
the schema in json format.
- The extraction must respect the JSON schema.
- Only extract entities specified in the schema. Do not skip any entity types.
- The values must only include text found in the document.
- Use null or [] for missing entity types.
- Do not indent the json you produce.
- Examples of valid string value format: "$ 1234.50", "John Do", null.
- Examples of valid list value format: ["$ 1234.50", "John Do"], [].

Schema: {"file_date": "", "foreign_principle_name": "",
"registrant_name": "", "registration_num": "", "signer_name": "",
"signer_title": ""}
```json

Figure 7: Sample prompt for GPT-3.5+OCR, Gemini Pro+OCR and PaLM 2-S+OCR text-based baselines for VRDU
Registration Form.

${DOCUMENT_PAGE_IMAGE}

Given the document, extract the text value of the entities included in
the schema in json format.
- The extraction must respect the JSON schema.
- Only extract entities specified in the schema. Do not skip any entity types.
- The values must only include text found in the document.
- Use null or [] for missing entity types.
- Do not indent the json you produce.
- Examples of valid string value format: "$ 1234.50", "John Do", null.
- Examples of valid list value format: ["$ 1234.50", "John Do"], [].

Schema: {"file_date": "", "foreign_principle_name": "",
"registrant_name": "", "registration_num": "", "signer_name": "",
"signer_title": ""}
```json

Figure 8: Sample prompt for GPT-4V+Image, LLaVA-v1.5-13B+Image, and Gemini Pro+Image image-based baselines
for VRDU Registration Form.

A.8 Sample Prompts and Completions
In this section, we present example of LMDX
prompts and completions from the LLM on the
VRDU Ad-Buy dataset to better showcase the for-
mat used. Figure 9 shows the original document
with the line bounding boxes from OCR, Figure 10
shows the corresponding prompt and completion
on that document with coordinate segment identi-
fiers, Figure 11 shows the same prompt and comple-
tion, but with line index segment identifiers (used
in ablation studies to showcase how the LLM can
interpret the layout) and Figure 12 shows how the
completion changes when skipping missing entity
types entirely in the completion. Finally, Figure 13
and Figure 14 show how the prompts/completions
changes if 4 line-level [xmin, ymin, xmax, ymax] coor-
dinates or 2-word level [xcenter, ycenter] coordinates
are used.

A.9 Nearest Neighbors In-Context Learning
In our study, nearest neighbors leads to a signif-
icant quality gain over randomly selecting exam-
plars. In this section, we explore why that is the
case in the context of VRD information extraction.
Figures 15, 16 and 17 show typical retrievals us-
ing sentenceT5 (Ni et al., 2021) embeddings7 on
the OCR text for similarity. Unsurprisingly, nearest
neighbors works well as it retrieves examplars from
the same template as the target document, i.e. from
the same merchant in the case of CORD documents
(store/restaurant receipts). As those examples share
the same layout, boilerplate text, and entities, it
makes it easier for the model to understand the cor-
rect extraction pattern, leading to significant gains
in quality.

7https://www.kaggle.com/models/google/sentence-
t5/frameworks/tensorFlow2/variations/st5-base
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Figure 9: Example document from VRDU Ad-Buy Form. The line bounding boxes detected by OCR are shown in
red.
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============================================= Prompt =============================================

<Document>
Print Date 02/28/20 14:21:20 75|02
Page 1 of 1 91|02
ORDER 49|04
WSIL 77|07
Orders 04|09
Order/Rev: 17|09
14086 29|09
HARRISBURG 78|09
PADUCAH 78|10
CAPE GIRARDEAU 78|12
Alt Order #: 17|11
Product Desc: 18|13
Mike Carr for Jackson Co States Atty 38|13
Estimate: 16|15
WSIL-TV 73|15
Flight Dates: 17|17
03/03/20 - 03/03/20 33|17
Primary AE: 57|17
David Cisco 73|17
Original Date/ Rev: 19|19
02/28/20/02/28/20 33|19
...
Start Date End Date Weekdays Spots/Week Rate Rating 31|66
Week: 03/02/20 03/08/20 -3-- 15|67
3 $200.00 0.00 47|67
Totals 79|69
3 87|69
$600.00 94|69
</Document>
<Task>
From the document, extract the text values and tags of the following
entities:
{"advertiser": "", "agency": "", "contract_num": "", "flight_from": "",
"flight_to": "", "gross_amount": "", "line_item": [{"channel": "",
"program_desc": "", "program_end_date": "", "program_start_date": "",
"sub_amount": ""}], "product": "", "property": "", "tv_address": ""}
</Task>
<Extraction>

