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Abstract

Humans rarely learn one fact in isolation. In-
stead, learning a new fact induces knowledge
of other facts about the world. For example, in
learning a korat is a type of cat, you also infer
it is a mammal and has claws, ensuring your
model of the world is consistent. Knowledge
editing aims to inject new facts into language
models to improve their factuality, but current
benchmarks fail to evaluate consistency, which
is critical to ensure efficient, accurate, and gen-
eralizable edits. We manually create TAXI, a
new benchmark dataset specifically created to
evaluate consistency in categorical knowledge
edits. TAXI contains 11,120 multiple-choice
queries for 976 edits spanning 41 categories
(e.g., Dogs), 164 subjects (e.g., Labrador), and
183 properties (e.g., is a mammal). We then use
TAXI to evaluate popular editors’ categorical
consistency, measuring how often editing a sub-
ject’s category appropriately edits its properties.
We find that 1) the editors achieve marginal,
yet non-random consistency, 2) their consis-
tency far underperforms human baselines, and
3) consistency is more achievable when editing
atypical subjects.1

1 Introduction

Many recent works aim to edit the memorized fac-
tual associations encoded in Large Language Mod-
els (LLMs) (Cohen et al., 2024; Dai et al., 2022;
Hartvigsen et al., 2023; Huang et al., 2023; Mazzia
et al., 2023; Meng et al., 2023, 2022; Mitchell et al.,
2022a,a,b; Tan et al., 2024; Wang et al., 2023b;
Zhong et al., 2023). If effective, such techniques
could offer a transparent and explainable means
of updating out-of-date information; correcting bi-
ased, offensive, or inaccurate outputs; deleting or
obscuring unwanted information to support pri-
vacy; and helping to personalize models.

But critics warn that model editing is the
wrong approach to address factual errors in LLMs.

1https://github.com/derekpowell/taxi
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Figure 1: Consistent categorical edits reclassify subjects,
which inherit properties of their new categories.

Roughly, they worry that model editing is akin to
"emptying the ocean with a spoon" (Pinter and El-
hadad, 2023), that there are just too many facts that
might require editing, or that must be checked for
targeted editing to accomplish its goals.

A key issue compounding this concern is the
ability of model edits to generalize consistently to
related inputs and generations. Current empirical
results show that edits often fail to change genera-
tions related to paraphrases (De Cao et al., 2021) or
entailments (Hase et al., 2023; Cohen et al., 2024;
Hoelscher-Obermaier et al., 2023).

In contrast, human learning functions quite dif-
ferently. Current psychological theories emphasize
the interconnected nature of world knowledge—
knowledge is not a list of propositions, but rather
is embedded within structured “intuitive theories”
or mental models that support reasoning and prob-
lem solving (Gerstenberg and Tenenbaum, 2017;
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Powell et al., 2023). Accordingly, people do not
update their beliefs one-at-a-time. Instead, human
belief revision is marked by widespread coherent
changes spanning many beliefs (Thagard, 1989):
For instance, people’s attitudes toward isolation-
ism shift when foreign wars erupt (Spellman et al.,
1993); an alibi appears untrustworthy when DNA
places a suspect at the scene (Holyoak and Simon,
1999); and learning about the dangers of measles
makes vaccines seem safer (Powell et al., 2023).
Toward factuality and safety, model editors must
be more human-like: they should not modify a
single "fact", but instead produce consistent and
widespread changes across a range of knowledge.

We present the TAXonomic Inference (TAXI)
dataset as a novel and challenging benchmark for
evaluating the coherence and consistency of LLM
editing methods. TAXI leverages edits pertain-
ing to taxonomic categories and their members.
Categories are powerful conceptual and linguis-
tic structures precisely because they entail many
wide-ranging properties shared by their members.
Editing a language model to assign some subject
to be a member of a new category should lead that
subject to inherit the properties of that category,
thereby supporting strong tests of edit consistency.

