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Abstract

In this work, we dive deep into one of the popu-
lar knowledge-grounded dialogue benchmarks
that focus on faithfulness, FaithDial. We show
that a significant portion of the FaithDial data
contains annotation artifacts, which may bias
models towards completely ignoring the conver-
sation history. We therefore introduce CHARP,
a diagnostic test set, designed for an improved
evaluation of hallucinations in conversational
model. CHARP not only measures hallucina-
tion but also the compliance of the models to
the conversation task. Our extensive analysis
reveals that models primarily exhibit poor per-
formance on CHARP due to their inability to
effectively attend to and reason over the con-
versation history. Furthermore, the evaluation
methods of FaithDial fail to capture these short-
comings, neglecting the conversational history.
Our findings indicate that there is substantial
room for contribution in both dataset creation
and hallucination evaluation for knowledge-
grounded dialogue, and that CHARP can serve
as a tool for monitoring the progress in this
particular research area. CHARP is pub-
licly available at https://huggingface.co/
datasets/huawei-noah/CHARP

1 Introduction

Despite the success of general purpose large lan-
guage models (LLMs) (Bommasani et al., 2021),
the utility of the generated texts rests in its rele-
vance and knowledge grounding. The task of in-
formation seeking dialogue (Ghazvininejad et al.,
2018; Lewis et al., 2020) is a touchstone for knowl-
edge grounded generation. The task evaluates a
system’s ability to respond to user queries while
it remains faithful to the knowledge. A system
response not adhering to this would be deemed
unfaithful. This topic has received considerable
attention resulting in several diagnostics and mit-
igation techniques for texts that lack knowledge
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Seeker: My sister is a baker
for  the Ladurée bakery in France.
Wizard: [reply to seeker inquiry]
Seeker: [new inquiry]
Wizard: [reply to seeker inquiry]
Seeker: [new inquiry]
Wizard: [reply to seeker inquiry]

Seeker (eCHARP): 
Sometimes I wonder if my sister
could work in a different country 
other than France, with great
opportunities for bakers. Any
suggestions ?

Seeker (hCHARP):
Sometimes I wonder if my sister
could work in a different country
with great opportunities for
bakers. Any suggestions ?

Wizard (hCHARP):
France has approximately
34,000 bakeries, and in
Germany, where bread is
also an important part of
the cuisine, there are about
10,000 bakeries.

Wizard (eCHARP):
Bread is a significant part in
German cuisine, which has
approximately 10,000
bakeries

Wizard:
She could try moving to
Germany since bread is a
significant part of their cuisine
and there is around 10,000
bakeries.

Conversation History:

Ground Truth Response:

Knowledge (last seeker):

In addition to France, where there
are 34,000 bakeries, bread is a
significant part of German cuisine
with about 10,000 bakeries.

Model Response:

Figure 1: CHARP consists of 2 subsets, where only the
last seeker utterance differs: a self-contained easy ver-
sion (eCHARP), and a hard (hCHARP) which requires
reasoning over the conversation history and the provided
knowledge that corresponds to the last seeker. In addi-
tion to the ground truth response annotation, we show
the predictions of a model (FLAN-base) tuned on the

FaithDial training data. and indicate whether the
FaithDial CRITIC labels a response as a hallucination
or not. Green boxes indicate model inputs, while pink
and orange ones show predicted, and gold responses.

grounding and are hallucinatory in nature (Dziri
et al., 2019, 2022b,c).

Dziri et al. (2022a)’s work in this direction—
FaithDial— provides a benchmark with
hallucination-free annotations, a hallucina-
tion detector, and a comprehensive evaluation
framework has garnered attention and follow up
works (Deng et al., 2023; Daheim et al., 2023).
Dziri et al. (2022a) show that T5-base model
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trained on these annotations restricts hallucination
only in 1.4% of its responses , or even 0.3% as
reported by (Daheim et al., 2023). While it appears
that hallucination is under control at least under
the experimental protocol defined in FaithDial, we
observe that, though the annotations created in
(Dziri et al., 2022a) are free from hallucinations,
they introduce artifacts. These artifacts bias
models trained on it to predict the response based
solely on the provided knowledge, while ignoring
the dialogue history.

We validate this hypothesis with a controlled
evaluation set called CHARP (Conversation
History AwaReness Probing) with its easy and
hard versions denoted as eCHARP and hCHARP
respectively. The proposed diagnostic set (§4) not
only evaluates hallucinations with respect to the
provided knowledge but also its relevance to the
conversation history (Figure 1). CHARP is cre-
ated by annotating on top of 1, 080 samples from
FaithDial validation dataset. CHARP tests whether
models attend or ignore the history to select the ap-
propriate knowledge when the correct knowledge is
augmented with a distracting fact that is irrelevant
to the conversation.

Evaluating models using automatic metrics,
LLM APIs, and human scorers, we find that train-
ing with FaithDial biases the models to ignore con-
versation history, as assessed with CHARP, while
remaining faithful to the knowledge (§3.5). Inter-
estingly, this phenomenon was elusive to be ob-
served neither with the suite of evaluation methods
nor the hallucination detector proposed in (Dziri
et al., 2022a). Instead, we find the FaithDial de-
tector scoring CHARP gold responses as halluci-
natory (16.0%) that is higher than the hallucina-
tion rate (0.4%) of a system performing poorly on
CHARP as evaluated by a human (§5.1).

To understand this, we conduct a thorough hu-
man evaluation to identify 6 different types of er-
rors to be considered in knowledge-grounded re-
sponse generation. We find human annotation to
be effective (§5.2) in identifying the error types.
Further ablations with FaithDial training on human
evaluation confirm that the dataset biases the mod-
els to look away from the conversation history. We
find the evaluation with powerful LLM APIs to
be correlated with humans (§C.3), and is a better
proxy metric for this task over the FaithDial met-
rics. Overall, this study suggests that despite recent
progress reported in hallucination mitigation, devel-
oping a model that is simultaneously aware of the

conversation history and non-hallucinatory remains
an open problem in information-seeking dialogue.

2 Related Work

Constructing diagnostic sets with curated adversar-
ial or counterfactual examples, has been shown
to be an effective approach across NLP tasks
to capture such artifacts that standard evaluation
sets fail to detect. For instance, HANS (Mc-
Coy et al., 2019), FEVER (Schuster et al., 2019),
PAWS (Zhang et al., 2019b), CORE (Rosenman
et al., 2020), NRB (Ghaddar et al., 2021), and
NATURE (Alfonso-Hermelo et al., 2021) datasets
are vital in identifying biases of models solving
tasks like textual entailment, fact verification, para-
phrase identification, relation extraction, named en-
tity recognition, and intent detection respectively.

Studies (Taori et al., 2023; Chen et al., 2023a;
Conover et al., 2023) on the recent trend of large-
scale pretraining (Ouyang et al., 2022; Shuster
et al., 2022) show that data quality affects the mod-
els in inheriting biases from the artifacts embed-
ded in data. Especially in information seeking dia-
logues, Dziri et al. (2022c) show that unfaithfulness
to the given knowledge is a dominant type of hal-
lucination. Dziri et al. (2022b) show that most
information-seeking dialogue datasets like CMU-
DoG (Zhou et al., 2018), TopicalChat (Gopalakrish-
nan et al., 2019), and Wizard of Wikipedia (WoW;
Dinan et al. 2018) contain a high ratio of hallu-
cinations, with WoW dataset being the least af-
fected. Dziri et al. (2022a) propose FaithDial built
through replacing hallucinatory WoW annotations
with with knowledge faithful responses.