=========================================== Completion ===========================================

{"advertiser": "Committee to Elect Mike Carr 37|36", "agency":
"Committee to Elect Mike Carr 37|24", "contract_num": "14086 29|09",
"flight_from": "03/03/20 33|17", "flight_to": "03/03/20 33|17",
"gross_amount": "$600.00 77|51", "line_item": [{"channel": "3 31|63",
"program_desc": "Tuesday Prime 31|63\nYour Voice Your Vote 29|64",
"program_end_date": "03/03/20 31|63", "program_start_date":
"03/03/20 31|63", "sub_amount": "$600.00 94|63"}], "product":
"Mike Carr for Jackson Co States Atty 38|13", "property": "WSIL 77|07",
"tv_address": null}
</Extraction>

Figure 10: VRDU Ad-Buy Form sample prompt and completion with 2 [xcenter, ycenter] coordinates for segment
identifier. The document is truncated for easier visualization.

15160



============================================= Prompt =============================================

<Document>
Print Date 02/28/20 14:21:20 <0>
Page 1 of 1 <1>
ORDER <2>
WSIL <3>
Orders <4>
Order/Rev: <5>
14086 <6>
HARRISBURG <7>
PADUCAH <8>
CAPE GIRARDEAU <9>
Alt Order #: <10>
Product Desc: <11>
Mike Carr for Jackson Co States Atty <12>
Estimate: <13>
WSIL-TV <14>
Flight Dates: <15>
03/03/20 - 03/03/20 <16>
Primary AE: <17>
David Cisco <18>
Original Date/ Rev: <19>
02/28/20/02/28/20 <20>
...
Start Date End Date Weekdays Spots/Week Rate Rating <105>
Week: 03/02/20 03/08/20 -3-- <106>
3 $200.00 0.00 <107>
Totals <108>
3 <109>
$600.00 <110>
</Document>
<Task>
From the document, extract the text values and tags of the following
entities:
{"advertiser": "", "agency": "", "contract_num": "", "flight_from": "",
"flight_to": "", "gross_amount": "", "line_item": [{"channel": "",
"program_desc": "", "program_end_date": "", "program_start_date": "",
"sub_amount": ""}], "product": "", "property": "", "tv_address": ""}
</Task>
<Extraction>

=========================================== Completion ===========================================

{"advertiser": "Committee to Elect Mike Carr <44>", "agency":
"Committee to Elect Mike Carr <29>", "contract_num": "14086 <6>",
"flight_from": "03/03/20 <16>", "flight_to": "03/03/20 <16>",
"gross_amount": "$600.00 <84>", "line_item": [{"channel": "3 <102>",
"program_desc": "Tuesday Prime Other CM <102>", "program_end_date":
"03/03/20 <102>", "program_start_date": "03/03/20 <102>",
"sub_amount": "$600.00 <100>"}], "product": "Mike Carr for Jackson Co
States Atty <12>", "property": "WSIL-TV <14>", "tv_address": null}
</Extraction>

Figure 11: VRDU Ad-Buy Form sample prompt and completion with line index for segment identifier. Instead
of using coordinate tokens, the line index is given as <line_index> at the end of each line, which does not
communicate layout information but still uniquely identify the segment. The document is truncated for easier
visualization.
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============================================= Prompt =============================================

<Document>
Print Date 02/28/20 14:21:20 75|02
Page 1 of 1 91|02
ORDER 49|04
WSIL 77|07
Orders 04|09
Order/Rev: 17|09
14086 29|09
HARRISBURG 78|09
PADUCAH 78|10
CAPE GIRARDEAU 78|12
Alt Order #: 17|11
Product Desc: 18|13
Mike Carr for Jackson Co States Atty 38|13
Estimate: 16|15
WSIL-TV 73|15
Flight Dates: 17|17
03/03/20 - 03/03/20 33|17
Primary AE: 57|17
David Cisco 73|17
Original Date/ Rev: 19|19
02/28/20/02/28/20 33|19
...
Start Date End Date Weekdays Spots/Week Rate Rating 31|66
Week: 03/02/20 03/08/20 -3-- 15|67
3 $200.00 0.00 47|67
Totals 79|69
3 87|69
$600.00 94|69
</Document>
<Task>
From the document, extract the text values and tags of the following
entities:
{"advertiser": "", "agency": "", "contract_num": "", "flight_from": "",
"flight_to": "", "gross_amount": "", "line_item": [{"channel": "",
"program_desc": "", "program_end_date": "", "program_start_date": "",
"sub_amount": ""}], "product": "", "property": "", "tv_address": ""}
</Task>
<Extraction>