We use TAXI to evaluate two recent model edi-
tors and a baseline to edit Llama-2 (Touvron et al.,
2023). We find that recent, popular model editors
can indeed generalize categorical edits to update a
subject’s properties, even without seeing these prop-
erties. However, human subjects perform nearly
twice as accurately on the same task, highlighting
clear room for improvements.

2 Related Works

Recently-proposed datasets are driving progress in
model editing by enabling evaluation of edit gen-
eralization. For instance COUNTERFACT (Meng
et al., 2022) evaluates generalization through para-
phrased edit queries. Closest to our work are RIP-
PLEEDITS (Cohen et al., 2024) and MQUAKE
(Zhong et al., 2023), which evaluate multi-hop
question–answering edits. In this setting, an edit
is performed, then the model is queried with a
follow-up question. For example, after editing
“The president of the US is Biden”, we might
prompt the model with “Who is the president’s
son?”. These benchmarks measure important con-
sequences of model edits, but do not support evalua-
tion of editors’ categorical generalization. Further,

N

Edits Total edits 976

Evaluations Property queries 9,168
Efficacy queries 1,952

Total queries 11,120

Distinct entities Categories 41
Subjects 164

Properties 183

Table 1: Statistics for the TAXI dataset.
Superordinate

Category Categories Subjects Properties Edits

Animals 8 32 16 224
Drinks 6 24 9 120
Foods 7 28 7 168
Instruments 6 24 9 120
Plants 8 32 10 224
Vehicles 6 24 7 120

Table 2: Statistics for the TAXI dataset broken down by
superordinate category.

it is often unclear what other facts about the world
should change, especially when relying on counter-
factual answers to real questions, as is common in
prior works. These challenges can limit intuitive
and trustworthy evaluations.

We aim to fill these gaps with TAXI, a new, hand-
written benchmarking dataset containing knowl-
edge edits. Each edit is extremely intuitive, and is
paired with accurate entailments that they should
induce. TAXI complements existing datasets in sev-
eral ways: 1) TAXI introduces a new measure of
edit generalization: categorical consistency; 2) it
evaluates this generalization metric across a novel
and diverse set of downstream property relations;
and 3) TAXI relies far less on “long-tailed” knowl-
edge (Kandpal et al., 2023) and is human-solvable.

3 Methods

We introduce TAXI, a new benchmark dataset to
evaluate knowledge editing methods’ capacity to
make categorical knowledge edits in LLMs. We
leverage taxonomic categories, linguistic structures
that carry rich and far-ranging information about
the properties of their members. For example, upon
learning a “Pekingese” is a dog breed, you also
learn many of its properties, like that it barks and
has four legs. We thus evaluate whether existing
knowledge editors can alter entities’ properties, just
by editing their taxonomic categories. To achieve
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Unedited FT ROME ICE Human

Edit Success .03 .98 .78 1.0 –

Property Success .24 .31 .48 .55 .87
Invariance .78 .73 .76 .91 .91
Consistency .14 .23 .43 .47 .86

- Typical Subject .13 .22 .40 .47 .86
- Atypical Subject .15 .25 .45 .48 .87

Table 3: Editor and human performance for all forward queries in TAXI. Editors exhibit high invariance, but low
consistency, and all underperform humans.

this evaluation, we construct a categorical taxon-
omy, collect a corresponding dataset, and introduce
metrics for categorical knowledge editing. Our tax-
onomy contains three types of element, as follows.

Categories A category c is a high-level division
of objects. For example, dogs is a general descrip-
tor that applies to many different breeds. We refer
to the set of all categories as C.

Properties Each category has a set of asso-
ciated properties pc = {pc0, pc1, . . .} ∈ P .
Dogs, for instance, have the properties p =
{wags tail, barks, . . .}.

Subjects A subject s (e.g., pitbull) is an object
that belongs to a category c ∈ C. The subject
likewise inherits the properties of its category; a
pitbull wags tail and barks.