Dziri et al. (2022a) show that the models trained
on Faithdial show significant reduction in hallucina-
tion. Further studies such as the one from Daheim
et al. (2023) recently demonstrated that FLAN-T5-
base (Longpre et al., 2023) can fetch further re-
duction in hallucination by training on FaithDial
over T5-Base (Raffel et al., 2019) as reported in
(Dziri et al., 2022a). Daheim et al. (2023) also pro-
pose Elastic Weight Removal (EWR) hallucination
mitigation method to reduce the rate of unfaith-
fulness response generation. The authors report
high BERTScore similarity (Zhang et al., 2019a)
between the model response and both the ground
truth and the provided knowledge suggesting the
faithfulness of the response generated. As training
an LM to attend to the knowledge could inadver-
tently result in ignoring the history of turns leading
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to poor reasoning of the model, we, in this work,
propose CHARP that serves as a diagnostic set to
measure this phenomenon.

3 Experimental Setting

3.1 Dataset and Task

We focus on the FaithDial dataset (Dziri et al.,
2022a) and adhere to its task formulation, where
given the history of utterances and a knowledge
supplement, a trained model predicts the next re-
sponse of a Wizard bot engaged in a conversation
with an information-seeking human (Seeker). We
assume that the correct knowledge is given, and no
retrieval step is performed. A response is consid-
ered hallucinatory if it contains information unsup-
ported by the given knowledge snippet.

3.2 Models and Implementation

We experiment with the vanilla T5 model (Raf-
fel et al., 2019) and two of its derivative vari-
ants, namely, Flan-T5 (Chung et al., 2022) and
GODEL (Peng et al., 2022). The former was fine-
tuned on 1, 000 NLP datasets mapped to an in-
struction tuning format, while the latter was fur-
ther pre-trained on 551M multi-turn dialogues,
and 5M instruction- and knowledge-grounded dia-
logues. We primarily focus on the base size models,
maintaining the same hyperparameters and imple-
mentation settings for consistency with previous
works (Dziri et al., 2022a; Daheim et al., 2023).
We train all models for a maximum of 20 epochs
and use early stopping based on the validation set
performance, and report results on the test set. We
use a beam of 5 during inference in all experiments.

3.3 Evaluation Metrics

Following (Dziri et al., 2022a; Daheim et al., 2023),
we report the similarity between gold (y) and pre-
dicted response (y′) with BLEU (Papineni et al.,
2002), and BERTScore (Zhang et al., 2019a). We
measure the hallucination rate using the faithful-
ness Critic (CRITIC) provided by the FaithDial
benchmark1 and by computing a BERTScore be-
tween the knowledge (k) and predicted response.

3.4 Results Integrity

Table 1 is the reproduced test performances of mod-
els trained on the FaithDial dataset. For compa-
rable evaluation we consider the baseline models

1A detailed description of the development of the FaithDial
CRITIC can be found in Appendix B.1.

from (Dziri et al., 2022a): a vanilla T5-base model
and its variant that employs InfoNCE (Oord et al.,
2018) loss for hallucination mitigation; and (Da-
heim et al., 2023): the FLAN-base model and its
variant that utilizes the EWR method for halluci-
nation mitigation. Our reproduced baselines use
three different backbone models: FLAN-base, and
the GODEL-base and GODEL-large models.

Models BLEU↑ Critic ↓ BERTScore↑
(y, y′) (k, y′) (y, y′) (k, y′)

previous works
T5-base [1] 10.3 4.3 - 41.0

+InfoNCE 10.9 1.4 - 39.0
FLAN-base [2] 15.1 0.3 69.6 80.9

+EWR 14.9 0.1 70.1 81.7
our re-implementations

FLAN-base 15.3 0.3 69.9 80.8
GODEL-base 15.5 0.3 70.2 80.5
GODEL-large 15.8 0.3 70.5 81.1

Table 1: Test set performances of previous works along-
side our re-implemented baseline models finetuned on
the FaithDial dataset. [1] and [2] refer to baselines re-
sults directly copied from (Dziri et al., 2022a) and (Da-
heim et al., 2023) respectively. All scores are scaled
within the range of [0, 100].

As reported in (Daheim et al., 2023) the FLAN-
base models achieve a remarkably low hallucina-
tion ratio of only 0.3%, significantly improving
upon the best FaithDial baselines (both with and
without hallucination mitigation methods). Our re-
implementation of the FLAN-base results are similar
to Daheim et al. (2023)’s based on the significance
test on the samples with p-value (0.58). This en-
ables a fair comparison of the claims across our
experiments with CHARP and the existing results
in the literature.

In addition, we used the set up to train different
models for benchmarking: a dialogue pretrained
(GODEL-base) and its large version (e.g., GODEL-
large). We observe that these models only hold
modest improvements across various metrics.

3.5 Probing History Awareness
While the strong results across models on FaithDial
dataset leave no doubts about their faithfulness to
the given knowledge, we investigate whether this
comes at the expense of an important input com-
ponent: the conversation history. To that, we test
trained models on truncated conversation history—
providing only the last k turns (denoted h=k) or no
history at all (h=∅). As we observed the value of k
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in the dataset to not affect the performance beyond
3 despite the average number of turns being 7, we
vary the value of k only in the range of [0-3]. Fur-
ther, to account for distribution shifts, we fine-tune
models on variations of the training data with trun-
cated conversation histories for comparison. We
used GODEL-base as the backbone model in this
experiment as it shows superior performances com-
pared to FLAN-base in Table 1. We benchmark the
performance of GODEL-base on truncated history
evaluation in Table 2.

BLEU↑ Critic ↓ BERTScore↑
(y, y′) (k, y′) (y, y′) (k, y′)

eval: h=all
train: h=all 15.5 0.3 70.2 80.5
train: h=3 15.4 0.4 70.0 79.2
train: h=2 15.2 0.5 69.9 78.7
train: h=1 15.0 0.6 69.8 78.2
train: h=∅ 11.9 8.4 65.8 72.8

eval: h=3
train: h=all 15.3 0.4 69.9 79.9
train: h=3 15.1 0.3 69.9 80.4

eval: h=2
train: h=all 15.1 0.3 69.9 80.6
train: h=2 15.0 0.2 69.9 80.9

eval: h=1
train: h=all 14.3 0.3 69.4 81.1
train: h=1 14.3 0.2 69.5 81.3

eval: h=∅
train: h=all 13.1 0.0 66.6 82.1
train: h=∅ 12.7 0.0 67.1 83.9

Table 2: Performance of GODEL-base models, trained
and evaluated on truncated versions of conversation
history from the training and test splits of FaithDial,
respectively. Here, h=i means only using the last i
turns in the conversion history when training (train:) or
evaluating (eval:) models. h=∅ and h=all denote using
no history and the entire history turns, respectively. All
scores are scaled within the range of [0, 100].

We notice that the performances on the original
test set (eval: h=all) of models trained on truncated
history (train: h∈{3, 2, 1}) barely drop across met-
rics. For instance, the hallucination ratio (CRITIC

score) slightly increases by 0.1% each time the
conversational history contains one fewer turn. Al-
though there is a partial train/test mismatch, this
observation suggests that the older history turns
are largely irrelevant to generating the response,
and their presence does not significantly distract
the models. However, we report a significant loss
in performance across metrics in the extreme case

where no history is provided to the model during
training (train: h=∅). Through manual inspection
of samples, we hypothesize that this is due to the
model treating the entire history as a knowledge
snippet and attempting to ground the response un-
der this assumption.