=========================================== Completion ===========================================

{"advertiser": "Committee to Elect Mike Carr 37|36", "agency":
"Committee to Elect Mike Carr 37|24", "contract_num": "14086 29|09",
"flight_from": "03/03/20 33|17", "flight_to": "03/03/20 33|17",
"gross_amount": "$600.00 77|51", "line_item": [{"channel": "3 31|63",
"program_desc": "Tuesday Prime 31|63\nYour Voice Your Vote 29|64",
"program_end_date": "03/03/20 31|63", "program_start_date":
"03/03/20 31|63", "sub_amount": "$600.00 94|63"}], "product":
"Mike Carr for Jackson Co States Atty 38|13", "property": "WSIL 77|07"}
</Extraction>

Figure 12: VRDU Ad-Buy Form sample prompt and completion with skipping the missing entity types in the
completion (tv_address in this case). Instead of explicitly outputting the missing entity type "tv_address": null,
the entity type is skipped entirely. The document is truncated for easier visualization.
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============================================= Prompt =============================================

<Document>
Print Date 02/28/20 14:21:20 66|02|83|03
Page 1 of 1 87|02|95|03
ORDER 45|03|54|05
WSIL 69|06|85|08
Orders 02|09|06|10
Order/Rev: 14|09|21|10
14086 28|09|31|10
HARRISBURG 73|08|83|10
PADUCAH 74|10|82|11
CAPE GIRARDEAU 71|11|85|12
Alt Order #: 14|11|20|12
Product Desc: 14|12|22|13
Mike Carr for Jackson Co States Atty 28|12|49|14
Estimate: 14|14|19|15
WSIL-TV 70|14|75|15
Flight Dates: 14|16|21|17
03/03/20 - 03/03/20 27|16|39|17
Primary AE: 53|16|61|17
David Cisco 70|16|77|17
Original Date/ Rev: 14|18|25|19
02/28/20/02/28/20 27|18|39|19
...
Start Date End Date Weekdays Spots/Week Rate Rating 08|65|54|66
Week: 03/02/20 03/08/20 -3-- 04|66|27|67
3 $200.00 0.00 40|66|54|67
Totals 77|68|80|69
3 87|68|87|69
$600.00 92|68|96|69
</Document>
<Task>
From the document, extract the text values and tags of the following
entities:
{"advertiser": "", "agency": "", "contract_num": "", "flight_from": "",
"flight_to": "", "gross_amount": "", "line_item": [{"channel": "",
"program_desc": "", "program_end_date": "", "program_start_date": "",
"sub_amount": ""}], "product": "", "property": "", "tv_address": ""}
</Task>
<Extraction>

=========================================== Completion ===========================================

{"advertiser": "Committee to Elect Mike Carr 27|35|46|36",
"agency": "Committee to Elect Mike Carr 28|24|46|25", "contract_num": "14086 28|09|31|10",
"flight_from": "03/03/20 - 03/03/20 27|16|39|17",
"flight_to": "03/03/20 - 03/03/20 27|16|39|17", "gross_amount": null,
"line_item": [{"channel": "N 1 3 0 ... Tuesday Prime Other CM 7:00 PM-10:00 PM-3----- 03|62|58|63",
"program_desc": "Your Voice Your Vote 23|64|36|64",
"program_end_date": "03/03/20 12|49|17|50", "program_start_date": "03/03/20 03|49|08|50",
"sub_amount": null}], "product": "WSIL-TV 70|14|75|15", "property": null, "tv_address": null}
</Extraction>

Figure 13: VRDU Ad-Buy Form sample prompt and completion with 4 line-level [xmin, ymin, xmax, ymax] coordi-
nates in the prompt and completion. The document and completion is truncated for easier visualization.
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============================================= Prompt =============================================