Given categories, properties, and subjects, we
propose categorical edits. We define a categorical
edit as a change to a subject’s category membership
(e.g., pitbull → cat). For LLMs, this update is
made using a knowledge editor, which is a function
ϕ that takes in a language model f , a subject s,
and a newly-assigned category c∗ and returns an
updated model f∗ that associates s with c∗. Note
that editing only uses s and c∗, not properties p.
We than therefore denote an edit as a tuple (s, c∗),
which contains a subject and its new category. Fol-
lowing Meng et al. (2022), we can then convert
these tuples to prompts that mention the subject
alongside continuations to perform the edits.

During evaluation, we can then measure whether
editing a subject’s category also edits its properties
p, as further detailed in our metrics below. This is
a measure of generalization in knowledge editing,
similar to recent works on multi-hop question an-
swering (Zhong et al., 2023; Cohen et al., 2024).
But with taxonomic categories, we can be certain

which properties should change after edits. Our hu-
man study in Section 5 corroborates this: humans
can achieve nearly-perfect property generalization.

Data Collection We manually create TAXI, a
benchmarking dataset containing “category mem-
bership” edits, where subjects are assigned to new
categories. As illustrated in Figure 1, our aim is
to evaluate whether editing a subject’s category
also changes its properties according to a language
model. We prioritize intuitive knowledge edits,
where it should be easy to guess what properties
should change. For example, if we edit a cobra
to be a dog, it should bark and play fetch. Intu-
itively, editing rare subjects may differ than com-
mon subjects (also see Mallen et al., 2023). To
evaluate this, we include a typical and a rare sub-
ject for each category. For example, for dogs, we
choose the typical Labrador and atypical breed
Pekingese.

Subjects were initially hand-picked and their
popularity was confirmed by Google Trends. We
further evaluate the rarity of our manually-chosen
subjects by computing their occurrence frequencies
in the 3-trillion token DOLMA corpus (Soldaini
et al., 2024) using infini-gram (Liu et al., 2024). We
find our typical tokens appear roughly 10x more
often than atypical tokens in DOLMA on average.

The TAXI Dataset TAXI contains 41 categories,
164 subjects, and 183 properties (Table 1). To
ensure intuitive edits with expected changes to
properties, we choose categories from six common
superordinate groups: Animals, Plants, Foods,
Drinks, Vehicles, and Instruments. For each
category, we write 2-10 properties (median of 4.5)
shared by subjects in this category (see examples
in Appendix A). We generate edits by assigning
each subject to each counterfactual category within
its common superordinate group, resulting in 976
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categorical membership edits.

Metrics We use three metrics to measure whether
edits successfully assign subject to new categories,
and which properties have been altered as an ef-
fect. Each is an accuracy score computed over a
set of query prompts with expected continuations
associated with the newly-assigned category.

➢ Edit Success First, we measure Edit Suc-
cess as a binary value indicating whether
the new category c∗ for a subject s is
the edited model’s most-likely continua-
tion when prompted with the original edit.
For example, after the edit ϕpitbull→cat(θ),
P (cat|A pitbull is a type of) should be higher
than P (dog|A pitbull is a type of) after editing.

➢ Property Success Second, we measure
whether edited language models correctly in-
fer that editing a subject’s category should also
change its properties. We summarize all prop-
erty changes with a general Property Success
metric, computing the proportion of correctly-
attributed properties by an edited model. How-
ever, some properties are unique to a category,
while others are shared. Therefore, we divide
this metric into two components. Each mea-
sures property success on different subsets of
properties:

• Consistency We measure Consistency as
the proportion of correctly-entailed prop-
erties that should change with a new cate-
gory assignment. The properties that should
change are those unshared by the old and
new categories, denoted as (pc

∗ \ pc).
• Invariance Analogously, we measure In-

variance as the proportion of correctly-
entailed properties that should remain un-
changed (pc

∗ ∩ pc).

We implement each metric using multiple-choice
question answering. We thus compute success with
a binary indicator that returns a 1 when the edited
model’s probability is highest for the correct choice.
The indicator returns 0 otherwise. The negative
choices include each subject’s original category or
properties and 2-4 random alternatives. To sum-
marize the performance of a single editing method,
we then average over all properties and edits.