In evaluation configurations with h ∈ {3, 2, 1},
we observe that the performances of the original
model and its respective variants are roughly simi-
lar, exhibiting only a slight decline as more history
turns are removed. More precisely, ground truth
response similarity metrics show a steady decline,
while those measuring similarity with the provided
knowledge slightly improve as fewer history turns
are seen during training and/or evaluation. These
results indicate that the conversation history is ig-
nored not only during inference but also during
model training.

However, when the entire conversational history
is omitted during evaluation (eval: h=∅), the origi-
nal model produces responses that are slightly bet-
ter aligned with the ground truth response, show-
ing a +0.4 gain in BLEU score and a +0.5 gain in
BERTScore compared to the model trained with-
out conversation history (train: h=∅). Notably,
both models achieve the best alignment with the
given knowledge results so far, reaching 82.1% and
83.9% respectively, and report a 0% hallucination
ratio as per the FaithDial CRITIC. It is worth men-
tioning that the model trained without any history
performs significantly better across all four metrics
when the history is also discarded during inference.
This suggests that this model is most likely learning
primarily to paraphrase a knowledge snippet into
its response. From these analyses, we conclude
that both the annotation strategies and evaluation
methods of FaithDial do not take into account a
crucial scenario in information-seeking dialogue,
where a valid response depends on understanding
and reasoning about the conversation history.

4 CHARP

CHARP, the proposed diagnostic set, exclusively
assess whether information-seeking dialogue sys-
tems effectively attend to and use the conversa-
tion history. CHARP is built by modifying ex-
amples from the FaithDial validation set to ensure
maximum domain alignment with FaithDial and
to minimize annotation costs. That is, we edit
FaithDial examples to make their response depen-
dent on the conversation history analogously to
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FaithDial’s editing of WoW annotations to make
them hallucination-free. It is important to note that
the FaithDial validation and test sets are sampled
from the same distribution and exhibit similar re-
sult patterns. We create two variants of CHARP:
hCHARP (§ 4.1) for examples where addressing
the last seeker’s inquiry requires reasoning over
the conversation history, and eCHARP (§ 4.2),
where the last inquiry can be addressed without
such reasoning. We annotate 42% of the FaithDial
validation set (after excluding examples without
conversation history) containing 2, 160 examples,
split equally between hCHARP and eCHARP.

4.1 hCHARP Creation

In hCHARP, which refers to hard CHARP, ex-
amples are expected to test basic natural language
understanding abilities, with the expectation that
the response will be straightforward if a model
is attentive to the conversation history. An exam-
ple is designed to test the ability to resolve co-
reference relations and the history mentions “my
favorite color is red”, then the last user turn might
be “Wondering which fruit has the same color as
my favorite?”. In other examples, annotators may
introduce temporal reasoning (e.g., the pre-historic
era is before the 16th century), geospatial (e.g.,
Paris is located in France), or taxonomic (e.g., pie
is a type of patisserie). To ensure systematic and
high-quality annotations, we define a set of edit
rules for each part of the example (ref § A.2).

4.2 eCHARP Creation

We create a set of domain control examples —
eCHARP for easy CHARP— that contains the
same examples in hCHARP, but with the last user
turn rewritten to be self-contained and indepen-
dent from the conversation history. For instance, if
the knowledge lists fruits that are typically green
and others that are red, the last user turn would be
“Wondering which fruit is typically red?”. Thus, re-
sponding to examples in eCHARP should be easy.
Poor performance on such examples2 suggests a
domain (or task definition) shift between CHARP
and the information-seeking dataset on which the
model is trained. Further, in both the versions we
annotate the knowledge in the FaithDial dataset to
provide a relevant, and a distracting factual infor-
mation. The distracting information is designed to

2e.g., a system that copies or rephrases the entire knowl-
edge and ignores even the last user turn.

be ignored if the conversation history is considered
in the knowledge selection by the models.

5 Results

5.1 CHARP Automatic Evaluation

The performances of the FLAN-base and GODEL-
base models on CHARP, and on the subset of
FaithDial validation examples that were utilized to
construct CHARP are shown in Table 3. First, we
observe that the distribution of performances on the
validation set are similar to the test set (Table 1) as
they are sampled from the same distribution. Fur-
ther, the results on the full validation set align with
those on the subset used to build CHARP indi-
cating that the sampled set from FaithDial used in
CHARP does not introduce any bias to this study.

Models BLEU↑ Critic ↓ BERTScore↑
(y, y′) (k, y′) (y, y′) (k, y′)

FaithDial Valid.
FLAN-base 14.6 0.3 70.6 80.7
GODEL-base 14.8 0.3 70.8 80.6

FaithDial Valid. (CHARP subset)
FLAN-base 14.6 0.4 71.1 81.2
GODEL-base 14.5 0.3 70.8 81.5

eCHARP
FLAN-base 22.8 1.7 70.8 79.4
GODEL-base 20.5 0.5 69.4 82.5

hCHARP
FLAN-base 22.0 1.9 70.1 78.6
GODEL-base 18.7 0.6 67.6 81.7

Table 3: Performance of models on the FaithDial dataset
across four evaluation sets: FaithDial validation set,
a subset of the FaithDial validation set used to build
CHARP, eCHARP, and hCHARP. All scores are
scaled within the range of [0, 100].

Unsurprisingly, we observe that the models per-
form well on eCHARP with better BLEU scores
in (y, y′), and almost similar on both (k, y′) met-
rics compared to the results on the validation set.
The high BLEU scores arise because our ground
truth responses have a high lexical overlap with the
knowledge, involving less paraphrasing, compared
to the FaithDial data. As the with and without para-
phrasing the responses are semantically similar, the
BERTScores remain similar to the one on the vali-
dation set. We also notice that GODEL-base is less
hallucinatory than FLAN-base, performing better on
both (k, y′) metrics. Conversely, FLAN-base out-
performs GODEL-base on both (y, y′) metrics.
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Despite the hCHARP responses being strongly
dependent on information from the conversational
history, we notice that the models perform surpris-
ingly well. When comparing the score ranges to
those on eCHARP, we observe that, although the
results are consistently lower across all metrics
the difference was not significant. These observa-
tions strongly contradict our hypothesis in § 3.5,
which posits that models ignoring conversational
history should incur significant penalties across all
metrics. We examine the metrics themselves by
computing the CRITIC and BERTScore between
the knowledge snippets and the gold responses in
both the FaithDial validation and test sets, as well
as in CHARP.

Valid Test CHARP
Critic (k, y) ↓ 0.4 0.4 16.0
BERTScore (k, y) ↑ 84.3 85.6 69.9

Table 4: Evaluation of the ground truth response (y)
when contrasted with the knowledge snippet (k) on
FaithDial validation and test sets as well as on CHARP.
All scores are scaled within the range of [0, 100].

Results in Table 4 show that the ground truth
responses of CHARP are labeled as extremely hal-
lucinatory beyond not only the other gold responses
in the compared sets of FaithDial but also to model
predictions. The hallucination ratio is 27× higher
for the ground truth (16%) compared to the re-
sponse generated by GODEL-base (0.6%). Addition-
ally, the semantic similarity with the knowledge, as
measured by the BERTScore, is roughly more than
12% lower between the ground truth (69.9%) and
GODEL-base response (81.7% on hCHARP). This
contrasts with the scores on the FaithDial evalu-
ation sets, where we observe a close tie with the
models’ responses. These observations indicate
possible deficiencies in the metrics used in Faith-
Dial and their comprehensiveness as the success
through the lens of the metric lies at models focus-
ing on the knowledge segment.