<Document>
Print 67|02 Date 70|02 02/28/20 75|02 14:21:20 81|02 Page 88|02 1 91|02 of 93|02 1 95|02
ORDER 49|04 WSIL 77|07 Orders 04|09 Order 15|09 / 18|09 Rev 19|09 : 21|09 14086 29|09
HARRISBURG 78|09 PADUCAH 78|10 CAPE 73|12 GIRARDEAU 80|12 Alt 14|11 Order 17|11 # 19|11
: 20|11 Product 16|13 Desc 20|13 : 22|13 Mike 29|13 Carr 32|13 for 34|13 Jackson 38|13
Co 41|13 States 45|13 Atty 48|13 Estimate 16|15 : 19|15 WSIL 71|15 - 74|15 TV 75|15
Flight 15|17 Dates 19|17 : 21|17 03/03/20 30|17 - 33|17 03/03/20 36|17 Primary 56|17
AE 59|17 : 61|17 David 71|17 Cisco 75|17 Original 16|19 Date 20|19 / 22|19 Rev 23|19
: 25|19 02/28/20/02/28/20 33|19 Sales 55|19 Office 59|19 : 61|19 LOCAL 72|19 Order 15|21
Type 19|21 : 21|21 GENERAL 31|20 Sales 55|21 Region 59|21 : 62|21 Local 72|21 Agency 05|24
Name 15|24 : 17|24 Committee 31|24 to 35|24 Elect 38|24 Mike 41|24 Carr 44|24 Cash 71|26
Buying 16|26 Contact 20|26 : 23|26 Billing 15|28 Contact 20|28 : 22|28 Billing 55|26
Type 59|26 : 61|26 Billing 55|28 Calendar 60|28 : 63|28 Calendar 73|28 101 29|30 S 30|30
TOWER 34|30 RD 37|30 EOM 71|30 / 73|30 EOC 75|30 Billing 55|30 Cycle 59|30 : 61|30
Agency 56|32 Commission 62|32 : 66|32 CARBONDALE 32|32 , 36|32 IL 37|32 62901-1936 42|32
0 70|32 % 71|32 Advertiser 06|36 Name 15|36 : 17|36 Committee 31|36 to 35|36 Elect 38|36
Mike 41|36 Carr 44|36 Demographic 17|38 : 22|38 HH 28|38 New 55|38 Business 59|38
Thru 64|38 : 65|38 Product 16|39 Codes 20|39 : 23|39 Candidates 31|39 Order 55|39
Separation 60|40 : 64|40 00:15:00 73|39 Priority 16|41 : 18|41 P 28|41 - 29|41 01 30|41
Advertiser 57|41 External 62|41 ID 65|41 : 67|41 33917 72|41 Revenue 16|43 Codes 21|43 :
23|43 DIR 28|43 , 30|43 POL 32|43 , 33|43 POL 35|43 - 37|43 CAND 39|43 Agency 56|43
External 61|43 ID 64|43 : 65|43 33917 72|43 Bill 04|46 Plan 06|46 Start 04|48 Date 07|48
End 13|47 Date 16|47 # 21|48 Spots 24|48 Gross 28|48 Amount 33|48 Net 38|47 Amount 42|48
Totals 52|46 Month 51|47 March 51|49 2020 55|49 # 64|47 Spots 66|48 Net 83|47 Amount 86|47
Gross 72|48 Amount 77|48 $ 75|49 600.00 78|49 Rating 94|48 0.00 95|49 03/01/20 05|49
03/03/20 14|49 3 25|49 3 68|49 $ 32|49 600.00 34|49 $ 43|49 600.00 45|49 $ 86|49
600.00 88|49 Totals 51|51 3 68|51 $ 75|51 600.00 77|51 $ 86|51 600.00 88|51 0.00 95|51
Account 05|53 Executives 12|53 Account 05|54 Executive 10|54 Sales 22|54 Office 26|54
Sales 32|54 Region 36|54 Start 42|54 Date 45|54 / 47|54 End 49|54 Date 52|54 Order 65|54
% 67|54 David 04|56 Cisco 08|56 Start 42|56 Of 45|56 Order 48|56 - 50|56 End 51|56 Of 54|56
Order 57|56 100 67|56 % 68|56 Len 61|61 Spots 65|61 : 61|63 30 62|63 3 67|63 Rate 71|61 Pri
75|61 Rtg 78|61 Type 81|61 Spots 86|61 $ 69|63 200.00 72|63 P 74|63 - 75|63 03 76|63
0.00 79|63 NM 82|63 3 87|63 Amount 93|61 $ 92|63 600.00 94|63 Ln 04|61 Ch 07|61 Start 13|61
End 18|61 Inventory 26|61 Code 31|61 Break 39|61 Start 10|65 Date 13|65 End 17|66 Date 20|66
Weekdays 27|66 Spots 35|66 / 37|66 Week 39|66 Rate 46|66 Rating 52|66 Week 06|67 : 08|67
03/02/20 11|67 03/08/20 18|67 -3-- 25|67 3 40|67 $ 43|67 200.00 45|67 0.00 53|67 Totals 79|69
3 87|69 $ 92|69 600.00 94|69
</Document>
<Task>
From the document, extract the text values and tags of the following
entities:
{"advertiser": "", "agency": "", "contract_num": "", "flight_from": "",
"flight_to": "", "gross_amount": "", "line_item": [{"channel": "",
"program_desc": "", "program_end_date": "", "program_start_date": "",
"sub_amount": ""}], "product": "", "property": "", "tv_address": ""}
</Task>
<Extraction>