4 Experiments

We evaluate three approaches to editing: Finetun-
ing (FT), Rank-one model editing (ROME) (Meng
et al., 2022), and in-context knowledge editing
(ICE) (Cohen et al., 2024) in editing Llama-2 7B
(Touvron et al., 2023). ROME and ICE are rep-
resentatives of popular and capable approaches to
editing, which update a model’s weights or add
facts to its prompts, respectively.

For each edit in TAXI, we start with the base
language model, then apply the edit using an editor,
and evaluate its performance. Each edit introduces
only a subject’s category change. Property infor-
mation is used only for evaluation. We compute
each metric for both forward (e.g., “A labrador
is a type of cow”) and reversed queries (e.g., “One
type of cow is a labrador”). However, as prior
editors are developed for forward queries, we focus
primarily on these metrics.

FT and ROME were implemented using the
EasyEdit editing suite (Wang et al., 2023a) with
modifications to accommodate TAXI. Experiments
utilized default hyperparameter settings except in
computing covariances for ROME from Wikipedia,
where 50,000 samples were used. ICE was im-
plemented by prepending the prompt “Imagine
that a <subject> was a kind of <category>
...” to queries. This approach follows Cohen et al.
(2024), and might also be seen as a simplification
of methods proposed by Zheng et al. (2023). Ex-
periments were conducted using a single Nvidia
A100 GPU.

Edit success does not imply property success
Our main results are shown in Table 3, where
we observe that edit success is high for forward
queries, as expected: each editor succeeds to edit
the model most of the time. In all cases, we observe
a clear performance drop for queries about subject
properties, compared to Edit Success. Property
Success for ROME and ICE both exceeded that
expected from random predictions (roughly 0.25).
We also note that the unedited model has high in-
variance, implying the model correctly associates
subjects with their properties.

Edits exhibit greater property invariance than
consistency Not all properties differ by category.
Therefore, we measure both invariance (accuracy
for unchanged properties) and consistency (accu-
racy for changed properties). We find that all ed-
itors exhibit stronger invariance than consistency
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Figure 2: Consistency for forward multiple-choice test queries by editor and category (dashed line indicates chance).

in their generalizations (Table 3). FT performs
the worst, with consistency no better than chance.
The consistency of ROME and ICE’s edits are well-
above chance, but their performance is roughly half
of that for invariant properties, indicating that they
fail to fully edit the LLM’s knowledge of a sub-
ject’s properties. This finding establishes a clear
gap in the performance of these methods, demand-
ing development of more consistent model editors.

Atypical subjects are easier to edit than typical
subjects Our results in Table 3 bolster and ex-
pand recent works (Ma et al., 2024), where editors
were found to perform better for rarer knowledge.

Consistency is consistent across superordinate
categories To test the generalizability of findings
from TAXI, we also examine editor consistency in-
dividually for each of the superordinate categories.
We find that editor consistency is similar across
categories (Figure 2, right).

5 Human Study

TAXI aims to leverage taxonomic properties to cre-
ate a clear and intuitive test of consistency for
knowledge editors. We validate this with a human
study, confirming that TAXI is human-solvable.

In our study, 19 participants (12 Female, 1 non-
binary, median age 34 y/o, all in the United States)
recruited from CloudResearch’s Connect platform
and completed a multiple choice questionnaire anal-
ogous to the task used to test language models. A
random subset of edits was sampled from TAXI

(with one of each exemplar type per category).
Each annotator judged 100 items sampled from
this subset, for a total of 1,900 human judgments.

For each query, participants were instructed
to Imagine a <subject> was a kind of
<category>. They were then prompted with the
subject and a multiple choice question asking

which of a set of properties applies to the subject.
This task is identical to that used to evaluate the
editors, so results are directly comparable.