5.2 CHARP Human Evaluation

We employ our human annotators (ref §A for de-
tails) to carry out a comprehensive analysis of the
models’ outputs. We focus on errors related to the
system’s reasoning over knowledge and conversa-
tion history. Through this evaluation, we empha-
size faithfulness to the provided knowledge while
including aspects such as cooperativeness, engag-

ingness, and abstractiveness as motivated in (Dziri
et al., 2022a). We frame the evaluation process
in the form of a checklist ticker (binary classifica-
tion), where each annotator is tasked with labeling
whether a system response:

• C1 properly addresses the seeker comment.

• W1 addresses the seeker’s comment while
adding extra information not in the provided
knowledge.

• W2 is simply a copy or slight paraphrasing
of the entire knowledge, while part of it is
irrelevant.

• W3 states a lack of knowledge (e.g. I don’t
know) but still copies or rephrases part or all
of the provided information, despite the rele-
vant information existing within the provided
knowledge.

• W4 is a copy or slight paraphrasing of an
irrelevant knowledge segment.

• W5 fuses knowledge segments leading to
wrong or contradictory information.

• W6 is incorrect for other reasons, e.g. fully
detached, severe hallucination, contains con-
tradictory information.

Table 5 shows the human evaluation results of
FaithDial trained FLAN-base and GODEL-base mod-
els on CHARP subsets. First, we observe that
both models exhibit poor performance on CHARP,
which slipped through FaithDial’s automatic met-
rics (Table 3). As expected, hCHARP proves to be
more challenging than eCHARP, with the correct
response ratio (C1) significantly dropping by 13%
for FLAN-base and 8% for GODEL-base.

FLAN-base GODEL-base
eCHARP hCHARP eCHARP hCHARP

C1 ↑ 23% 10% 21% 13%
W1 ↓ 0% 0% 0% 1%
W2 ↓ 49% 49% 34% 36%
W3 ↓ 3% 14% 7% 12%
W4 ↓ 20% 20% 32% 31%
W5 ↓ 4% 7% 6% 7%
W6 ↓ 1% 0% 0% 0%

Table 5: Human evaluation results of GODEL-base and
FLAN-base models on eCHARP and hCHARP.
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Finetuning 3-shot
Llama-2-7B Llama-2-7B Mixtral ChatGPT

eCHARP hCHARP eCHARP hCHARP eCHARP hCHARP eCHARP hCHARP

C1 ↑ 36% 27% 26% 13% 71% 64% 66% 56%
W1 ↓ 0% 0% 34% 37% 18% 14% 18% 13%
W2 ↓ 32% 35% 12% 9% 4% 7% 3% 6%
W3 ↓ 7% 13% 0% 0% 0% 0% 2% 3%
W4 ↓ 20% 19% 0% 0% 1% 2% 0% 1%
W5 ↓ 4% 5% 7% 9% 4% 9% 5% 9%
W6 ↓ 1% 1% 21% 32% 2% 4% 6% 12%

Table 6: Human evaluation results on CHARP for models under fine-tuning, 3-shot learning paradigms.

We see that models do not add out-of-context
information (W1) or suffer from severe halluci-
nations (W6), as these error rates are almost null
across all configurations. This is largely expected
as FaithDial training reinforces this in models. We
also note that 60% the responses contain para-
phrased all knowledge including the irrelevant fact
W2, or only the irrelevant knowledge W4. While
these samples are marked as errors by humans,
automatic metrics struggle to identify the same
(Table 4). As spotting the knowledge chosen is rel-
evant or not is contingent on knowing the conversa-
tion so far, metrics focusing on only the knowledge
fails unlike humans considering the context as well.

We observe that only W3 errors show a signif-
icant increase when comparing the performances
on eCHARP and hCHARP: 11% for FLAN-base
and 5% for GODEL-base, respectively. This observa-
tion is particularly interesting as it directly relates
to the FaithDial annotation guide, which instructs
the annotators to write responses where the bot
acknowledges its ignorance and continues the con-
versation by presenting the given knowledge en-
gagingly when the knowledge cannot satisfactorily
address the seeker’s last inquiry. This means that
a model that finds a knowledge to be relevant for
an example in eCHARP, may find it irrelevant in
its corresponding example in hCHARP that is at-
tributed to FaithDial trained models’ shortcoming
to reason over the conversation history.

Interestingly, we notice that the performances
are roughly equal under some categories (mainly
W2 and W4) when comparing eCHARP and
hCHARP results. This is noteworthy because, in
eCHARP, models do not need to rely on previous
conversation history to respond, as the last utter-
ance is designed to be self-contained. In contrast,

hCHARP is designed to assess whether models
consider the entire conversation history. For exam-
ple, a model that simply copies the entire knowl-
edge segment (W2), without considering the con-
tent of the last user utterance, is effectively ignoring
the entire history. This observation suggests that
the errors noted are not due to the model’s inability
to reason based on earlier conversation turns.

6 Analysis

6.1 On FaithDial Data Artifact

We conduct ablations on the behavior of models to
estimate the resulting errors due to the artifacts in
the FaithDial training data by comparing the per-
formances of models with and without fine-tuning
on FaithDial. We use the few-shot learning tech-
nique via prompting to ablate for not training with
FaithDial dataset. Specifically, we compare the per-
formances of Llama-2-7B model that we tuned on
FaithDial against the same model with 3 in-context
examples (3-shot). In addition, we evaluate the
3-shot performances of ChatGPT (OpenAI, 2022)
and Mixtral (Jiang et al., 2024) LLMs. Implemen-
tation details of these experiments can be found in
Appendix B.3, as well as an example of the models’
responses in Figure 5.

In Table 6 we compare the human evaluation re-
sults on eCHARP and hCHARP3 across the differ-
ent error types. While the fine-tuned Llama-2-7B
reports higher 4 performance (C1) than FLAN-base
and GODEL-base (Table 5), due to its larger size,
we believe it also suffers from a lack of reasoning
behavior. This is suggested by the reported error

3We also measured inter-annotator agreements across all
models and sets, and have reported the results in § C.2.

4although it underperforms on automatic evaluation met-
rics. This aspect is further discussed in Appendix C.1.
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trends, where W2 and W4 are the dominant er-
ror categories, in contrast to W1, W5, and W6.
However, the error trends undergo a drastic change
when comparing the results of fine-tuned 3-shot
models.

First, we observe that W1 is the dominant er-
ror category, where models add extra informa-
tion after addressing the user inquiry. We at-
tribute this behavior to the verbose nature of LLMs,
which is challenging to mitigate without further
tuning (Gudibande et al., 2023). Second, we notice
that the error ratio for W2 is significantly lower,
by at least 20%, across configurations compared
to fine-tuned models. Additionally, we observe
near-zero error ratios for W3 and W4, strongly
suggesting that models not tuned on FaithDial are
not affected by their ability to reason over the his-
tory. The error trend of Llama-2-7B trained on
FaithDial strongly mimicking the results in Table 5,
we confirm with a high probability that the LMs
lose the ability to account for conversation after
being fine-tuned on FaithDial.