=========================================== Completion ===========================================

{"advertiser": "Committee to Elect Mike Carr 44|24", "agency": "Cash 71|26",
"contract_num": "14086 29|09", "flight_from": "03/03/20 30|17", "flight_to": "03/03/20 36|17",
"gross_amount": "600.00 77|49", "line_item": [{"channel": "1 03|63",
"program_desc": "Your Voice Your Vote 34|64", "program_end_date": "03/03/20 13|63",
"program_start_date": "03/03/20 19|63", "sub_amount": "600.00 92|63"}],
"product": "WSIL 71|15 - 74|15 TV 75|15", "property": "WSIL 71|15 - 74|15 TV 75|15",
"tv_address": null}
</Extraction>

Figure 14: VRDU Ad-Buy Form sample prompt and completion with 2 word-level [xcenter, ycenter] coordinates
in the prompt and completion. With word-level coordinate tokens, the text sequence of the prompt is mostly
composed of coordinate tokens, and becomes far from the usual text sequences LLMs are trained on.
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Figure 15: Nearest Neighbors on CORD, Example 1, retrieving examplars from the same merchant.

Figure 16: Nearest Neighbors on CORD, Example 2, retrieving examplars from the same merchant.

Figure 17: Nearest Neighbors on CORD, Example 3, retrieving examplars from the same merchant.
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Table 7: Parsing error rates from LMDXPaLM 2-S re-
sponses on VRDU Ad-Buy Mixed and CORD datasets.

|D| Dataset Invalid JSON Invalid Entity Entity Text
Value Format Not Found

0 Ad-Buy 0.18% 0.04% 0.59%
CORD 0.00% 0.00% 0.00%

10 Ad-Buy 0.27% 0.04% 0.44%
CORD 0.00% 0.00% 0.00%

50 Ad-Buy 0.24% 0.00% 0.17%
CORD 0.06% 0.00% 0.00%

100 Ad-Buy 0.24% 0.00% 0.13%
CORD 0.00% 0.03% 0.00%

200 Ad-Buy 0.25% 0.00% 0.09%
CORD 0.00% 0.00% 0.00%

A.10 Completion Parsing Error Rates

In this section, we report the various completion
parsing error types and their occurrence rates for
LMDXPaLM 2-S.
Invalid JSON Formatting. This refers to cases
for which Python’s json.loads(completion)
fails on a LLM’s completion. As observed in Ta-
ble 7, the JSON parsing error rate is below 0.3% in
all training settings.
Invalid Entity Value Format. This refers to
cases where the leaf entity value does not fol-
low the expected "<text-segment-1> XX|YY
<text-segment-2> XX|YY" format. As observed
in Table 7, the Invalid Entity Value Format Rate is
below 0.05% in all training settings.
Hallucination / Entity Text Not Found. This
refers to cases where the segment identifier is valid,
but the entity text does not appear on the predicted
segment (hallucination). As observed in Table 7,
the Entity Text Not Found error rate is below 0.6%
in all training settings. As part of LMDX method-
ology, we discard any prediction whose text does
not appear on the specified segment, ensuring we
discard all hallucination.