Human annotators dramatically outperform ed-
itors Human subjects are approximately twice as
consistent as the best model editor on the same
edits (Figure 2, left), answering correctly on 86.8%
of trials (the best-performing participant responded
correctly on 95/100 trials). Overall, human behav-
ioral data indicate that the task prescribed by TAXI

is human solvable and set a benchmark that far ex-
ceeds any existing editors’ performance. Further
procedural details are available in Appendix C.

6 Conclusions

We introduce TAXI, a new dataset for evaluating
knowledge editors ability to consistently and co-
herently edit large language models. TAXI is inter-
pretable, building on taxonomic categories, and is
designed to evaluate a knowledge edit’s impacts on
entailed information. We then propose and study
consistency, a new metric that measures whether
entailed properties are correctly edited, despite an
editor never seeing the entailed information. In ex-
periments with recent knowledge editors on Llama-
2, we find that consistency varies substantially
across existing editors. In editing a subject’s cate-
gory, we find that the editors preserve existing prop-
erties of subjects, while two editors achieve non-
trivial consistency. However, human subjects are
nearly twice as accurate on the same task, establish-
ing consistent model editing as a new research di-
rection. Overall, TAXI is a challenging, new bench-
mark for model editors that highlights substantial
gaps of existing editing methods. Nevertheless,
the fact that existing methods do achieve above-
chance performance demonstrates the in-principle
feasibility of consistent model editing.
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Ethical Considerations

Successful and consistent model editors stand to
serve users of artificial intelligence systems in
many ways. For instance, editing aspires to im-
prove factuality, reduce harmful LLM generations,
support privacy, and potentially reduce costly and
environmentally-impactful training requirements.
At the same time, unsuccessful or inconsistent
model editing for factuality and safety risks in-
stilling false confidence for developers and users.
Therefore, stringent evaluations are a key compo-
nent of editor development. While we aim to sup-
port these evaluations with TAXI, no single bench-
mark is sufficiently comprehensive to ensure con-
sistency of model editing. We urge developers
and researchers to adopt TAXI in their evaluations,
but we also advocate for the development of fur-
ther tests and benchmarks. Our human annotation
study was conducted under approval from the Insti-
tutional Review Board at Arizona State University
(IRB approval: 00013322).

Limitations

The categories, subjects, and properties included
in TAXI were manually selected, and are likely not
entirely representative of these categories, subjects,
and properties in natural language. Similarly, TAXI

includes only concrete and everyday object cate-
gories. It is unclear how editors would perform
for more obscure or abstract categories. At the
same time, our method for creating TAXI presents a
blueprint for the creation of benchmarks that might
explore other aspects of editors’ performance.
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FT ROME ICE

Edit Success .05 .10 1.0

Property Success .05 .12 1.0
Invariance .10 .21 1.0
Consistency .04 .10 1.0

Consistency
Typical Subj. .05 .09 1.0
Atypical Subj. .03 .10 1.0

Table 4: Editor and human performance for reverse
queries from the TAXI dataset. Edits exhibit stronger
invariance than consistency, but both values vary across
editing methods. Note that ROME’s edit success was
imperfect, suggesting its performance might improve
through hyperparameter tuning.

A Example of a TAXI Taxonomy

While all data are publicly available, we also in-
clude examples in Table 5, which includes the struc-
ture of categories and properties for the superordi-
nate category of animals. The full taxonomy is
available in the project repository. Table 2 shows
the number of categories and properties for each
superordinate category.

Below is a schematic example of a specific edit,
property, and associated query and response op-
tions.

{
Edit: "A Siamese is a kind of dog."
Property: "makes sound"
Forward Query: "A sound a Siamese makes is"
Responses: ["bark", "chirp", "meow", "moo"]

}

B Reverse query performance

We find that reversing queries leads FT and ROME
to fail, as shown in Figure 3 and Table 4. This is
expected due to the directional nature of "causal" or
decoder-only language models like Llama-2 (Tou-
vron et al., 2023), to which we apply these editors.
Due to the nature of the causal language model
architectures, the effects of model editing methods
that seek to edit a specific "subject" are only ap-
parent if the tokening of that subject appears in the
context prior to an answer (Berglund et al., 2023;
Meng et al., 2022). In contrast, as shown in Figure
3, ICE scores perfectly on the benchmark.