Third, non-tuned models suffer significantly
more from severe hallucinations (W6), a well-
known issue with LLMs (Ji et al., 2023; Ye et al.,
2023). However, this issue tends to be mitigated
as the models get larger; for instance, W6 drops
from 32% in Llama-2-7B to 5% in Mixtral on
hCHARP. While the smaller Llama-2-7B LLM
performs worse than its fine-tuned version, the
larger models, Mixtral and ChatGPT, significantly
outperform all reported fine-tuned models by at
least 30% on C1. Despite their high performances,
we observe that hCHARP remains more challeng-
ing than eCHARP for even the most advanced
models, indicating that CHARP can additionally
serve as a measure of reasoning capability for such
models. Finally, the fact that Mixtral outperforms
ChatGPT in our tasks serves as an additional indi-
cator that high performance is achievable through
community-shared, open-source models.

6.2 On FaithDial Evaluation Metrics

Despite being highly accurate, human evaluation
is time and resource-consuming which limits its
scalability and practicality on large evaluation sets.
To this end, we investigate the recent trend (Wang
et al., 2023; Liu et al., 2023b; Hackl et al., 2023;
Li et al., 2024) of utilizing LLM APIs for the
open-ended evaluation of NLP systems. More
specifically, our focus is on using GPT4-turbo, a
cost-efficient version of GPT-4 (OpenAI, 2023).

This family of models has been shown to correlate
with human judgment, outperforming other alterna-
tives (Chiang et al., 2023; Liu et al., 2023a) in their
generation. The exact prompt we used and a de-
tailed description of this experiment are presented
in Appendix C.3.

In Figure 2 the normalized contingency table
is displayed as a heatmap showcasing the agree-
ment between GPT4-turbo and human judgments
of the Llama-2-7B fine-tuned models on both
eCHARP and hCHARP. The table counts the fre-
quency of each combination of categories from
GPT4-turbo and human judgments, which we later
normalized into percentages ([0− 100]). We show
the contingency table corresponding to fine-tuned
Llama-2-7B model, and other models5 also show
a similar trend.
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Figure 2: Heatmap showing the normalized (percentage)
contingency tables of evaluation categories between
GPT4-turbo (rows) and human (columns) judgments. It
was measured on the output of Llama-2-7B (finetuned)
for both eCHARP (left) and hCHARP (right).

First, it is worth mentioning that the Kappa (Car-
letta, 1996) agreement score on the overall exam-
ples of eCHARP and hCHARP are 0.89 and 0.88,
respectively. These scores are higher than the 0.8
well-acceptable threshold, indicating a high overall
correlation. This observation is further evidenced
by the high values along the diagonals of the corre-
lation heatmaps for both subsets. More precisely,
we observe that the correlation is higher for the
correct response category (C1), as well as for other
wrong response categories that are relatively easy
to detect, such as W1, W2, and W4. However,
we observed that GPT4-turbo tends to confuse cer-
tain categories, notably W3 (which involves stating
lack of knowledge while still providing relevant
information) and W5 (fusing the irrelevant knowl-
edge segments), with the severe hallucination cat-
egory (W6). Although not a perfect match, we

5Detailed plots for all six models, as well as kappa agree-
ment scores, can be found in Figure 4 in the Appendix C.3.
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believe that powerful LLM currently represents the
best approximation to human annotations instead
of the weak automatic evaluation metrics.

7 Conclusion

In this work, we examine the impact of anno-
tation artifacts on information-seeking dialogue
models tuned on FaithDial, a well-established,
hallucination-free annotation benchmark. We intro-
duce CHARP, a diagnostic set designed to evaluate
the ability of models to reason over the conversa-
tion history, while also staying grounded on the
knowledge. Our analysis with CHARP reveals a
strong correlation between training on FaithDial to
models’ ignoring reasoning over the conversation
history. Further, proprietary LLM APIs can be a
proxy to human evaluation, and a better halluci-
nation estimator to automatic metrics. In similar
vein to (Chen et al., 2023b), we note that while it is
important to ensure hallucination-free annotations,
including examples to cover reasoning over con-
text and other pretraining knowledge is necessary
to preserve models’ reasoning capabilities.

Limitations

Potential limitations of this work could be stem-
ming from the sampling of dataset to conduct the
study. Although the study focuses primarily on
FaithDial dataset, the other existing datasets have
been shown to contain more hallucinations ren-
dering this a minor issue. Further, the knowledge
grounded dialogue generation has not looked at
the generated texts that pertains to a diverse demo-
graphics. This is largely due to the nacency of this
domain and further studies can alleviate this issue.
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A Annotation Guideline

Although editing is generally faster than creating
new examples from scratch, the numerous con-
straints that must be met in a single example could
make the task time-consuming if annotators are not
provided with template-like instructions. Therefore,
we decided to restrain our annotators to introducing
edits that probe two natural language understand-
ing abilities: solving co-reference relations and
performing simple reasoning. Figure 3 presents an
example from the FaithDial validation set, trans-
formed into an hCHARP annotation according to
the rules below.

A.1 Annotation Process

We hire 4/ 20 interviewed annotators as contractors
over prior experience and a predefined test. For the
≈ 5700 annotation hours, annotators were paid 19
USD/hour. The annotators were trained beforehand
and given guidelines containing instructions and ex-
amples of both typical and radical cases they might
encounter during annotation. In addition, domain
experts were revising the annotations daily and con-
ducting video meetings with annotators whenever
necessary. Typically, an annotator would receive
an example comprising <conversation history; last
user turn; knowledge; response>, which he/she is
required to edit according to the guidelines outlined
in the following section. Despite our efforts to sim-
plify the annotation task and guide the annotators,
the process was still considered slow, with anno-
tators averaging only 8 examples per hour. This
slow pace was due to the need to adhere to both the
original FaithDial guidelines and all our additional
conditions outlined below.

A.2 Annotation Rules

Conversation history We give the annotators the
freedom to fully rewrite the response, knowledge,
and last user turn, while not introducing changes to

the conversation history unless they find it neces-
sary (and if so, to make the minimal possible edits).
Also, we strongly encourage them to maintain the
natural flow of the conversation and stick to the
information-seeking dialogue style.
Last user turn The last user turn should straightfor-
wardly seek a specific piece of information and be
answerable only when referencing the conversation
history. We instruct our annotators to avoid user
requests that may elicit multiple valid responses
with different semantic meanings, as these are not
easily measurable with automatic metrics.
Knowledge The knowledge should maintain the
same properties as the original, providing correct
factual information (directly relevant to user re-
quest) in 1-2 sentences with a maximum of 30
words. We found it practical to structure the knowl-
edge with two pieces of information: one distrac-
tive and the other relevant to the last user turn. The
distractive element should be easy to ignore in the
response if the model adequately attends to the
conversation history.
Response The response to the last user turn should
be the only unique and valid response, based on the
information contained in the provided knowledge.
Additionally, in line with FaithDial guidelines, the
response should be faithful to this knowledge, of-
ten comprising a large portion that is either a direct
copy or a paraphrase of it. However, we instructed
our annotators to perform only minimal paraphras-
ing necessary to ensure a well-structured response.
We do so to save annotation time, as knowledge
rephrasing isn’t the objective of CHARP. Addi-
tionally, this helps avoid evaluation mismatches
caused by incidental inconsistencies between the
annotation style of our annotators and that of the
FaithDial crowd-workers.