Note that those numbers are computed at the
completion level. Since multiple completions are
sampled for each document chunk, the sampling
scheme allows for correcting those errors and no
document in the benchmarks fail extraction.

A.11 Error Analysis

In this section, we perform an error analysis on the
test set to identify common error patterns of LMDX.
A very common error type we observe is caused by
OCR lines grouping multiple semantically different
segments. We show two instance of those cases
observed in LMDXPaLM 2-S on the VRDU Ad-Buy
Form in Figure 18. In the first example, prediction

for the entity line_item/program_desc includes text
from the previous column "Channel" along with the
value in the column "Description". From the OCR
line bounding boxes, we can see that these two
columns are grouped as the same OCR line. In the
second example, the model confuses between the
adjacent keys "Invoice Period" and "Flight Dates"
and extracts invoice dates as flight dates. Similar to
the first example, OCR line bounding boxes show
that the invoice dates and the key "Flight Dates"
are grouped together in the same line although they
are semantically different. As LMDXPaLM 2-S uses
only coarse line layout information ([xcenter, ycenter]
with 100 quantization buckets), the model fails in
these cases, which is a current limitation of LMDX.
We believe that incorporating the image modality
will make LMDX more robust to those OCR errors.

Example 1:
     line_item/program_desc
Groundtruth: 
      Local News 6a-630a
Prediction: 
     WJZ Local News 6a-630a

Groundtruth: 
     flight_from: 12/24/19
     flight_to: 12/30/19

Prediction: 
     flight_from: 11/25/19
     flight_to: 12/29/19

Example 2:

Figure 18: Typical error pattern of LMDXPaLM 2-S. In
both examples, the detected OCR lines are shown in
red, the model predicted entities are shown in blue, and
the groundtruth entities are shown in green. In both
cases, the detected OCR lines merge two semantically
distinct segments, causing the model to wrongly asso-
ciate them in its predictions.

A.12 Effect of Coordinate Tokenization
Schemes

In this section, we study how different de-
signs of coordinate tokens affect extraction qual-
ity, to determine which is the most effective.
There are many ways to tokenize the coordi-
nates of the text segments, e.g. using line ver-
sus words as segment, the number of coordi-
nates to use per segment ([xcenter, ycenter] ver-
sus [xmin, ymin, xmax, ymax]). To establish which
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scheme is the most effective, we evaluate the zero-
shot performance of LMDXPaLM 2-S on VRDU Reg-
istration Form, Ad-Buy Form and CORD bench-
marks with the following schemes:

• 2 Line-level [xcenter, ycenter] coordinates with
B = 100 quantization buckets.

• 4 Line-level [xmin, ymin, xmax, ymax] coordi-
nates with B = 100 quantization buckets.

• 2 Word-level [xcenter, ycenter] coordinates with
B = 100 quantization buckets.

An example of prompt and completion for each
scheme is given in Appendix A.8. Results quality
is given in Figure 19.

On all benchmarks, 2-line level [xcenter, ycenter]
coordinates obtains the best performance. This
is caused by that coordinate tokenization scheme
being very token efficient (see Appendix A.4). 2
Word-level [xcenter, ycenter] coordinates and 4 Line-
level [xmin, ymin, xmax, ymax] coordinates increase
the tokens used by coordinates drastically, leading
to multiple chunks generated for each document
page, hence lowering quality since the model won’t
be able to correctly predict entities spanning mul-
tiple chunks. Furthermore, the large number of
coordinate tokens added by those schemes makes
the text sequences used in LMDX significantly dif-
ferent from the natural text sequences the LLM was
pretrained on, hence making the LLM less effective
at interpreting them, thereby lowering extraction
quality.

Registration Ad-Buy CORD
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Figure 19: Zero-shot performance of LMDXPaLM 2-S
on VRDU Registration Form Mixed Template, Ad-Buy
Form Mixed Template, and CORD with different coor-
dinate tokenization schemes. On all benchmarks, 2-line
level [xcenter, ycenter] coordinates obtains the best perfor-
mance.