However, we suspect this may reflect ICE’s use
of a largely trivial process, whereby the presence
of the subject token in the prompt increases its

probability for subsequent generation. One reason
for this suspicion is the finding that, for reversed
queries, ICE outperforms human annotators perfor-
mance on forward queries, indicating this perfor-
mance is likely inflated or meaningless. Further,
we speculate that the presence of "reversed" queries
in the RIPPLEEDITS benchmark may at least partly
explain the relative success of ICE on this bench-
mark (Cohen et al., 2024).

C Human Study Details

A total of 19 human annotators (12 Female, 1 non-
binary, median age 34 y/o, all located in the United
States) were recruited from CloudResearch’s Con-
nect platform and asked to complete a multiple
choice questionnaire analogous to the task used to
test language models. A random subset of edits
was sampled from TAXI (with one of each exem-
plar type per category). Each annotator judged 100
items sampled from this subset, for a total of 1,900
human judgments. Annotator were compensated
$2.25 for their participation, which typically took
about 10 minutes.

For each query, annotators were given a prompt
to: Imagine a <subject> was a kind of
<category>. They were then prompted with the
subject and a multiple choice question asking
which of a set of properties applies to the subject.
Figure 4 displays an example annotation trial.

The full text of instructions given to annotators
was:

In this study you will be asked to imagine
that different entities belong to different cat-
egories. For instance, you might be asked to
imagine that "a Parrot is a kind of fish." You
should imagine that an entity (e.g. Parrot) in-
herits the properties of the category to which
it belongs (e.g. fish). So if you imagine that
"a Parrot is a kind of fish," then you should
imagine that a Parrot has scales, swims in
the water, and so forth.

On each trial, you will be asked to imagine
and to answer a multiple choice question
based on the scenario you are imagining.
Some of the trials will have different num-
bers of choices, in which case later options
will appear blank. Please ignore any blank
option choices.

Annotators agreed with the chosen "correct" an-
swer on 86.8% of trials. The best-performing anno-
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Figure 3: Edit success for forward and reverse multiple-
choice test queries by editor type. Dashed line indicates
chance performance for forward and reverse edits by
color.

Figure 4: Screenshot illustrating a trial of the of human
annotation study.

tator agreed with the "correct" answers on 95/100
ratings. Overall, human behavioral data indicate
that the task prescribed by TAXI is human solvable
and set a benchmark that far exceeds any existing
editors’ performance.
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Subjects Properties

Dog Labrador, Chihuahua,
Pekingese, Bichon Frise

Born in a litter, has fur, is domesticated, has four legs, kept as
pets, likes to fetch, barks, walks, baby is a puppy, is a mammal

Cat Siamese, Persian,
Abyssinian, Chartreux

Born in a litter, has claws, has fur, is domesticated, has four
legs, kept as pets, likes to chase, meows, walks, baby is a kitten,
eats meat

Cow Holstein, Jersey, Gal-
loway, Hereford

Is a mammal, born alone, has hooves, has fur, is domesticated,
has four legs, kept for their milk, likes to graze, moos, walks,
baby is a calf, eats grain, makes milk

Bird sparrow, canary, wood-
pecker, Partridge

Is an aves, hatched from egg, has wings, has feathers, chirps,
flies, baby is a chick, can fly, is wild

Bee Bumblebee, Honeybee,
Megachile, Apis Mellifera

Is an insect, has wings, has six legs, buzzes, flies, makes honey,
can fly

Fish Trout, salmon, Flounder,
tilapia

Hatched from an egg, has scales, has fins, has no legs, caught
and eaten, swims, lives in water, can swim, is wild

Snake Cobra, python, copper-
head, Gaboon viper

Hatched from an egg, has scales, no legs, people avoid, hisses,
slithers, is wild

Table 5: Taxonomic details for superordinate category "animals" from the TAXI benchmark dataset. The first two
listed exemplars are typical exemplars.
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