B Experimental Setting

B.1 FaithDail CRITIC

FaithDial (Dziri et al., 2022a) CRITIC was trained
using a dataset comprising 14,000 hallucinatory
turns (edited original WoW turns) and 20,000 faith-
ful turns (unedited WoW and FaithDial turns), serv-
ing as negative and positive examples, respectively.
More precisely, the authors paired up turns with
their respective knowledge snippet and trained the
RoBERTa-large model (Liu et al., 2019) by framing
the task as sequence pair binary classification. The
FaithDial hallucination detector not only demon-
strates a high correlation with human judgment but
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Figure 3: Original example from the FaithDial validation set (left) and our edited hCHARP version (right). Green
text indicates content that the model is expected to reason over, while red text marks distracting content within the
provided knowledge.

also excels in hallucination detection testbeds like
BEGIN (Dziri et al., 2022c). Furthermore, it outper-
forms classifiers trained on counterpart hallucina-
tion detection datasets, such as DECODE (Welleck
et al., 2019) and DNLI (Nie et al., 2021).

B.2 Llama Finetuning

Llama-2-7B We utilize the 7B chat version of the
Llama-2 model series (Touvron et al., 2023), which
is the largest model we could effectively fine-tune
(compared to the 13B and 70B versions), given
our computational resources. We fine-tuned the
model on a single node equipped with 8 NVIDIA
V100 GPUs with 32GB of memory, utilizing a
codebase built on the PyTorch version (Paszke
et al., 2019) of the Transformers library (Wolf et al.,
2020). The initial learning rate was set to 2e-6, em-
ploying the AdamW optimizer (Kingma and Ba,
2014) with a cosine decay learning rate schedule.
The model was trained over 5 epochs with a max-
imum sequence length of 1024 tokens. We set
the per-GPU batch size to 48, the maximum size
that we can fit on a single GPU. Training acceler-
ation was achieved by leveraging the deepspeed
library (Rasley et al., 2020), mixed precision train-
ing (Micikevicius et al., 2018), and gradient check-
pointing (Chen et al., 2016). We pick up the best
checkpoint using early stopping based on perfor-
mance on FaithDial validation set.

B.3 Few-shot Experiments

In addition to Llama-2-7B, we also conduct out-
of-the-box inference (without fine-tuning) on ex-
periments using gpt-3.5-turbo (OpenAI, 2022) and
Mixtral-8x7B (Jiang et al., 2024). Throughout this
paper, we refer to these models as ChatGPT and
Mixtral, respectively. To this end, we carefully
design a prompt that takes the conversation history
and the knowledge relevant to the last seeker’s turn
as input to generate a bot response:

You are given a chitchat conversation between
a “User” and a “Bot”. Your goal is to generate
a response to the last user turn, which in turn
should be based on the given “Knowledge”. You are
prohibited from generating any extra information
that is not mentioned in the given knowledge. The
output should be a JSON dictionary as follow:
{“response”: “”}. Here are a few demonstration
examples:

[In_CONTEXT_EXAMPLE_1]

[In_CONTEXT_EXAMPLE_2]

[In_CONTEXT_EXAMPLE_3]

[INPUT_EXAMPLE]

We designed the instruction part of the prompt
through trial and error iterations until we verified
that all models could follow the instructions and
generate a response that addresses the user query
in our required format. Then, we continuously
added in-context examples until the output of all
models stabilized (with minor to no changes in the
model response). We set the number of in-context
examples, that were picked up from FaithDial train-
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ing set, to 3 as we didn’t see any improvement in
adding more examples or performing more prompt
engineering. On one hand, we execute the gen-
eration process of ChatGPT and Mixtral samples
through the commercial APIs of OpenAI 6 and
Replicate 7, respectively. On the other hand, we
use our local V100 GPUs to infer with Llama-2-7B.
However, across all experiments, we set the tem-
perature to 1.0, the frequency penalty to zero, and
top-p to 1.0, aiming to minimize randomness dur-
ing the generation process.

C Analysis

C.1 Automatic Evaluation Results

Tables 7, 8, and 9 show the automatic metric scores
of the models fully tuned on FaithDial and under
the 3-shot setting on the FaithDial validation subset,
eCHARP, and hCHARP, respectively. First, we
observe that the finetuned Llama-2-7B, across all
three evaluation sets, systematically yields slightly
worse results on all FaithDial metrics compared
to GODEL-base and FLAN-base. We believe this is
primarily because, despite full parameters tuning
on FaithDial, Llama-2-7B has retained some of its
chatty behavior that was induced during the SFT
and RLFH training procedures. However, this does
not mean that the outputs of Llama-2-7B are of
lower quality than those of GODEL-base or FLAN-
base; in fact its the opposite as indicated by the
human evaluation results in Tables 5 and 6. This
particular observation aligns with the findings of
other studies (Sankar et al., 2019; Yeh et al., 2021;
Parthasarathi et al., 2020) regarding the limitations
of automatic metrics in evaluating dialog systems.

Models BLEU↑ Critic ↓ BERTScore↑
(y, y′) (k, y′) (y, y′) (k, y′)

Finetuning
FLAN-base 14.6 0.4 71.1 81.2
GODEL-base 14.5 0.3 70.8 81.5
Llama-2-7B 12.0 2.0 69.2 73.1

3-shot
Llama-2-7B 3.7 72.9 54.3 59.5
Mixtral 9.4 29.1 65.9 74.3
ChatGPT 6.5 55.2 62.3 67.6

Table 7: Performance of models on FaithDial validation
set used to build CHARP. full fine-tuning on FaithDial,
and with no fine-tuning by using 3 in-context examples.
All scores are scaled within the range of [0, 100].

6https://chat.openai.com/
7https://replicate.com/

Models BLEU↑ Critic ↓ BERTScore↑
(y, y′) (k, y′) (y, y′) (k, y′)

Finetuning
FLAN-base 22.0 1.9 70.1 78.6
GODEL-base 18.7 0.6 67.6 81.7
Llama-2-7B 17.2 3.7 68.1 69.1

3-shot
Llama-2-7B 8.0 54.0 63.7 65.0
Mixtral 20.6 16.3 74.6 70.0
ChatGPT 20.2 22.8 74.6 69.8

Table 8: Performance of models on hCHARP. All
scores are scaled within the range of [0, 100].

Models BLEU↑ Critic ↓ BERTScore↑
(y, y′) (k, y′) (y, y′) (k, y′)

Finetuning
FLAN-base 22.8 1.7 70.8 79.4
GODEL-base 20.5 0.5 69.4 82.5
Llama-2-7B 20.1 3.9 70.0 68.8

3-shot
Llama-2-7B 8.9 51.6 65.4 65.3
Mixtral 21.3 16.6 75.5 70.0
ChatGPT 19.9 21.8 74.8 69.2

Table 9: Performance of models on eCHARP. All
scores are scaled within the range of [0, 100].