A.13 Latency Comparison

In Table 8, we compare the latencies of LMDX
and other methodologies, LayoutLMv3 and Donut.
Overall, LayoutLMv3 is the fastest model, as it
is encoder-only. LMDXGemini Pro is the slowest
among accelerated models, due to its reliance on an

LLM with long inputs and outputs. Nonetheless, its
latency remains acceptable in a production setting.

Table 8: Median, 95th and 99th percentile latencies of
information extraction solutions on CORD. For text-
based solutions LayoutLMv3 and LMDXGemini Pro, the
reported numbers do not include the OCR latency.

Model Hardware
Latency (ms)

Median 95th% 99th%

LayoutLMv3 CPU 648 999 1394

GPU T4 30 55 93

Donut CPU 14392 19427 20065

GPU T4 620 1230 1683

LMDXGemini Pro TPU 3653 7102 8345

A.14 Ablation Detailed Metrics.
In Table 9, we present the per-entity F1 score for
the coordinate ablations to highlight which entity
most benefit from the introduction of layout infor-
mation, and explain the large difference observed.

Table 9: Ablation of coordinates for LMDXPaLM 2-S,
where per-entity F1 scores are shown. Adding coordi-
nates greatly increase the extraction quality of entity
types that require the understanding of spatial align-
ment, such as line_item.

Entity Hierar- Number of With Without
∆

chical? occurrence Coord. Coord.

advertiser 7 635 95.90 88.98 -6.92
agency 7 283 73.05 71.84 -1.21

contract_num 7 624 78.37 74.00 -4.37
flight_from 7 540 67.74 63.63 -4.11

flight_to 7 538 75.57 70.38 -5.19
gross_amount 7 629 98.86 98.47 -0.39

product 7 607 87.86 75.33 -12.53
tv_address 7 535 81.04 78.13 -2.91
property 7 595 77.75 74.33 -3.42
line_item 3 9163 39.35 18.35 -21.00

Overall, performance is lower across the board
without coordinates, as the VRDU Ad-Buy form
benchmark consists entirely of invoices, a very
layout-heavy document, where the alignment of
the key segments (e.g. "Contract Number: ", "To-
tal Due:", "Product:") and value segments (e.g.
"123456", "$1000", "Political Advertisement")
matters a lot for the correct understanding of most
entities. Thus, removing the layout modality will
have a stark difference in performance. However,
not all entities are affected in the same way:

• 8 out of 9 leaf entities see single digit
drops, with gross_amount affected the least.
gross_amount can be derived mostly without
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looking at its key (e.g."Amount Due") and
simply using cues commonly found in money
amount entities (e.g. "$", "USD", etc).

• line_item, the hierarchical entity in Ad-
Buy form, is affected the most. This is
expected as line_item’s components (chan-
nel, program_desc, program_start_date, pro-
gram_end_date, sub_amount) are always vi-
sually arranged in tables, hence understand-
ing horizontal and vertical alignments of the
different text lines (which the coordinates pro-
vide) are critical for the correct grouping of
those components into line_items.

• Since line_items are by far the most common
entity in VRDU Ad-Buy form (9163 occur-
rences), they have the most effect on the over-
all micro-F1.

A.15 Datasets Details
As part of this work, we used the following
datasets:

• VRDU (Wang et al., 2023d) consists of two
public visually-rich documents information
extraction benchmarks: Registration Form,
which consists of 1915 documents recording
foreign agents’ activities with the US govern-
ment requiring public disclosure, and Ad-Buy
Form, which consists of 641 signed receipts
between a TV station and a political campaign
group, requiring public disclosure to the Fed-
eral Communications Commission. All data is
in English, and publicly available for research
purposes.

• CORD (Park et al., 2019) consists of 1000
Indonesian receipts from various shops and
restaurants, on which the authors de-identified
identifiable information. The data is a mix
of Indonesian and English languages, and is
publicly available for research purposes.

• Payment (Majumder et al., 2020) is a dataset
of 14,237 single-page invoices, annotated with
Each invoice is from a different vendor, so the
documents do not share any common tem-
plates. All the data is in English.

• Synthetic Forms. Finally, we generated syn-
thetic training data using blank PDF form tem-
plates crawled from government websites, and
filled with fully synthetic values using an in-
ternal tool. All generated data is in English.

All extraction benchmarks we used are publicly
available for research purposes, and we limited
their usage to this research work. We also checked
these datasets to ensure that no personally identifi-
able information is involved.
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