The results are much worse when comparing
the 3-shot models with the fine-tuned ones across
all metrics and evaluation sets. The high hallu-
cination ratio, as indicated by the CRITIC score,
is well-justified since these models (especially
Llama-2-7B) tend to incorporate out-of-knowledge
information, a finding that is corroborated by hu-
man evaluation. However, our human evalua-
tors noted that the responses from Mixtral and
ChatGPT tend to be creative, often using different
words than the provided knowledge. Despite this,
they deliver responses that are semantically aligned
with the given knowledge and have the same seman-
tic meaning as the ground truth response. This ten-
dency results in a misleadingly high hallucination
ratio, suggesting that the FaithDial CRITIC model 8

is overly sensitive to lexical overlapping and fails to
capture the underlying semantic meaning. This is
also noticeable when considering that CRITIC score
increases more significantly than the drops in the
BERTScore (k, y′). For instance, while the CRITIC

score increases by 70.9%, the BERTScore(k, y′)
8which was specifically-tuned on FaithDial examples,

while BERTScore models, in contrast, were tuned on
MNLI (Williams et al., 2018).
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decreases by only 14.6% when comparing the
tuned Llama-2-7B with its 3-shot counterpart on
FaithDial validation subset. Still, FaithDial auto-
matic metrics significantly under-estimate the per-
formance of Mixtral and ChatGPT compared to
fine-tuned GODEL-base and FLAN-base. However,
it’s interesting to note that the ranking of 3-shot
models (Mixtral > ChatGPT > Llama-2-7B) ac-
cording to automatic metrics aligns with the rank-
ing obtained through human evaluation.

C.2 Inter-annotator Agreement

In an effort to assess the quality of human evalua-
tions, we tasked our annotators to evaluate a sub-
set of 64 randomly selected examples from both
eCHARP and hCHARP. This evaluation covered
all six model variants studied in our experiments,
leading to 786 model outputs that were evaluated
by 3 annotators. Table 11 shows the inter-annotator
agreement scores, as measured by the Kappa Coef-
ficient (Carletta, 1996).

eCHARP hCHARP

Finetuning Models
FLAN-base 93% 93%
GODEL-base 93% 96%
Llama-2-7B 94% 93%

3-shot Models
Llama-2-7B 88% 92%
Mixtral 97% 94%
ChatGPT 92% 89%

Table 10: Kappa inter-annotator agreement scores re-
flect human judgments of three FaithDial-tuned models
and three 3-shot models, based on a random set of 64
examples each from eCHARP and hCHARP.

Overall, we observe significantly high agreement
among annotators, well above the widely accepted
threshold of 80%. Despite slight variations, we no-
tice that the kappa score remains above this thresh-
old across all the configurations. This not only
demonstrates the professionalism of our annotators
but also the clarity and precision of our proposed
evaluation schema.

C.3 GPT-4 Evaluation

Given the complete conversational history, knowl-
edge, response, and a system’s prediction, we con-
structed a prompt requiring GPT-4 to perform the
same checklist evaluation procedure as outlined
in §5.2:

Your task is to assess the quality of a machine
learning system’s response in a conversation.
The conversation ’history’ includes interactions
between a user (Seeker) and a bot (Wizard), along
with relevant ’knowledge’ that pertains to the
Seeker’s last utterance. You are also provided
with a ’response’ (a ground truth or expected
response) and the ’prediction’ (the system’s
predicted response). Your evaluation involves
comparing the system’s ’prediction’ with the
’response’, considering the entire conversation
’history’ and the provided ’knowledge’.

The evaluation is structured around
categorizing the system’s response into specific
categories. Your output should be a JSON
dictionary with a single <key, value> pair. The
key is "category", and the value is a list of
the category numbers that the predicted response
falls under. For example: "category": [1]. These
categories are:

1. The system’s prediction is of high quality
and is an equivalent or a paraphrase of the ground
truth response.

[In_CONTEXT_EXAMPLE_1_FOR_CAT_1]
[In_CONTEXT_EXAMPLE_2_FOR_CAT_1]

2. The system’s prediction aligns with the
ground truth response, but adds extra information,
meaning that the content in the prediction is
absent from the ground truth response, the given
knowledge or the given history.

[In_CONTEXT_EXAMPLE_1_FOR_CAT_2]
[In_CONTEXT_EXAMPLE_2_FOR_CAT_2]

3. The system’s prediction is an identical copy or
a very similar rephrasing of the entire knowledge.
Meaning that its content is the exact same that
can be found in the knowledge. It might contain
content that aligns with the ground truth response,
but it also contains off-topic content from the
knowledge. It should not contain information that
is absent from the given knowledge.

[In_CONTEXT_EXAMPLE_1_FOR_CAT_3]
[In_CONTEXT_EXAMPLE_2_FOR_CAT_3]

4. The system’s prediction states doubt
and ignorance, saying it doesn’t know, doesn’t
understand, or is not equiped to answer; yet it
copies or rephrases the content from the knowledge.
The system’s prediction content may originate from
the whole knowledge or from the part of the
knowledge that correctly aligns with the ground
truth response or from the part of the knowledge
that is not aligned with the ground truth response.
It should not contain information that is absent
from the given knowledge. For example:

[In_CONTEXT_EXAMPLE_1_FOR_CAT_4]
[In_CONTEXT_EXAMPLE_2_FOR_CAT_4]

5. The system’s prediction is an identical
copy or a very similar rephrasing of the part
of the knowledge whose content is off-topic and
does not align with the ground truth response.
The content of the system prediction should not
contain any content that aligns (even partially)
with the ground truth response. It should not
contain information that is absent from the given
knowledge or state ignorance by saying it doesn’t
know and is not able to get that information.

[In_CONTEXT_EXAMPLE_1_FOR_CAT_5]
[In_CONTEXT_EXAMPLE_2_FOR_CAT_5]
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6. The system’s prediction does not align
with the ground truth response and its content is
made of mixed-up information coming from both the
knowledge part that aligns with the ground truth
response (on-topic) and the part that does not
align with the ground truth response (off-topic).
Both parts are not just a copy of the knowledge,
but are merged together, which leads to wrong and
inaccurate information in the prediction.

[In_CONTEXT_EXAMPLE_1_FOR_CAT_6]
[In_CONTEXT_EXAMPLE_2_FOR_CAT_6]

7. The system’s prediction does not align with the
ground truth response yet it cannot be classified
as any of the previously mentioned categories.
This includes but is not limited to: having
extra information that is absent from the given
knowledge, having two or more content elements
that contradict each other, being empty.

[In_CONTEXT_EXAMPLE_1_FOR_CAT_7]
[In_CONTEXT_EXAMPLE_2_FOR_CAT_7]

Now you must evaluate the following:
[INPUT_EXAMPLE]

We found that using two in-context examples
for each category works better than using just one,
with no further improvement observed by using ad-
ditional examples. Due to the high costs associated
with calling GPT-4, we opted for its more cost-
effective version, GPT4-turbo, to perform evalua-
tions on the full evaluation sets.

eCHARP hCHARP

Finetuning Models
FLAN-base 84% 84%
GODEL-base 85% 87%
Llama-2-7B 88% 89%

3-shot Models
Llama-2-7B 87% 86%
Mixtral 92% 90%
ChatGPT 90% 91%

Table 11: Kappa agreement scores between human judg-
ments and those of GPT-4-turbo regarding the quality of
outputs from three FaithDial-tuned models and three 3-
shot models on the full set of eCHARP and hCHARP.

Table 11 presents the kappa agreement scores be-
tween human judgment and GPT4-turbo across six
models, as measured on the complete datasets of
eCHARP and hCHARP. We notice that, overall,
the agreement scores are consistently high (>0.8)
and exhibit minimal variation across different mod-
els and evaluation sets. It is interesting to note
that the agreement is consistently higher for well-
performing models (Mixtral and ChatGPT), while
the evaluation conducted by GPT-4 becomes more
challenging when judging the output of poorly per-
forming models.

GPT4-turbo Human
eCHARP hCHARP eCHARP hCHARP

Finetuning Models
FLAN-base 91% 88% 90% 88%
GODEL-base 88% 88% 88% 89%
Llama-2-7B 89% 92% 91% 90%

3-shot Models
Llama-2-7B 90% 89% 90% 90%
Mixtral 93% 93% 95% 94%
ChatGPT 93% 94% 95% 95%

Table 12: Kappa agreement scores between GPT-4 and
GPT4-turbo judgments (first two columns), and be-
tween GPT-4 and human judgments (last two columns).
This experiment was conducted on a randomly se-
lected subset of 110 examples from both eCHARP and
hCHARP, comprising 6 models.

To ensure the quality of our evaluation, we
measured the discrepancy between GPT-4 and
GPT4-turbo judgments by comparing their out-
puts on a random sample of 110 examples, which
constitutes approximately 10% of the total data in
CHARP. Table 12 shows the agreement scores
of GPT-4, not only with GPT4-turbo (first two
columns) but also with human judgments (last
2 columns). This comparison is based on se-
lected 110 subset examples from eCHARP and
hCHARP. On one hand, we observe a relatively
high agreement between GPT-4 and GPT4-turbo,
ranging from 0.8 at worst to 0.94 at best. No-
tably, most disagreements occur with the less
performing models (GODEL-base and FLAN-base),
which are in line with the observations made in Ta-
ble 11. Although not directly comparable9, we no-
tice that GPT-4 judgments are systematically closer
to human ones compared to those of GPT4-turbo
across different settings. For instance, the agree-
ment between GPT-4 and human judgments on
ChatGPT hCHARP is higher by 0.4-0.5 than that
of GPT4-turbo with humans (0.91). Despite this,
we believe that GPT4-turbo presents an acceptable
quality-cost trade-off, being three times less ex-
pensive than GPT-4. By all means of comparison,
it offers a comprehensively superior alternative to
FaithDial’s automatic evaluation metrics.

9We measured the kappa agreement between GPT4-turbo
and human judgments on the randomly selected example sub-
sets and found that the agreement strongly aligns with that
observed in the full evaluation sets, with a maximum variance
of ±0.1 and ±0.2 in rare cases.
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C1 W1 W2 W3 W4 W5 W6

C1
W1

W2
W3

W4
W5

W6

89 1 1 1 3 2 3
0 96 0 0 0 0 4
1 1 96 1 0 0 1
0 1 2 86 1 2 8
1 0 0 3 89 1 6
2 1 3 1 0 82 11
4 1 2 2 2 13 76

GODEL-base:eCHARP

C1 W1 W2 W3 W4 W5 W6

C1
W1

W2
W3

W4
W5

W6

90 1 1 2 2 1 3
1 90 0 0 2 2 5
2 2 92 1 1 1 1
2 1 1 84 1 3 8
0 0 0 2 90 1 7
1 1 3 1 0 82 12
2 1 2 4 2 14 75

GODEL-base:hCHARP

C1 W1 W2 W3 W4 W5 W6

C1
W1

W2
W3

W4
W5

W6

93 0 1 1 1 1 3
0 92 0 0 1 2 5
1 1 96 1 0 0 1
1 3 1 85 0 1 9
1 0 0 2 89 1 7
1 2 3 1 0 82 11
2 1 4 2 2 13 76

Flan-base:eCHARP

C1 W1 W2 W3 W4 W5 W6

C1
W1

W2
W3

W4
W5

W6

89 0 2 1 3 2 3
2 92 0 0 1 1 4
1 3 92 1 0 2 1
0 1 1 90 0 0 8
0 0 0 2 92 0 6
1 1 3 0 0 84 11
2 1 2 2 2 14 77

Flan-base:hCHARP

C1 W1 W2 W3 W4 W5 W6

C1
W1

W2
W3

W4
W5

W6

91 0 2 1 2 1 3
1 93 1 0 0 1 4
1 2 93 2 0 1 1
0 1 2 88 0 1 8
0 0 0 3 90 1 6
0 1 3 1 0 84 11
3 1 2 2 2 13 77

Llama-2-7B (tune):eCHARP

C1 W1 W2 W3 W4 W5 W6

C1
W1

W2
W3

W4
W5

W6
89 0 1 2 2 3 3
0 94 0 0 0 2 4
1 3 93 1 0 0 2
0 1 1 88 1 1 8
0 0 0 3 88 1 8
2 1 3 1 2 80 11
3 1 2 2 4 13 75

Llama-2-7B (tune):hCHARP
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C1 W1 W2 W3 W4 W5 W6

C1
W1

W2
W3

W4
W5

W6

89 0 2 1 2 2 4
0 93 1 0 0 2 4
1 3 92 1 0 0 3
0 2 1 86 0 3 8
1 1 0 2 88 1 7
1 1 4 2 0 80 12
2 1 3 2 3 13 76

Llama-2-7B (3-shot):eCHARP

C1 W1 W2 W3 W4 W5 W6

C1
W1

W2
W3

W4
W5

W6

91 0 2 1 2 1 3
0 94 0 0 0 1 5
2 2 92 2 1 0 1
1 1 1 87 1 1 8
0 1 1 2 89 1 6
1 2 3 1 2 80 11
4 1 3 2 2 13 75

Llama-2-7B (3-shot):hCHARP

C1 W1 W2 W3 W4 W5 W6

C1
W1

W2
W3

W4
W5

W6

94 0 0 0 2 1 3
0 96 0 0 0 0 4
1 2 96 0 0 0 1
0 1 1 90 0 1 7
0 0 0 2 92 1 5
1 1 2 0 0 85 11
1 0 2 2 2 13 80

Mixtral:eCHARP

C1 W1 W2 W3 W4 W5 W6

C1
W1

W2
W3

W4
W5

W6

94 0 1 1 2 0 2
0 96 0 0 0 0 4
0 2 96 1 0 0 1
0 1 0 91 0 0 8
0 0 0 1 93 0 6
1 0 3 1 0 84 11
2 0 2 2 2 13 79

Mixtral:hCHARP

C1 W1 W2 W3 W4 W5 W6

C1
W1

W2
W3

W4
W5

W6

93 0 1 1 2 1 2
0 96 0 0 0 0 4
1 0 97 1 0 0 1
0 0 1 90 0 1 8
0 0 0 2 93 1 4
1 1 3 1 0 84 10
2 0 2 1 2 13 80

ChatGPT:eCHARP
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W1
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W5

W6

94 0 1 0 1 1 3
0 96 0 0 0 1 3
1 1 96 1 0 0 1
0 1 1 90 0 1 7
0 0 0 2 93 0 5
1 1 3 0 0 84 11
2 0 2 1 2 13 80

ChatGPT:hCHARP
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Figure 4: Heatmap showing the normalized (percentage) contingency tables of evaluation categories between
GPT4-turbo (rows) and human (columns) judgments. It was measured on the output of 6 models for both eCHARP
(on the left) and hCHARP (on the right).
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Figure 5: Tow examples from hCHARP (left side), along with the predictions of the six models employed in our

study (right side). For each model response, we show the FaithDial judgment (hallucination indicated by , and no

hallucination by ), along with the category of human judgment. In the second example, ChatGPT’s response (rare
but interesting) is deemed correct by human evaluators because it accurately addresses the user’s comment before
introducing an unrelated piece of knowledge in a manner that opens a new topic, Although it aligns with FaithDial
guidelines, but the CRITIC judge this case as hallucination, mainly because painting new car is not mentioned in the
provided knowledge.
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